drv.ArrayList.drv Maven / Gradle / Ivy
Show all versions of fastutil-core Show documentation
/*
* Copyright (C) 2002-2022 Sebastiano Vigna
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package PACKAGE;
import java.util.Arrays;
import java.util.Collection;
import java.util.Iterator;
import java.util.RandomAccess;
import java.util.NoSuchElementException;
#if KEYS_REFERENCE
import java.lang.reflect.Array;
import java.util.Comparator;
import java.util.stream.Collector;
import java.util.function.Consumer;
#endif
#if KEYS_PRIMITIVE
/** A type-specific array-based list; provides some additional methods that use polymorphism to avoid (un)boxing.
*
* This class implements a lightweight, fast, open, optimized,
* reuse-oriented version of array-based lists. Instances of this class
* represent a list with an array that is enlarged as needed when new entries
* are created (by increasing its current length by 50%), but is
* never made smaller (even on a {@link #clear()}). A family of
* {@linkplain #trim() trimming methods} lets you control the size of the
* backing array; this is particularly useful if you reuse instances of this class.
* Range checks are equivalent to those of {@code java.util}'s classes, but
* they are delayed as much as possible. The backing array is exposed by the
* {@link #elements()} method.
*
*
This class implements the bulk methods {@code removeElements()},
* {@code addElements()} and {@code getElements()} using
* high-performance system calls (e.g., {@link
* System#arraycopy(Object,int,Object,int,int) System.arraycopy()}) instead of
* expensive loops.
*
* @see java.util.ArrayList
*/
public class ARRAY_LIST KEY_GENERIC extends ABSTRACT_LIST KEY_GENERIC implements RandomAccess, Cloneable, java.io.Serializable {
private static final long serialVersionUID = -7046029254386353130L;
#else
/** A type-specific array-based list; provides some additional methods that use polymorphism to avoid (un)boxing.
*
*
This class implements a lightweight, fast, open, optimized,
* reuse-oriented version of array-based lists. Instances of this class
* represent a list with an array that is enlarged as needed when new entries
* are created (by increasing its current length by 50%), but is
* never made smaller (even on a {@link #clear()}). A family of
* {@linkplain #trim() trimming methods} lets you control the size of the
* backing array; this is particularly useful if you reuse instances of this class.
* Range checks are equivalent to those of {@link java.util}'s classes, but
* they are delayed as much as possible.
*
*
The backing array is exposed by the {@link #elements()} method. If an instance
* of this class was created {@linkplain #wrap(Object[],int) by wrapping},
* backing-array reallocations will be performed using reflection, so that
* {@link #elements()} can return an array of the same type of the original array: the comments
* about efficiency made in {@link it.unimi.dsi.fastutil.objects.ObjectArrays} apply here.
* Moreover, you must take into consideration that assignment to an array
* not of type {@code Object[]} is slower due to type checking.
*
*
This class implements the bulk methods {@code removeElements()},
* {@code addElements()} and {@code getElements()} using
* high-performance system calls (e.g., {@link
* System#arraycopy(Object,int,Object,int,int) System.arraycopy()}) instead of
* expensive loops.
*
* @see java.util.ArrayList
*/
public class ARRAY_LIST KEY_GENERIC extends ABSTRACT_LIST KEY_GENERIC implements RandomAccess, Cloneable, java.io.Serializable {
private static final long serialVersionUID = -7046029254386353131L;
#endif
/** The initial default capacity of an array list. */
public static final int DEFAULT_INITIAL_CAPACITY = 10;
#if ! KEYS_PRIMITIVE
/** Whether the backing array was passed to {@code wrap()}. In
* this case, we must reallocate with the same type of array. */
protected final boolean wrapped;
#endif
/** The backing array. */
protected transient KEY_GENERIC_TYPE a[];
/** The current actual size of the list (never greater than the backing-array length). */
protected int size;
/** Ensures that the component type of the given array is the proper type.
* This is irrelevant for primitive types, so it will just do a trivial copy.
* But for Reference types, you can have a {@code String[]} masquerading as an {@code Object[]},
* which is a case we need to prepare for because we let the user give an array to use directly
* with {@link #wrap}.
*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
private static final KEY_GENERIC KEY_GENERIC_TYPE[] copyArraySafe(KEY_GENERIC_TYPE[] a, int length) {
if (length == 0) return KEY_GENERIC_ARRAY_CAST ARRAYS.EMPTY_ARRAY;
#if KEYS_PRIMITIVE
return java.util.Arrays.copyOf(a, length);
#else
return (KEY_GENERIC_TYPE[])java.util.Arrays.copyOf(a, length, KEY_TYPE[].class);
#endif
}
private static final KEY_GENERIC KEY_GENERIC_TYPE[] copyArrayFromSafe(ARRAY_LIST KEY_GENERIC l) {
return copyArraySafe(l.a, l.size);
}
/** Creates a new array list using a given array.
*
*
This constructor is only meant to be used by the wrapping methods.
*
* @param a the array that will be used to back this array list.
