All Downloads are FREE. Search and download functionalities are using the official Maven repository.

drv.ArrayList.drv Maven / Gradle / Ivy

Go to download

fastutil extends the Java Collections Framework by providing type-specific maps, sets, lists, and queues with a small memory footprint and fast operations; it provides also big (64-bit) arrays, sets, and lists, sorting algorithms, fast, practical I/O classes for binary and text files, and facilities for memory mapping large files. This jar (fastutil-core.jar) contains data structures based on integers, longs, doubles, and objects, only; fastutil.jar contains all classes. If you have both jars in your dependencies, this jar should be excluded.

There is a newer version: 8.5.15
Show newest version
/*
 * Copyright (C) 2002-2022 Sebastiano Vigna
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */


package PACKAGE;

import java.util.Arrays;
import java.util.Collection;
import java.util.Iterator;
import java.util.RandomAccess;
import java.util.NoSuchElementException;
#if KEYS_REFERENCE
import java.lang.reflect.Array;
import java.util.Comparator;
import java.util.stream.Collector;
import java.util.function.Consumer;
#endif

#if KEYS_PRIMITIVE

/** A type-specific array-based list; provides some additional methods that use polymorphism to avoid (un)boxing.
 *
 * 

This class implements a lightweight, fast, open, optimized, * reuse-oriented version of array-based lists. Instances of this class * represent a list with an array that is enlarged as needed when new entries * are created (by increasing its current length by 50%), but is * never made smaller (even on a {@link #clear()}). A family of * {@linkplain #trim() trimming methods} lets you control the size of the * backing array; this is particularly useful if you reuse instances of this class. * Range checks are equivalent to those of {@code java.util}'s classes, but * they are delayed as much as possible. The backing array is exposed by the * {@link #elements()} method. * *

This class implements the bulk methods {@code removeElements()}, * {@code addElements()} and {@code getElements()} using * high-performance system calls (e.g., {@link * System#arraycopy(Object,int,Object,int,int) System.arraycopy()}) instead of * expensive loops. * * @see java.util.ArrayList */ public class ARRAY_LIST KEY_GENERIC extends ABSTRACT_LIST KEY_GENERIC implements RandomAccess, Cloneable, java.io.Serializable { private static final long serialVersionUID = -7046029254386353130L; #else /** A type-specific array-based list; provides some additional methods that use polymorphism to avoid (un)boxing. * *

This class implements a lightweight, fast, open, optimized, * reuse-oriented version of array-based lists. Instances of this class * represent a list with an array that is enlarged as needed when new entries * are created (by increasing its current length by 50%), but is * never made smaller (even on a {@link #clear()}). A family of * {@linkplain #trim() trimming methods} lets you control the size of the * backing array; this is particularly useful if you reuse instances of this class. * Range checks are equivalent to those of {@link java.util}'s classes, but * they are delayed as much as possible. * *

The backing array is exposed by the {@link #elements()} method. If an instance * of this class was created {@linkplain #wrap(Object[],int) by wrapping}, * backing-array reallocations will be performed using reflection, so that * {@link #elements()} can return an array of the same type of the original array: the comments * about efficiency made in {@link it.unimi.dsi.fastutil.objects.ObjectArrays} apply here. * Moreover, you must take into consideration that assignment to an array * not of type {@code Object[]} is slower due to type checking. * *

This class implements the bulk methods {@code removeElements()}, * {@code addElements()} and {@code getElements()} using * high-performance system calls (e.g., {@link * System#arraycopy(Object,int,Object,int,int) System.arraycopy()}) instead of * expensive loops. * * @see java.util.ArrayList */ public class ARRAY_LIST KEY_GENERIC extends ABSTRACT_LIST KEY_GENERIC implements RandomAccess, Cloneable, java.io.Serializable { private static final long serialVersionUID = -7046029254386353131L; #endif /** The initial default capacity of an array list. */ public static final int DEFAULT_INITIAL_CAPACITY = 10; #if ! KEYS_PRIMITIVE /** Whether the backing array was passed to {@code wrap()}. In * this case, we must reallocate with the same type of array. */ protected final boolean wrapped; #endif /** The backing array. */ protected transient KEY_GENERIC_TYPE a[]; /** The current actual size of the list (never greater than the backing-array length). */ protected int size; /** Ensures that the component type of the given array is the proper type. * This is irrelevant for primitive types, so it will just do a trivial copy. * But for Reference types, you can have a {@code String[]} masquerading as an {@code Object[]}, * which is a case we need to prepare for because we let the user give an array to use directly * with {@link #wrap}. */ SUPPRESS_WARNINGS_KEY_UNCHECKED private static final KEY_GENERIC KEY_GENERIC_TYPE[] copyArraySafe(KEY_GENERIC_TYPE[] a, int length) { if (length == 0) return KEY_GENERIC_ARRAY_CAST ARRAYS.EMPTY_ARRAY; #if KEYS_PRIMITIVE return java.util.Arrays.copyOf(a, length); #else return (KEY_GENERIC_TYPE[])java.util.Arrays.copyOf(a, length, KEY_TYPE[].class); #endif } private static final KEY_GENERIC KEY_GENERIC_TYPE[] copyArrayFromSafe(ARRAY_LIST KEY_GENERIC l) { return copyArraySafe(l.a, l.size); } /** Creates a new array list using a given array. * *

This constructor is only meant to be used by the wrapping methods. * * @param a the array that will be used to back this array list. */ protected ARRAY_LIST(final KEY_GENERIC_TYPE a[], @SuppressWarnings("unused") boolean wrapped) { this.a = a; #if ! KEYS_PRIMITIVE this.wrapped = wrapped; #endif } SUPPRESS_WARNINGS_KEY_UNCHECKED private void initArrayFromCapacity(final int capacity) { if (capacity < 0) throw new IllegalArgumentException("Initial capacity (" + capacity + ") is negative"); if (capacity == 0) a = KEY_GENERIC_ARRAY_CAST ARRAYS.EMPTY_ARRAY; else a = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[capacity]; } /** Creates a new array list with given capacity. * * @param capacity the initial capacity of the array list (may be 0). */ public ARRAY_LIST(final int capacity) { initArrayFromCapacity(capacity); #if ! KEYS_PRIMITIVE this.wrapped = false; #endif } /** Creates a new array list with {@link #DEFAULT_INITIAL_CAPACITY} capacity. */ SUPPRESS_WARNINGS_KEY_UNCHECKED public ARRAY_LIST() { a = KEY_GENERIC_ARRAY_CAST ARRAYS.DEFAULT_EMPTY_ARRAY; // We delay allocation #if ! KEYS_PRIMITIVE wrapped = false; #endif } /** Creates a new array list and fills it with a given collection. * * @param c a collection that will be used to fill the array list. */ public ARRAY_LIST(final Collection c) { if (c instanceof ARRAY_LIST) { a = copyArrayFromSafe((ARRAY_LIST KEY_EXTENDS_GENERIC)c); size = a.length; } else { initArrayFromCapacity(c.size()); if (c instanceof LIST) { ((LIST KEY_EXTENDS_GENERIC)c).getElements(0, a, 0, size = c.size()); } else { #if KEYS_PRIMITIVE size = ITERATORS.unwrap(ITERATORS.AS_KEY_ITERATOR(c.iterator()), a); #else size = ITERATORS.unwrap(c.iterator(), a); #endif } } #if ! KEYS_PRIMITIVE this.wrapped = false; #endif } /** Creates a new array list and fills it with a given type-specific collection. * * @param c a type-specific collection that will be used to fill the array list. */ public ARRAY_LIST(final COLLECTION KEY_EXTENDS_GENERIC c) { if (c instanceof ARRAY_LIST) { a = copyArrayFromSafe((ARRAY_LIST KEY_EXTENDS_GENERIC)c); size = a.length; } else { initArrayFromCapacity(c.size()); if (c instanceof LIST) { ((LIST KEY_EXTENDS_GENERIC)c).getElements(0, a, 0, size = c.size()); } else { size = ITERATORS.unwrap(c.iterator(), a); } } #if ! KEYS_PRIMITIVE this.wrapped = false; #endif } /** Creates a new array list and fills it with a given type-specific list. * * @param l a type-specific list that will be used to fill the array list. */ public ARRAY_LIST(final LIST KEY_EXTENDS_GENERIC l) { if (l instanceof ARRAY_LIST) { a = copyArrayFromSafe((ARRAY_LIST KEY_EXTENDS_GENERIC)l); size = a.length; } else { initArrayFromCapacity(l.size()); l.getElements(0, a, 0, size = l.size()); } #if ! KEYS_PRIMITIVE this.wrapped = false; #endif } /** Creates a new array list and fills it with the elements of a given array. * * @param a an array whose elements will be used to fill the array list. */ public ARRAY_LIST(final KEY_GENERIC_TYPE a[]) { this(a, 0, a.length); } /** Creates a new array list and fills it with the elements of a given array. * * @param a an array whose elements will be used to fill the array list. * @param offset the first element to use. * @param length the number of elements to use. */ public ARRAY_LIST(final KEY_GENERIC_TYPE a[], final int offset, final int length) { this(length); System.arraycopy(a, offset, this.a, 0, length); size = length; } /** Creates a new array list and fills it with the elements returned by an iterator.. * * @param i an iterator whose returned elements will fill the array list. */ public ARRAY_LIST(final Iterator i) { this(); while(i.hasNext()) this.add(KEY_CLASS2TYPE(i.next())); } /** Creates a new array list and fills it with the elements returned by a type-specific iterator.. * * @param i a type-specific iterator whose returned elements will fill the array list. */ public ARRAY_LIST(final KEY_ITERATOR KEY_EXTENDS_GENERIC i) { this(); while(i.hasNext()) this.add(i.NEXT_KEY()); } #if KEYS_PRIMITIVE /** Returns the backing array of this list. * * @return the backing array. */ public KEY_GENERIC_TYPE[] elements() { return a; } #else /** Returns the backing array of this list. * *

If this array list was created by wrapping a given array, it is guaranteed * that the type of the returned array will be the same. Otherwise, the returned * array will be of type {@link Object Object[]} (in spite of the declared return type). * *

Warning: This behaviour may cause (unfathomable) * run-time errors if a method expects an array * actually of type {@code K[]}, but this methods returns an array * of type {@link Object Object[]}. * * @return the backing array. */ public K[] elements() { return a; } #endif /** Wraps a given array into an array list of given size. * *

Note it is guaranteed * that the type of the array returned by {@link #elements()} will be the same * (see the comments in the class documentation). * * @param a an array to wrap. * @param length the length of the resulting array list. * @return a new array list of the given size, wrapping the given array. */ public static KEY_GENERIC ARRAY_LIST KEY_GENERIC wrap(final KEY_GENERIC_TYPE a[], final int length) { if (length > a.length) throw new IllegalArgumentException("The specified length (" + length + ") is greater than the array size (" + a.length + ")"); final ARRAY_LIST KEY_GENERIC l = new ARRAY_LIST KEY_GENERIC_DIAMOND(a, true); l.size = length; return l; } /** Wraps a given array into an array list. * *

Note it is guaranteed * that the type of the array returned by {@link #elements()} will be the same * (see the comments in the class documentation). * * @param a an array to wrap. * @return a new array list wrapping the given array. */ public static KEY_GENERIC ARRAY_LIST KEY_GENERIC wrap(final KEY_GENERIC_TYPE a[]) { return wrap(a, a.length); } /** Creates a new empty array list. * * @return a new empty array list. */ public static KEY_GENERIC ARRAY_LIST KEY_GENERIC of() { return new ARRAY_LIST KEY_GENERIC_DIAMOND(); } /** Creates an array list using an array of elements. * * @param init a the array the will become the new backing array of the array list. * @return a new array list backed by the given array. * @see #wrap */ SAFE_VARARGS public static KEY_GENERIC ARRAY_LIST KEY_GENERIC of(final KEY_GENERIC_TYPE... init) { return wrap(init); } #if KEYS_INT_LONG_DOUBLE /** Collects the result of a primitive {@code Stream} into a new ArrayList. * *

This method performs a terminal operation on the given {@code Stream} * * @apiNote Taking a primitive stream instead of returning something like a * {@link java.util.stream.Collector Collector} is necessary because there is no * primitive {@code Collector} equivalent in the Java API. */ public static KEY_GENERIC ARRAY_LIST KEY_GENERIC toList(JDK_PRIMITIVE_STREAM stream) { return stream.collect( ARRAY_LIST::new, ARRAY_LIST::add, ARRAY_LIST::addAll); } /** Collects the result of a primitive {@code Stream} into a new ArrayList, potentially pre-allocated to handle the given size. * *

This method performs a terminal operation on the given {@code Stream} * * @apiNote Taking a primitive stream instead returning something like a * {@link java.util.stream.Collector Collector} is necessary because there is no * primitive {@code Collector} equivalent in the Java API. */ public static KEY_GENERIC ARRAY_LIST KEY_GENERIC toListWithExpectedSize(JDK_PRIMITIVE_STREAM stream, int expectedSize) { if (expectedSize <= DEFAULT_INITIAL_CAPACITY) { // Already below default capacity. Just use all default construction instead of fiddling with atomics in SizeDecreasingSupplier return toList(stream); } return stream.collect( new COLLECTIONS.SizeDecreasingSupplier< #if KEYS_REFERENCE K, #endif ARRAY_LIST KEY_GENERIC>( expectedSize, (int size) -> size <= DEFAULT_INITIAL_CAPACITY ? new ARRAY_LIST KEY_GENERIC() : new ARRAY_LIST KEY_GENERIC(size)), ARRAY_LIST::add, ARRAY_LIST::addAll); } #elif KEYS_REFERENCE // Collector wants a function that returns the collection being added to. ARRAY_LIST KEY_GENERIC combine(ARRAY_LIST KEY_EXTENDS_GENERIC toAddFrom) { addAll(toAddFrom); return this; } private static final Collector> TO_LIST_COLLECTOR = Collector.of( ARRAY_LIST::new, ARRAY_LIST::add, ARRAY_LIST::combine); /** Returns a {@link Collector} that collects a {@code Stream}'s elements into a new ArrayList. */ SUPPRESS_WARNINGS_KEY_UNCHECKED_RAWTYPES public static KEY_GENERIC Collector toList() { return (Collector) TO_LIST_COLLECTOR; } /** Returns a {@link Collector} that collects a {@code Stream}'s elements into a new ArrayList, potentially pre-allocated to handle the given size. */ public static KEY_GENERIC Collector toListWithExpectedSize(int expectedSize) { if (expectedSize <= DEFAULT_INITIAL_CAPACITY) { // Already below default capacity. Just use all default construction instead of fiddling with atomics in SizeDecreasingSupplier return toList(); } return Collector.of( new COLLECTIONS.SizeDecreasingSupplier< #if KEYS_REFERENCE K, #endif ARRAY_LIST KEY_GENERIC>( expectedSize, (int size) -> size <= DEFAULT_INITIAL_CAPACITY ? new ARRAY_LIST KEY_GENERIC() : new ARRAY_LIST KEY_GENERIC(size)), ARRAY_LIST::add, ARRAY_LIST::combine); } #endif /** Ensures that this array list can contain the given number of entries without resizing. * * @param capacity the new minimum capacity for this array list. */ SUPPRESS_WARNINGS_KEY_UNCHECKED public void ensureCapacity(final int capacity) { if (capacity <= a.length || (a == ARRAYS.DEFAULT_EMPTY_ARRAY && capacity <= DEFAULT_INITIAL_CAPACITY)) return; #if KEYS_PRIMITIVE a = ARRAYS.ensureCapacity(a, capacity, size); #else if (wrapped) a = ARRAYS.ensureCapacity(a, capacity, size); else { if (capacity > a.length) { final Object t[] = new Object[capacity]; System.arraycopy(a, 0, t, 0, size); a = (KEY_GENERIC_TYPE[])t; } } #endif assert size <= a.length; } /** Grows this array list, ensuring that it can contain the given number of entries without resizing, * and in case increasing the current capacity at least by a factor of 50%. * * @param capacity the new minimum capacity for this array list. */ SUPPRESS_WARNINGS_KEY_UNCHECKED private void grow(int capacity) { if (capacity <= a.length) return; if (a != ARRAYS.DEFAULT_EMPTY_ARRAY) capacity = (int)Math.max(Math.min((long)a.length + (a.length >> 1), it.unimi.dsi.fastutil.Arrays.MAX_ARRAY_SIZE), capacity); else if (capacity < DEFAULT_INITIAL_CAPACITY) capacity = DEFAULT_INITIAL_CAPACITY; #if KEYS_PRIMITIVE a = ARRAYS.forceCapacity(a, capacity, size); #else if (wrapped) a = ARRAYS.forceCapacity(a, capacity, size); else { final Object t[] = new Object[capacity]; System.arraycopy(a, 0, t, 0, size); a = (KEY_GENERIC_TYPE[])t; } #endif assert size <= a.length; } @Override public void add(final int index, final KEY_GENERIC_TYPE k) { ensureIndex(index); grow(size + 1); if (index != size) System.arraycopy(a, index, a, index + 1, size - index); a[index] = k; size++; assert size <= a.length; } @Override public boolean add(final KEY_GENERIC_TYPE k) { grow(size + 1); a[size++] = k; assert size <= a.length; return true; } @Override public KEY_GENERIC_TYPE GET_KEY(final int index) { if (index >= size) throw new IndexOutOfBoundsException("Index (" + index + ") is greater than or equal to list size (" + size + ")"); return a[index]; } @Override public int indexOf(final KEY_TYPE k) { for(int i = 0; i < size; i++) if (KEY_EQUALS(k, a[i])) return i; return -1; } @Override public int lastIndexOf(final KEY_TYPE k) { for(int i = size; i-- != 0;) if (KEY_EQUALS(k, a[i])) return i; return -1; } @Override public KEY_GENERIC_TYPE REMOVE_KEY(final int index) { if (index >= size) throw new IndexOutOfBoundsException("Index (" + index + ") is greater than or equal to list size (" + size + ")"); final KEY_GENERIC_TYPE old = a[index]; size--; if (index != size) System.arraycopy(a, index + 1, a, index, size - index); #if KEYS_REFERENCE a[size] = null; #endif assert size <= a.length; return old; } @Override public boolean REMOVE(final KEY_TYPE k) { int index = indexOf(k); if (index == -1) return false; REMOVE_KEY(index); assert size <= a.length; return true; } @Override public KEY_GENERIC_TYPE set(final int index, final KEY_GENERIC_TYPE k) { if (index >= size) throw new IndexOutOfBoundsException("Index (" + index + ") is greater than or equal to list size (" + size + ")"); KEY_GENERIC_TYPE old = a[index]; a[index] = k; return old; } @Override public void clear() { #if KEYS_REFERENCE Arrays.fill(a, 0, size, null); #endif size = 0; assert size <= a.length; } @Override public int size() { return size; } @Override public void size(final int size) { if (size > a.length) a = ARRAYS.forceCapacity(a, size, this.size); if (size > this.size) Arrays.fill(a, this.size, size, KEY_NULL); #if KEYS_REFERENCE else Arrays.fill(a, size, this.size, KEY_NULL); #endif this.size = size; } @Override public boolean isEmpty() { return size == 0; } /** Trims this array list so that the capacity is equal to the size. * * @see java.util.ArrayList#trimToSize() */ public void trim() { trim(0); } /** Trims the backing array if it is too large. * * If the current array length is smaller than or equal to * {@code n}, this method does nothing. Otherwise, it trims the * array length to the maximum between {@code n} and {@link #size()}. * *