*/
protected ARRAY_LIST(final KEY_GENERIC_TYPE a[], @SuppressWarnings("unused") boolean wrapped) {
this.a = a;
#if ! KEYS_PRIMITIVE
this.wrapped = wrapped;
#endif
}
SUPPRESS_WARNINGS_KEY_UNCHECKED
private void initArrayFromCapacity(final int capacity) {
if (capacity < 0) throw new IllegalArgumentException("Initial capacity (" + capacity + ") is negative");
if (capacity == 0) a = KEY_GENERIC_ARRAY_CAST ARRAYS.EMPTY_ARRAY;
else a = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[capacity];
}
/** Creates a new array list with given capacity.
*
* @param capacity the initial capacity of the array list (may be 0).
*/
public ARRAY_LIST(final int capacity) {
initArrayFromCapacity(capacity);
#if ! KEYS_PRIMITIVE
this.wrapped = false;
#endif
}
/** Creates a new array list with {@link #DEFAULT_INITIAL_CAPACITY} capacity. */
SUPPRESS_WARNINGS_KEY_UNCHECKED
public ARRAY_LIST() {
a = KEY_GENERIC_ARRAY_CAST ARRAYS.DEFAULT_EMPTY_ARRAY; // We delay allocation
#if ! KEYS_PRIMITIVE
wrapped = false;
#endif
}
/** Creates a new array list and fills it with a given collection.
*
* @param c a collection that will be used to fill the array list.
*/
public ARRAY_LIST(final Collection extends KEY_GENERIC_CLASS> c) {
if (c instanceof ARRAY_LIST) {
a = copyArrayFromSafe((ARRAY_LIST KEY_EXTENDS_GENERIC)c);
size = a.length;
} else {
initArrayFromCapacity(c.size());
if (c instanceof LIST) {
((LIST KEY_EXTENDS_GENERIC)c).getElements(0, a, 0, size = c.size());
} else {
#if KEYS_PRIMITIVE
size = ITERATORS.unwrap(ITERATORS.AS_KEY_ITERATOR(c.iterator()), a);
#else
size = ITERATORS.unwrap(c.iterator(), a);
#endif
}
}
#if ! KEYS_PRIMITIVE
this.wrapped = false;
#endif
}
/** Creates a new array list and fills it with a given type-specific collection.
*
* @param c a type-specific collection that will be used to fill the array list.
*/
public ARRAY_LIST(final COLLECTION KEY_EXTENDS_GENERIC c) {
if (c instanceof ARRAY_LIST) {
a = copyArrayFromSafe((ARRAY_LIST KEY_EXTENDS_GENERIC)c);
size = a.length;
} else {
initArrayFromCapacity(c.size());
if (c instanceof LIST) {
((LIST KEY_EXTENDS_GENERIC)c).getElements(0, a, 0, size = c.size());
} else {
size = ITERATORS.unwrap(c.iterator(), a);
}
}
#if ! KEYS_PRIMITIVE
this.wrapped = false;
#endif
}
/** Creates a new array list and fills it with a given type-specific list.
*
* @param l a type-specific list that will be used to fill the array list.
*/
public ARRAY_LIST(final LIST KEY_EXTENDS_GENERIC l) {
if (l instanceof ARRAY_LIST) {
a = copyArrayFromSafe((ARRAY_LIST KEY_EXTENDS_GENERIC)l);
size = a.length;
} else {
initArrayFromCapacity(l.size());
l.getElements(0, a, 0, size = l.size());
}
#if ! KEYS_PRIMITIVE
this.wrapped = false;
#endif
}
/** Creates a new array list and fills it with the elements of a given array.
*
* @param a an array whose elements will be used to fill the array list.
*/
public ARRAY_LIST(final KEY_GENERIC_TYPE a[]) {
this(a, 0, a.length);
}
/** Creates a new array list and fills it with the elements of a given array.
*
* @param a an array whose elements will be used to fill the array list.
* @param offset the first element to use.
* @param length the number of elements to use.
*/
public ARRAY_LIST(final KEY_GENERIC_TYPE a[], final int offset, final int length) {
this(length);
System.arraycopy(a, offset, this.a, 0, length);
size = length;
}
/** Creates a new array list and fills it with the elements returned by an iterator..
*
* @param i an iterator whose returned elements will fill the array list.
*/
public ARRAY_LIST(final Iterator extends KEY_GENERIC_CLASS> i) {
this();
while(i.hasNext()) this.add(KEY_CLASS2TYPE(i.next()));
}
/** Creates a new array list and fills it with the elements returned by a type-specific iterator..
*
* @param i a type-specific iterator whose returned elements will fill the array list.
*/
public ARRAY_LIST(final KEY_ITERATOR KEY_EXTENDS_GENERIC i) {
this();
while(i.hasNext()) this.add(i.NEXT_KEY());
}
#if KEYS_PRIMITIVE
/** Returns the backing array of this list.
*
* @return the backing array.
*/
public KEY_GENERIC_TYPE[] elements() {
return a;
}
#else
/** Returns the backing array of this list.
*