This method is useful when reusing lists. {@linkplain #clear() Clearing a * list} leaves the array length untouched. If you are reusing a list * many times, you can call this method with a typical * size to avoid keeping around a very large array just * because of a few large transient lists. * * @param n the threshold for the trimming. */ SUPPRESS_WARNINGS_KEY_UNCHECKED public void trim(final int n) { // TODO: use Arrays.trim() and preserve type only if necessary if (n >= a.length || size == a.length) return; final KEY_GENERIC_TYPE t[] = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[Math.max(n, size)]; System.arraycopy(a, 0, t, 0, size); a = t; assert size <= a.length; } private class SubList extends ABSTRACT_LIST.SUBLIST_RANDOM_ACCESS KEY_GENERIC { private static final long serialVersionUID = -3185226345314976296L; protected SubList(int from, int to) { super(ARRAY_LIST.this, from, to); } // Most of the inherited methods should be fine, but we can override a few of them for performance. // Needed because we can't access the parent class' instance variables directly in a different instance of SubList. private KEY_GENERIC_TYPE[] getParentArray() { return a; } @Override public KEY_GENERIC_TYPE GET_KEY(int i) { ensureRestrictedIndex(i); return a[i + from]; } private final class SubListIterator extends ITERATORS.AbstractIndexBasedListIterator KEY_GENERIC { // We are using pos == 0 to be 0 relative to SubList.from (meaning you need to do a[from + i] when accessing array). SubListIterator(int index) { super(0, index); } @Override protected final KEY_GENERIC_TYPE get(int i) { return a[from + i]; } @Override protected final void add(int i, KEY_GENERIC_TYPE k) { SubList.this.add(i, k); } @Override protected final void set(int i, KEY_GENERIC_TYPE k) { SubList.this.set(i, k); } @Override protected final void remove(int i) { SubList.this.REMOVE_KEY(i); } @Override protected final int getMaxPos() { return to - from; } @Override public KEY_GENERIC_TYPE NEXT_KEY() { if (! hasNext()) throw new NoSuchElementException(); return a[from + (lastReturned = pos++)]; } @Override public KEY_GENERIC_TYPE PREV_KEY() { if (! hasPrevious()) throw new NoSuchElementException(); return a[from + (lastReturned = --pos)]; } @Override public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) { final int max = to - from; while(pos < max) { action.accept(a[from + (lastReturned = pos++)]); } } } @Override public KEY_LIST_ITERATOR KEY_GENERIC listIterator(int index) { return new SubListIterator(index); } private final class SubListSpliterator extends SPLITERATORS.LateBindingSizeIndexBasedSpliterator KEY_GENERIC { // We are using pos == 0 to be 0 relative to real array 0 SubListSpliterator() { super(from); } private SubListSpliterator(int pos, int maxPos) { super(pos, maxPos); } @Override protected final int getMaxPosFromBackingStore() { return to; } @Override protected final KEY_GENERIC_TYPE get(int i) { return a[i]; } @Override protected final SubListSpliterator makeForSplit(int pos, int maxPos) { return new SubListSpliterator(pos, maxPos); } @Override public boolean tryAdvance(final METHOD_ARG_KEY_CONSUMER action) { if (pos >= getMaxPos()) return false; action.accept(a[pos++]); return true; } @Override public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) { final int max = getMaxPos(); while(pos < max) { action.accept(a[pos++]); } } } @Override public KEY_SPLITERATOR KEY_GENERIC spliterator() { return new SubListSpliterator(); } boolean contentsEquals(KEY_GENERIC_TYPE[] otherA, int otherAFrom, int otherATo) { if (a == otherA && from == otherAFrom && to == otherATo) return true; if (otherATo - otherAFrom != size()) { return false; } int pos = from, otherPos = otherAFrom; // We have already assured that the two ranges are the same size, so we only need to check one bound. // TODO When minimum version of Java becomes Java 9, use the Arrays.equals which takes bounds, which is vectorized. // Make sure to split out the reference equality case when you do this. #if KEY_CLASS_Object while(pos < to) if (!java.util.Objects.equals(a[pos++], otherA[otherPos++])) return false; #else while(pos < to) if (a[pos++] != otherA[otherPos++]) return false; #endif return true; } @Override public boolean equals(Object o) { if (o == this) return true; if (o == null) return false; if (!(o instanceof java.util.List)) return false; if (o instanceof ARRAY_LIST) { SUPPRESS_WARNINGS_KEY_UNCHECKED ARRAY_LIST KEY_GENERIC other = (ARRAY_LIST KEY_GENERIC) o; return contentsEquals(other.a, 0, other.size()); } if (o instanceof ARRAY_LIST.SubList) { SUPPRESS_WARNINGS_KEY_UNCHECKED ARRAY_LIST KEY_GENERIC.SubList other = (ARRAY_LIST KEY_GENERIC.SubList) o; return contentsEquals(other.getParentArray(), other.from, other.to); } return super.equals(o); } #if ! KEYS_USE_REFERENCE_EQUALITY SUPPRESS_WARNINGS_KEY_UNCHECKED int contentsCompareTo(KEY_GENERIC_TYPE[] otherA, int otherAFrom, int otherATo) { #if KEYS_PRIMITIVE // Can't make this assumption for reference types in case we have a goofy Comparable that doesn't compare itself equal if (a == otherA && from == otherAFrom && to == otherATo) return 0; #endif // TODO When minimum version of Java becomes Java 9, use Arrays.compare, which vectorizes. KEY_GENERIC_TYPE e1, e2; int r, i, j; for(i = from, j = otherAFrom; i < to && i < otherATo; i++, j++) { e1 = a[i]; e2 = otherA[j]; if ((r = KEY_CMP(e1, e2)) != 0) return r; } return i < otherATo ? -1 : (i < to ? 1 : 0); } SUPPRESS_WARNINGS_KEY_UNCHECKED @Override public int compareTo(final java.util.List l) { if (l instanceof ARRAY_LIST) { SUPPRESS_WARNINGS_KEY_UNCHECKED ARRAY_LIST KEY_GENERIC other = (ARRAY_LIST KEY_GENERIC) l; return contentsCompareTo(other.a, 0, other.size()); } if (l instanceof ARRAY_LIST.SubList) { SUPPRESS_WARNINGS_KEY_UNCHECKED ARRAY_LIST KEY_GENERIC.SubList other = (ARRAY_LIST KEY_GENERIC.SubList) l; return contentsCompareTo(other.getParentArray(), other.from, other.to); } return super.compareTo(l); } #endif // We don't override subList as we want AbstractList's "sub-sublist" nesting handling, // which would be tricky to do here. // TODO Do override it so array access isn't sent through N indirections. // This will likely mean making this class static. } @Override public LIST KEY_GENERIC subList(int from, int to) { if (from == 0 && to == size()) return this; ensureIndex(from); ensureIndex(to); if (from > to) throw new IndexOutOfBoundsException("Start index (" + from + ") is greater than end index (" + to + ")"); return new SubList(from, to); } /** Copies element of this type-specific list into the given array using optimized system calls. * * @param from the start index (inclusive). * @param a the destination array. * @param offset the offset into the destination array where to store the first element copied. * @param length the number of elements to be copied. */ @Override public void getElements(final int from, final KEY_TYPE[] a, final int offset, final int length) { ARRAYS.ensureOffsetLength(a, offset, length); System.arraycopy(this.a, from, a, offset, length); } /** Removes elements of this type-specific list using optimized system calls. * * @param from the start index (inclusive). * @param to the end index (exclusive). */ @Override public void removeElements(final int from, final int to) { it.unimi.dsi.fastutil.Arrays.ensureFromTo(size, from, to); System.arraycopy(a, to, a, from, size - to); size -= (to - from); #if KEYS_REFERENCE int i = to - from; while(i-- != 0) a[size + i] = null; #endif } /** Adds elements to this type-specific list using optimized system calls. * * @param index the index at which to add elements. * @param a the array containing the elements. * @param offset the offset of the first element to add. * @param length the number of elements to add. */ @Override public void addElements(final int index, final KEY_GENERIC_TYPE a[], final int offset, final int length) { ensureIndex(index); ARRAYS.ensureOffsetLength(a, offset, length); grow(size + length); System.arraycopy(this.a, index, this.a, index + length, size - index); System.arraycopy(a, offset, this.a, index, length); size += length; } /** Sets elements to this type-specific list using optimized system calls. * * @param index the index at which to start setting elements. * @param a the array containing the elements. * @param offset the offset of the first element to add. * @param length the number of elements to add. */ @Override public void setElements(final int index, final KEY_GENERIC_TYPE a[], final int offset, final int length) { ensureIndex(index); ARRAYS.ensureOffsetLength(a, offset, length); if (index + length > size) throw new IndexOutOfBoundsException("End index (" + (index + length) + ") is greater than list size (" + size + ")"); System.arraycopy(a, offset, this.a, index, length); } @Override public void forEach(final METHOD_ARG_KEY_CONSUMER action) { for (int i = 0; i < size; ++i) { action.accept(a[i]); } } @Override public boolean addAll(int index, final STD_KEY_COLLECTION KEY_EXTENDS_GENERIC c) { if (c instanceof LIST) { return addAll(index, (LIST KEY_EXTENDS_GENERIC)c); } ensureIndex(index); int n = c.size(); if (n == 0) return false; grow(size + n); System.arraycopy(a, index, a, index + n, size - index); final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i = c.iterator(); size += n; while(n-- != 0) a[index++] = i.NEXT_KEY(); assert size <= a.length; return true; } @Override public boolean addAll(final int index, final LIST KEY_EXTENDS_GENERIC l) { ensureIndex(index); final int n = l.size(); if (n == 0) return false; grow(size + n); System.arraycopy(a, index, a, index + n, size - index); l.getElements(0, a, index, n); size += n; assert size <= a.length; return true; } @Override public boolean removeAll(final STD_KEY_COLLECTION KEY_GENERIC_WILDCARD c) { final KEY_TYPE[] a = this.a; int j = 0; for(int i = 0; i < size; i++) if (! c.contains(a[i])) a[j++] = a[i]; #if KEYS_REFERENCE Arrays.fill(a, j, size, null); #endif final boolean modified = size != j; size = j; return modified; } #if KEYS_PRIMITIVE @Override public KEY_TYPE[] toArray(KEY_TYPE a[]) { if (a == null || a.length < size) a = java.util.Arrays.copyOf(a, size); System.arraycopy(this.a, 0, a, 0, size); return a; } #else @Override public Object[] toArray() { // A subtle part of the spec says the returned array must be Object[] exactly. return Arrays.copyOf(a, size(), Object[].class); } SUPPRESS_WARNINGS_KEY_UNCHECKED @Override public KEY_GENERIC KEY_GENERIC_TYPE[] toArray(KEY_GENERIC_TYPE a[]) { if (a == null) { a = KEY_GENERIC_ARRAY_CAST new Object[size()]; } else if (a.length < size()) { a = KEY_GENERIC_ARRAY_CAST Array.newInstance(a.getClass().getComponentType(), size()); } System.arraycopy(this.a, 0, a, 0, size()); if (a.length > size()) { a[size()] = null; } return a; } #endif @Override public KEY_LIST_ITERATOR KEY_GENERIC listIterator(final int index) { ensureIndex(index); return new KEY_LIST_ITERATOR KEY_GENERIC() { int pos = index, last = -1; @Override public boolean hasNext() { return pos < size; } @Override public boolean hasPrevious() { return pos > 0; } @Override public KEY_GENERIC_TYPE NEXT_KEY() { if (! hasNext()) throw new NoSuchElementException(); return a[last = pos++]; } @Override public KEY_GENERIC_TYPE PREV_KEY() { if (! hasPrevious()) throw new NoSuchElementException(); return a[last = --pos]; } @Override public int nextIndex() { return pos; } @Override public int previousIndex() { return pos - 1; } @Override public void add(KEY_GENERIC_TYPE k) { ARRAY_LIST.this.add(pos++, k); last = -1; } @Override public void set(KEY_GENERIC_TYPE k) { if (last == -1) throw new IllegalStateException(); ARRAY_LIST.this.set(last, k); } @Override public void remove() { if (last == -1) throw new IllegalStateException(); ARRAY_LIST.this.REMOVE_KEY(last); /* If the last operation was a next(), we are removing an element *before* us, and we must decrease pos correspondingly. */ if (last < pos) pos--; last = -1; } @Override public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) { while (pos < size) { action.accept(a[last = pos++]); } } @Override public int back(int n) { if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n); final int remaining = size - pos; if (n < remaining) { pos -= n; } else { n = remaining; pos = 0; } last = pos; return n; } @Override public int skip(int n) { if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n); final int remaining = size - pos; if (n < remaining) { pos += n; } else { n = remaining; pos = size; } last = pos - 1; return n; } }; } // If you update this, you will probably want to update ArraySet as well private final class Spliterator implements KEY_SPLITERATOR KEY_GENERIC { // Until we split, we will track the size of the list. // Once we split, then we stop updating on structural modifications. // Aka, size is late-binding. boolean hasSplit = false; int pos, max; #ifdef TEST // Sentinel to make sure we don't accidentally use size when we mean max @Deprecated private final Object size = null; #endif public Spliterator() { this(0, ARRAY_LIST.this.size, false); } private Spliterator(int pos, int max, boolean hasSplit) { assert pos <= max : "pos " + pos + " must be <= max " + max; this.pos = pos; this.max = max; this.hasSplit = hasSplit; } private int getWorkingMax() { return hasSplit ? max : ARRAY_LIST.this.size; } @Override public int characteristics() { return SPLITERATORS.LIST_SPLITERATOR_CHARACTERISTICS; } @Override public long estimateSize() { return getWorkingMax() - pos; } @Override public boolean tryAdvance(final METHOD_ARG_KEY_CONSUMER action) { if (pos >= getWorkingMax()) return false; action.accept(a[pos++]); return true; } @Override public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) { for (final int max = getWorkingMax(); pos < max; ++pos) { action.accept(a[pos]); } } @Override public long skip(long n) { if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n); final int max = getWorkingMax(); if (pos >= max) return 0; final int remaining = max - pos; if (n < remaining) { pos = it.unimi.dsi.fastutil.SafeMath.safeLongToInt(pos + n); return n; } n = remaining; pos = max; return n; } @Override public KEY_SPLITERATOR KEY_GENERIC trySplit() { final int max = getWorkingMax(); int retLen = (max - pos) >> 1; if (retLen <= 1) return null; // Update instance max with the last seen list size (if needed) before continuing this.max = max; int myNewPos = pos + retLen; int retMax = myNewPos; int oldPos = pos; this.pos = myNewPos; this.hasSplit = true; return new Spliterator(oldPos, retMax, true); } } /** {@inheritDoc} * *

The returned spliterator is late-binding; it will track structural changes * after the current index, up until the first {@link java.util.Spliterator#trySplit() trySplit()}, * at which point the maximum index will be fixed. *
Structural changes before the current index or after the first * {@link java.util.Spliterator#trySplit() trySplit()} will result in unspecified behavior. */ @Override public KEY_SPLITERATOR KEY_GENERIC spliterator() { // If it wasn't for the possibility of the list being expanded or shrunk, // we could return SPLITERATORS.wrap(a, 0, size). return new Spliterator(); } SUPPRESS_WARNINGS_KEY_UNCHECKED @Override public void sort(final KEY_COMPARATOR KEY_SUPER_GENERIC comp) { if (comp == null) { ARRAYS.stableSort(a, 0, size); } else { ARRAYS.stableSort(a, 0, size, comp); } } @Override public void unstableSort(final KEY_COMPARATOR KEY_SUPER_GENERIC comp) { if (comp == null) { ARRAYS.unstableSort(a, 0, size); } else { ARRAYS.unstableSort(a, 0, size, comp); } } @Override SUPPRESS_WARNINGS_KEY_UNCHECKED public ARRAY_LIST KEY_GENERIC clone() { ARRAY_LIST KEY_GENERIC cloned = null; // Test for fastpath we can do if exactly an ArrayList if (getClass() == ARRAY_LIST.class) { // Preserve backwards compatibility and make new list have Object[] even if it was wrapped from some subclass. cloned = new ARRAY_LIST KEY_GENERIC_DIAMOND(copyArraySafe(a, size), false); cloned.size = size; } else { try { cloned = (ARRAY_LIST KEY_GENERIC)super.clone(); } catch (CloneNotSupportedException err) { // Can't happen throw new InternalError(err); } // Preserve backwards compatibility and make new list have Object[] even if it was wrapped from some subclass. cloned.a = copyArraySafe(a, size); #if ! KEYS_PRIMITIVE // We can't clear cloned.wrapped because it is final. #endif } return cloned; } /** Compares this type-specific array list to another one. * * @apiNote This method exists only for sake of efficiency. The implementation * inherited from the abstract implementation would already work. * * @param l a type-specific array list. * @return true if the argument contains the same elements of this type-specific array list. */ public boolean equals(final ARRAY_LIST KEY_GENERIC l) { // TODO When minimum version of Java becomes Java 9, use the Arrays.equals which takes bounds, which is vectorized. if (l == this) return true; int s = size(); if (s != l.size()) return false; final KEY_GENERIC_TYPE[] a1 = a; final KEY_GENERIC_TYPE[] a2 = l.a; if (a1 == a2 && s == l.size()) return true; #if KEY_CLASS_Object while(s-- != 0) if (! java.util.Objects.equals(a1[s], a2[s])) return false; #else while(s-- != 0) if (a1[s] != a2[s]) return false; #endif return true; } #if KEYS_REFERENCE @SuppressWarnings({"unchecked", "unlikely-arg-type"}) #else @SuppressWarnings("unlikely-arg-type") #endif @Override public boolean equals(final Object o) { if (o == this) return true; if (o == null) return false; if (!(o instanceof java.util.List)) return false; if (o instanceof ARRAY_LIST) { // Safe cast because we are only going to take elements from other list, never give them return equals((ARRAY_LIST KEY_GENERIC) o); } if (o instanceof ARRAY_LIST.SubList) { // Safe cast because we are only going to take elements from other list, never give them // Sublist has an optimized sub-array based comparison, reuse that. return ((ARRAY_LIST KEY_GENERIC.SubList)o).equals(this); } return super.equals(o); } #if ! KEYS_USE_REFERENCE_EQUALITY /** Compares this array list to another array list. * * @apiNote This method exists only for sake of efficiency. The implementation * inherited from the abstract implementation would already work. * * @param l an array list. * @return a negative integer, * zero, or a positive integer as this list is lexicographically less than, equal * to, or greater than the argument. */ SUPPRESS_WARNINGS_KEY_UNCHECKED public int compareTo(final ARRAY_LIST KEY_EXTENDS_GENERIC l) { final int s1 = size(), s2 = l.size(); final KEY_GENERIC_TYPE a1[] = a, a2[] = l.a; #if KEYS_PRIMITIVE // Can't make this assumption for reference types in case we have a goofy Comparable that doesn't compare itself equal if (a1 == a2 && s1 == s2) return 0; #endif // TODO When minimum version of Java becomes Java 9, use Arrays.compare, which vectorizes. KEY_GENERIC_TYPE e1, e2; int r, i; for(i = 0; i < s1 && i < s2; i++) { e1 = a1[i]; e2 = a2[i]; if ((r = KEY_CMP(e1, e2)) != 0) return r; } return i < s2 ? -1 : (i < s1 ? 1 : 0); } SUPPRESS_WARNINGS_KEY_UNCHECKED @Override public int compareTo(final java.util.List l) { if (l instanceof ARRAY_LIST) { return compareTo((ARRAY_LIST KEY_EXTENDS_GENERIC)l); } if (l instanceof ARRAY_LIST.SubList) { // Must negate because we are inverting the order of the comparison. return -((ARRAY_LIST KEY_GENERIC.SubList) l).compareTo(this); } return super.compareTo(l); } #endif private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { s.defaultWriteObject(); for(int i = 0; i < size; i++) s.WRITE_KEY(a[i]); } SUPPRESS_WARNINGS_KEY_UNCHECKED private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); a = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[size]; for(int i = 0; i < size; i++) a[i] = KEY_GENERIC_CAST s.READ_KEY(); } #ifdef TEST private static long seed = System.currentTimeMillis(); private static java.util.Random r = new java.util.Random(seed); private static KEY_TYPE genKey() { #if KEY_CLASS_Byte || KEY_CLASS_Short || KEY_CLASS_Character return (KEY_TYPE)(r.nextInt()); #elif KEYS_PRIMITIVE return r.NEXT_KEY(); #elif KEY_CLASS_Object return Integer.toBinaryString(r.nextInt()); #else return new java.io.Serializable() {}; #endif } private static int genIndex(int size) { return size == 0 ? 0 : r.nextInt(size); } private static java.text.NumberFormat format = new java.text.DecimalFormat("#,###.00"); private static java.text.FieldPosition p = new java.text.FieldPosition(0); private static String format(double d) { StringBuffer s = new StringBuffer(); return format.format(d, s, p).toString(); } private static final int WARMUP_CYCLES = 12; private static final int NUM_RUNS = 25; private static final int GC_EVERY = 5; // TODO Use a ASSERTS like preprocessor variable? private static final boolean PARALLEL_STREAMS = Boolean.getBoolean("useParallelStreams"); private static final int intDivRoundUp(int numerator, int denominator) { return (numerator + denominator - 1) / denominator; } // WARNING: This benchmark runs in amortized time O(n^(3/2)). Don't choose huge n values for this test (about 10,000,000 starts showing significant slowdown) private static void speedTest(final int n, boolean comp) { if (n < 0) throw new IllegalArgumentException("n: " + n + " must be >0 (overflow?)"); java.util.ArrayList t; ARRAY_LIST m; int i; int j; KEY_TYPE k[] = new KEY_TYPE[n]; KEY_TYPE nk[] = new KEY_TYPE[n]; int randIndexes[] = new int[n]; long ns; for(i = 0; i < n; i++) { k[i] = genKey(); nk[i] = genKey(); randIndexes[i] = genIndex(i); } final int nRandom = (int)Math.sqrt(n); final int nSequential = n - nRandom; double totAddEnd = 0, totAddRandom = 0, totYes = 0, totNo = 0, totIter = 0, totRemEnd = 0, totRemRandom = 0, toStreamSum = 0, d; if (comp) { for(j = 0; j < NUM_RUNS; j++) { if ((j + 1) % GC_EVERY == 0) System.gc(); t = new java.util.ArrayList(16); /* We add to t at a random position. */ ns = System.nanoTime(); for(i = 0; i < nRandom; i++) t.add(randIndexes[i], KEY2OBJ(k[i])); d = (System.nanoTime() - ns) / (double)nRandom; if (j >= WARMUP_CYCLES) totAddRandom += d; System.out.print("AddToRandom: " + format(d) + "ns "); /* We add to t at end. */ ns = System.nanoTime(); for(; i < n; i++) t.add(KEY2OBJ(k[i])); d = (System.nanoTime() - ns) / (double)nSequential; if (j >= WARMUP_CYCLES) totAddEnd += d; System.out.print("AddToEnd: " + format(d) + "ns "); /* We check things in t. */ ns = System.nanoTime(); for(i = 0; i < nRandom; i++) t.contains(KEY2OBJ(k[i])); d = (System.nanoTime() - ns) / (double)nRandom; if (j >= WARMUP_CYCLES) totYes += d; System.out.print("Yes: " + format(d) + "ns "); /* We check for things likely not in t. */ ns = System.nanoTime(); for(i = 0; i < nRandom; i++) t.contains(KEY2OBJ(nk[i])); d = (System.nanoTime() - ns) / (double)nRandom; if (j >= WARMUP_CYCLES) totNo += d; System.out.print("No: " + format(d) + "ns "); /* We iterate on t. */ ns = System.nanoTime(); for(java.util.Iterator it = t.iterator(); it.hasNext(); it.next()); d = (System.nanoTime() - ns) / (double)n; if (j >= WARMUP_CYCLES) totIter += d; System.out.print("Iter: " + format(d) + "ns "); #if KEYS_PRIMITIVE && ! KEY_CLASS_Boolean /* We sum on t. */ ns = System.nanoTime(); #if KEYS_BYTE_CHAR_SHORT_FLOAT // Since the primitive stream has to upcast to a widened primitive, for fairness we will upcast here too #endif java.util.stream.Stream tStream = ((java.util.List)t).stream(); if (PARALLEL_STREAMS) tStream = tStream.parallel(); #if KEY_CLASS_Character tStream.MAP_TO_KEY_WIDENED(Character::charValue).sum(); #else tStream.MAP_TO_KEY_WIDENED(KEY_CLASS::KEY_WIDENED_VALUE).sum(); #endif d = (System.nanoTime() - ns) / (double)n; if (j >= WARMUP_CYCLES) toStreamSum += d; System.out.print("Stream sum: " + format(d) + "ns "); #endif // Don't bother with remove(KEY); that is just going to be a contains + remove random. /* We remove from end */ ns = System.nanoTime(); for(i = 0; i < nSequential; i++) t.remove(t.size() - 1); d = (System.nanoTime() - ns) / (double)nSequential; if (j >= WARMUP_CYCLES) totRemEnd += d; System.out.print("RemEnd: " + format(d) + "ns "); /* We remove randomly */ ns = System.nanoTime(); for(i = 0; i < nRandom; i++) t.remove(randIndexes[t.size() - 1]); d = (System.nanoTime() - ns) / (double)nRandom; if (j >= WARMUP_CYCLES) totRemRandom += d; System.out.print("RemRandom: " + format(d) + "ns "); System.out.println(); } System.out.println(); System.out.println("java.util AddToRandom: " + format(totAddRandom/(j-WARMUP_CYCLES)) + " AddToEnd: " + format(totAddEnd/(j-WARMUP_CYCLES)) + "ns Yes: " + format(totYes/(j-WARMUP_CYCLES)) + "ns No: " + format(totNo/(j-WARMUP_CYCLES)) + "ns Iter: " + format(totIter/(j-WARMUP_CYCLES)) + "ns StreamSum: " + format(toStreamSum/(j-WARMUP_CYCLES)) + "ns RemEnd: " + format(totRemEnd/(j-WARMUP_CYCLES)) + "ns RemRandom: " + format(totRemRandom/(j-WARMUP_CYCLES)) + "ns"); System.out.println(); totAddEnd = totAddRandom = totYes = totNo = totIter = totRemEnd = totRemRandom = toStreamSum = 0; } for(j = 0; j < NUM_RUNS; j++) { if ((j + 1) % GC_EVERY == 0) System.gc(); m = new ARRAY_LIST(16); /* We add to m at a random position. */ ns = System.nanoTime(); for(i = 0; i < nRandom; i++) m.add(randIndexes[i], k[i]); d = (System.nanoTime() - ns) / (double)nRandom; if (j >= WARMUP_CYCLES) totAddRandom += d; System.out.print("AddToRandom: " + format(d) + "ns "); /* We add to m at end. */ ns = System.nanoTime(); for(; i < n; i++) m.add(k[i]); d = (System.nanoTime() - ns) / (double)nSequential; if (j >= WARMUP_CYCLES) totAddEnd += d; System.out.print("AddToEnd: " + format(d) + "ns "); /* We check things in m. */ ns = System.nanoTime(); for(i = 0; i < nRandom; i++) m.contains(k[i]); d = (System.nanoTime() - ns) / (double)nRandom; if (j >= WARMUP_CYCLES) totYes += d; System.out.print("Yes: " + format(d) + "ns "); /* We check for things likely not in m. */ ns = System.nanoTime(); for(i = 0; i < nRandom; i++) m.contains(nk[i]); d = (System.nanoTime() - ns) / (double)nRandom; if (j >= WARMUP_CYCLES) totNo += d; System.out.print("No: " + format(d) + "ns "); /* We iterate on m. */ ns = System.nanoTime(); for(KEY_ITERATOR it = (KEY_ITERATOR)m.iterator(); it.hasNext(); it.NEXT_KEY()); d = (System.nanoTime() - ns) / (double)n; if (j >= WARMUP_CYCLES) totIter += d; System.out.print("Iter: " + format(d) + "ns "); #if KEYS_PRIMITIVE && ! KEY_CLASS_Boolean /* We sum on m. */ ns = System.nanoTime(); JDK_PRIMITIVE_STREAM mStream = m.KEY_WIDENED_STREAM_METHOD(); if (PARALLEL_STREAMS) mStream = mStream.parallel(); mStream.sum(); d = (System.nanoTime() - ns) / (double)n; if (j >= WARMUP_CYCLES) toStreamSum += d; System.out.print("Stream sum: " + format(d) + "ns "); #endif // Don't bother with rem(KEY); that is just going to be a contains + remove random. /* We remove from end */ ns = System.nanoTime(); for(i = 0; i < nSequential; i++) m.REMOVE_KEY(m.size() - 1); d = (System.nanoTime() - ns) / (double)nSequential; if (j >= WARMUP_CYCLES) totRemEnd += d; System.out.print("RemEnd: " + format(d) + "ns "); /* We remove randomly */ ns = System.nanoTime(); for(i = 0; i < nRandom; i++) m.REMOVE_KEY(randIndexes[m.size() - 1]); d = (System.nanoTime() - ns) / (double)nRandom; if (j >= WARMUP_CYCLES) totRemRandom += d; System.out.print("RemRandom: " + format(d) + "ns "); System.out.println(); } System.out.println(); System.out.println("fastutil AddToRandom: " + format(totAddRandom/(j-WARMUP_CYCLES)) + " AddToEnd: " + format(totAddEnd/(j-WARMUP_CYCLES)) + "ns Yes: " + format(totYes/(j-WARMUP_CYCLES)) + "ns No: " + format(totNo/(j-WARMUP_CYCLES)) + "ns Iter: " + format(totIter/(j-WARMUP_CYCLES)) + "ns StreamSum: " + format(toStreamSum/(j-WARMUP_CYCLES)) + "ns RemEnd: " + format(totRemEnd/(j-WARMUP_CYCLES)) + "ns RemRandom: " + format(totRemRandom/(j-WARMUP_CYCLES)) + "ns"); System.out.println(); } private static void fatal(String msg) { throw new AssertionError(msg); } private static void ensure(boolean cond, String msg) { if (cond) return; fatal(msg); } private static void ensure(boolean cond, java.util.function.Supplier msgSupplier) { if (cond) return; fatal(msgSupplier.get()); } private static Object[] k, v, nk; private static KEY_TYPE kt[]; private static KEY_TYPE nkt[]; private static ARRAY_LIST topList; protected static void testLists(LIST m, java.util.List t, int n, int level) throws Exception { long ms; Exception mThrowsIllegal, tThrowsIllegal, mThrowsOutOfBounds, tThrowsOutOfBounds; Object rt = null; KEY_TYPE rm = KEY_NULL; if (level > 4) return; /* Now we check that both sets agree on random keys. For m we use the polymorphic method. */ for(int i = 0; i < n; i++) { int p = r.nextInt() % (n * 2); KEY_TYPE T = genKey(); mThrowsOutOfBounds = tThrowsOutOfBounds = null; try { m.set(p, T); } catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; } try { t.set(p, KEY2OBJ(T)); } catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; } ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + level + ", " + seed + "): set() divergence at start in IndexOutOfBoundsException for index " + p + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")"); if (mThrowsOutOfBounds == null) ensure(t.get(p).equals(KEY2OBJ(m.GET_KEY(p))), "Error (" + level + ", " + seed + "): m and t differ after set() on position " + p + " (" + m.GET_KEY(p) + ", " + t.get(p) + ")"); p = r.nextInt() % (n * 2); mThrowsOutOfBounds = tThrowsOutOfBounds = null; try { m.GET_KEY(p); } catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; } try { t.get(p); } catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; } ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + level + ", " + seed + "): get() divergence at start in IndexOutOfBoundsException for index " + p + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")"); if (mThrowsOutOfBounds == null) ensure(t.get(p).equals(KEY2OBJ(m.GET_KEY(p))), "Error (" + level + ", " + seed + "): m and t differ aftre get() on position " + p + " (" + m.GET_KEY(p) + ", " + t.get(p) + ")"); } /* Now we check that both sets agree on random keys. For m we use the standard method. */ for(int i = 0; i < n; i++) { int p = r.nextInt() % (n * 2); mThrowsOutOfBounds = tThrowsOutOfBounds = null; try { m.get(p); } catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; } try { t.get(p); } catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; } ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + level + ", " + seed + "): get() divergence at start in IndexOutOfBoundsException for index " + p + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")"); if (mThrowsOutOfBounds == null) ensure(t.get(p).equals(m.get(p)), "Error (" + level + ", " + seed + "): m and t differ at start on position " + p + " (" + m.get(p) + ", " + t.get(p) + ")"); } /* Now we check that m and t are equal. */ if (!m.equals(t) || ! t.equals(m)) System.err.println("m: " + m + " t: " + t); ensure(m.equals(t), "Error (" + level + ", " + seed + "): ! m.equals(t) at start"); ensure(t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals(m) at start"); /* Now we check that m actually holds that data. */ for(Iterator i=t.iterator(); i.hasNext();) { ensure(m.contains(i.next()), "Error (" + level + ", " + seed + "): m and t differ on an entry after insertion (iterating on t)"); } /* Now we check that m actually holds that data, but iterating on m. */ for(Iterator i=m.listIterator(); i.hasNext();) { ensure(t.contains(i.next()), "Error (" + level + ", " + seed + "): m and t differ on an entry after insertion (iterating on m)"); } /* Now we check that inquiries about random data give the same answer in m and t. For m we use the polymorphic method. */ for(int i=0; i "Error (" + level + ", " + seed + m + t + "): ! m.equals(t) after addAll"); ensure(t.equals(m), () -> "Error (" + level + ", " + seed + m + t + "): ! t.equals(m) after addAll"); } if (m.size() > n) { m.size(n); while(t.size() != n) t.remove(t.size() -1); } /* Now we add random data in m and t using addAll on a type-specific collection, checking that the result is the same. */ for(int i=0; i "Error (" + level + ", " + seed + m + t + "): ! m.equals(t) after polymorphic addAll"); ensure(t.equals(m), () -> "Error (" + level + ", " + seed + m + t + "): ! t.equals(m) after polymorphic addAll"); } if (m.size() > n) { m.size(n); while(t.size() != n) t.remove(t.size() -1); } /* Now we add random data in m and t using addAll on a list, checking that the result is the same. */ for(int i=0; i n) { m.size(n); while(t.size() != n) t.remove(t.size() -1); } /* Now we check that m actually holds the same data. */ for(Iterator i=t.iterator(); i.hasNext();) { ensure(m.contains(i.next()), "Error (" + level + ", " + seed + "): m and t differ on an entry after removal (iterating on t)"); } /* Now we check that m actually holds that data, but iterating on m. */ for(Iterator i=m.listIterator(); i.hasNext();) { ensure(t.contains(i.next()), "Error (" + level + ", " + seed + "): m and t differ on an entry after removal (iterating on m)"); } /* Now we check that both sets agree on random keys. For m we use the standard method. */ for(int i = 0; i < n; i++) { int p = r.nextInt() % (n * 2); mThrowsOutOfBounds = tThrowsOutOfBounds = null; try { m.get(p); } catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; } try { t.get(p); } catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; } ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + level + ", " + seed + "): get() divergence in IndexOutOfBoundsException for index " + p + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")"); if (mThrowsOutOfBounds == null) ensure(t.get(p).equals(m.get(p)), "Error (" + level + ", " + seed + "): m and t differ on position " + p + " (" + m.get(p) + ", " + t.get(p) +")"); } /* Now we inquiry about the content with indexOf()/lastIndexOf(). */ for(int i=0; i<10*n; i++) { KEY_TYPE T = genKey(); ensure(m.indexOf(KEY2OBJ(T)) == t.indexOf(KEY2OBJ(T)), "Error (" + level + ", " + seed + "): indexOf() divergence for " + T + " (" + m.indexOf(KEY2OBJ(T)) + ", " + t.indexOf(KEY2OBJ(T)) + ")"); ensure(m.lastIndexOf(KEY2OBJ(T)) == t.lastIndexOf(KEY2OBJ(T)), "Error (" + level + ", " + seed + "): lastIndexOf() divergence for " + T + " (" + m.lastIndexOf(KEY2OBJ(T)) + ", " + t.lastIndexOf(KEY2OBJ(T)) + ")"); ensure(m.indexOf(T) == t.indexOf(KEY2OBJ(T)), "Error (" + level + ", " + seed + "): polymorphic indexOf() divergence for " + T + " (" + m.indexOf(T) + ", " + t.indexOf(KEY2OBJ(T)) + ")"); ensure(m.lastIndexOf(T) == t.lastIndexOf(KEY2OBJ(T)), "Error (" + level + ", " + seed + "): polymorphic lastIndexOf() divergence for " + T + " (" + m.lastIndexOf(T) + ", " + t.lastIndexOf(KEY2OBJ(T)) + ")"); } /* Now we check cloning. */ if (level == 0) { ensure(m.equals(((ARRAY_LIST)m).clone()), "Error (" + level + ", " + seed + "): m does not equal m.clone()"); ensure(((ARRAY_LIST)m).clone().equals(m), "Error (" + level + ", " + seed + "): m.clone() does not equal m"); } /* Now we play with constructors. */ ensure(m.equals(new ARRAY_LIST((Collection)m)), "Error (" + level + ", " + seed + "): m does not equal new (Collection m)"); ensure((new ARRAY_LIST((Collection)m)).equals(m), "Error (" + level + ", " + seed + "): new (Collection m)does not equal m"); ensure(m.equals(new ARRAY_LIST(new java.util.ArrayList(m))), "Error (" + level + ", " + seed + "): m does not equal new (Collection m)"); ensure((new ARRAY_LIST(new java.util.ArrayList(m)).equals(m)), "Error (" + level + ", " + seed + "): new (Collection m)does not equal m"); ensure(m.equals(new ARRAY_LIST((COLLECTION)m)), "Error (" + level + ", " + seed + "): m does not equal new (type-specific Collection m)"); ensure((new ARRAY_LIST((COLLECTION)m)).equals(m), "Error (" + level + ", " + seed + "): new (type-specific Collection m) does not equal m"); ensure(m.equals(new ARRAY_LIST((LIST)m)), "Error (" + level + ", " + seed + "): m does not equal new (type-specific List m)"); ensure((new ARRAY_LIST((LIST)m)).equals(m), "Error (" + level + ", " + seed + "): new (type-specific List m) does not equal m"); ensure(m.equals(new ARRAY_LIST(m.listIterator())), "Error (" + level + ", " + seed + "): m does not equal new (m.listIterator())"); ensure((new ARRAY_LIST(m.listIterator())).equals(m), "Error (" + level + ", " + seed + "): new (m.listIterator()) does not equal m"); ensure(m.equals(new ARRAY_LIST(m.iterator())), "Error (" + level + ", " + seed + "): m does not equal new (m.type_specific_iterator())"); ensure((new ARRAY_LIST(m.iterator())).equals(m), "Error (" + level + ", " + seed + "): new (m.type_specific_iterator()) does not equal m"); /* Now we play with conversion to array, wrapping and copying. */ ensure(m.equals(new ARRAY_LIST(m.TO_KEY_ARRAY())), "Error (" + level + ", " + seed + "): m does not equal new (toArray(m))"); ensure((new ARRAY_LIST(m.TO_KEY_ARRAY())).equals(m), "Error (" + level + ", " + seed + "): new (toArray(m)) does not equal m"); ensure(m.equals(wrap(m.TO_KEY_ARRAY())), "Error (" + level + ", " + seed + "): m does not equal wrap (toArray(m))"); ensure((wrap(m.TO_KEY_ARRAY())).equals(m), "Error (" + level + ", " + seed + "): wrap (toArray(m)) does not equal m"); int h = m.hashCode(); /* Now we save and read m. */ LIST m2 = null; { java.io.File ff = new java.io.File("it.unimi.dsi.fastutil.test." + m.getClass().getSimpleName() + "." + n); java.io.OutputStream os = new java.io.FileOutputStream(ff); java.io.ObjectOutputStream oos = new java.io.ObjectOutputStream(os); oos.writeObject(m); oos.close(); java.io.InputStream is = new java.io.FileInputStream(ff); java.io.ObjectInputStream ois = new java.io.ObjectInputStream(is); m2 = (LIST)ois.readObject(); ois.close(); ff.delete(); } #if ! KEYS_USE_REFERENCE_EQUALITY ensure(m2.hashCode() == h, "Error (" + level + ", " + seed + "): hashCode() changed after save/read"); /* Now we check that m2 actually holds that data. */ ensure(m2.equals(t), "Error (" + level + ", " + seed + "): ! m2.equals(t) after save/read"); ensure(t.equals(m2), "Error (" + level + ", " + seed + "): ! t.equals(m2) after save/read"); /* Now we take out of m everything, and check that it is empty. */ for(Iterator i=t.iterator(); i.hasNext();) m2.remove(i.next()); ensure(m2.isEmpty(), "Error (" + level + ", " + seed + "): m2 is not empty (as it should be)"); #endif /* Now we play with iterators. */ { KEY_LIST_ITERATOR i; java.util.ListIterator j; Object J; i = m.listIterator(); j = t.listIterator(); for(int k = 0; k < 2*n; k++) { ensure(i.hasNext() == j.hasNext(), "Error (" + level + ", " + seed + "): divergence in hasNext()"); ensure(i.hasPrevious() == j.hasPrevious(), "Error (" + level + ", " + seed + "): divergence in hasPrevious()"); if (r.nextFloat() < .8 && i.hasNext()) { ensure(i.next().equals(J = j.next()), "Error (" + level + ", " + seed + "): divergence in next()"); if (r.nextFloat() < 0.2) { i.remove(); j.remove(); } else if (r.nextFloat() < 0.2) { KEY_TYPE T = genKey(); i.set(T); j.set(KEY2OBJ(T)); } else if (r.nextFloat() < 0.2) { KEY_TYPE T = genKey(); i.add(T); j.add(KEY2OBJ(T)); } } else if (r.nextFloat() < .2 && i.hasPrevious()) { ensure(i.previous().equals(J = j.previous()), "Error (" + level + ", " + seed + "): divergence in previous()"); if (r.nextFloat() < 0.2) { i.remove(); j.remove(); } else if (r.nextFloat() < 0.2) { KEY_TYPE T = genKey(); i.set(T); j.set(KEY2OBJ(T)); } else if (r.nextFloat() < 0.2) { KEY_TYPE T = genKey(); i.add(T); j.add(KEY2OBJ(T)); } } ensure(i.nextIndex() == j.nextIndex(), "Error (" + level + ", " + seed + "): divergence in nextIndex()"); ensure(i.previousIndex() == j.previousIndex(), "Error (" + level + ", " + seed + "): divergence in previousIndex()"); } } /* Now we play with spliterators. * * Or rather we would, except comparing results of spliterators directly is a bit painful. * However, there is an easy workaround; use streams, which are built on Spliterators. */ { #if KEYS_REFERENCE java.util.stream.Stream i = m.stream(); java.util.stream.Stream j = t.stream(); #elif KEY_CLASS_Boolean java.util.stream.Stream i = m.stream(); java.util.stream.Stream j = t.stream(); #else JDK_PRIMITIVE_STREAM i = m.KEY_WIDENED_STREAM_METHOD(); java.util.stream.Stream j = t.stream(); #endif if (PARALLEL_STREAMS) { i = i.parallel(); j = j.parallel(); } #if KEYS_REFERENCE || KEY_CLASS_Boolean Object[] iArray = i.toArray(); Object[] jArray = j.toArray(); #elif KEY_CLASS_Character KEY_TYPE_WIDENED[] iArray = i.toArray(); KEY_TYPE_WIDENED[] jArray = j.MAP_TO_KEY_WIDENED(c -> (int)c.charValue()).toArray(); #else KEY_TYPE_WIDENED[] iArray = i.toArray(); KEY_TYPE_WIDENED[] jArray = j.MAP_TO_KEY_WIDENED(Number::KEY_WIDENED_VALUE).toArray(); #endif ensure(java.util.Arrays.equals(iArray, jArray), "Error (" + level + ", " + seed + "): divergence in toArray() from streams (" + java.util.Arrays.toString(iArray) + " != " + java.util.Arrays.toString(jArray) + ")"); } { Object previous = null; Object I, J; int from = r.nextInt(m.size() +1); KEY_LIST_ITERATOR i; java.util.ListIterator j; i = m.listIterator(from); j = t.listIterator(from); for(int k = 0; k < 2*n; k++) { ensure(i.hasNext() == j.hasNext(), "Error (" + level + ", " + seed + "): divergence in hasNext() (iterator with starting point " + from + ")"); ensure(i.hasPrevious() == j.hasPrevious() , "Error (" + level + ", " + seed + "): divergence in hasPrevious() (iterator with starting point " + from + ")"); if (r.nextFloat() < .8 && i.hasNext()) { ensure((I = i.next()).equals(J = j.next()), "Error (" + level + ", " + seed + "): divergence in next() (" + I + ", " + J + ", iterator with starting point " + from + ")"); //System.err.println("Done next " + I + " " + J + " " + badPrevious); if (r.nextFloat() < 0.2) { //System.err.println("Removing in next"); i.remove(); j.remove(); } else if (r.nextFloat() < 0.2) { KEY_TYPE T = genKey(); i.set(T); j.set(KEY2OBJ(T)); } else if (r.nextFloat() < 0.2) { KEY_TYPE T = genKey(); i.add(T); j.add(KEY2OBJ(T)); } } else if (r.nextFloat() < .2 && i.hasPrevious()) { ensure((I = i.previous()).equals(J = j.previous()), "Error (" + level + ", " + seed + "): divergence in previous() (" + I + ", " + J + ", iterator with starting point " + from + ")"); if (r.nextFloat() < 0.2) { //System.err.println("Removing in prev"); i.remove(); j.remove(); } else if (r.nextFloat() < 0.2) { KEY_TYPE T = genKey(); i.set(T); j.set(KEY2OBJ(T)); } else if (r.nextFloat() < 0.2) { KEY_TYPE T = genKey(); i.add(T); j.add(KEY2OBJ(T)); } } } } /* Now we check that m actually holds that data. */ ensure(m.equals(t), "Error (" + level + ", " + seed + "): ! m.equals(t) after iteration"); ensure(t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals(m) after iteration"); /* Now we select a pair of keys and create a subset. */ if (! m.isEmpty()) { int start = r.nextInt(m.size()); int end = start + r.nextInt(m.size() - start); //System.err.println("Checking subList from " + start + " to " + end + " (level=" + (level+1) + ")..."); testLists(m.subList(start, end), t.subList(start, end), n, level + 1); ensure(m.equals(t), () -> "Error (" + level + ", " + seed + m + t + "): ! m.equals(t) after subList"); ensure(t.equals(m), () -> "Error (" + level + ", " + seed + "): ! t.equals(m) after subList"); } m.clear(); t.clear(); ensure(m.isEmpty(), "Error (" + level + ", " + seed + "): m is not empty after clear()"); } protected static void runTest(int n) throws Exception { ARRAY_LIST m = new ARRAY_LIST(); java.util.ArrayList t = new java.util.ArrayList(); topList = m; k = new Object[n]; nk = new Object[n]; kt = new KEY_TYPE[n]; nkt = new KEY_TYPE[n]; for(int i = 0; i < n; i++) { #if KEYS_REFERENCE k[i] = kt[i] = genKey(); nk[i] = nkt[i] = genKey(); #else k[i] = new KEY_CLASS(kt[i] = genKey()); nk[i] = new KEY_CLASS(nkt[i] = genKey()); #endif } /* We add pairs to t. */ for(int i = 0; i < n; i++) t.add(k[i]); /* We add to m the same data */ m.addAll(t); testLists(m, t, n, 0); System.out.println("Test OK"); return; } public static void main(String args[]) throws Exception { int n = Integer.parseInt(args[1]); if (args.length > 2) r = new java.util.Random(seed = Long.parseLong(args[2])); try { if ("speedTest".equals(args[0]) || "speedComp".equals(args[0])) speedTest(n, "speedComp".equals(args[0])); else if ("test".equals(args[0])) runTest(n); } catch(Throwable e) { e.printStackTrace(System.err); System.err.println("seed: " + seed); throw e; } } #endif }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy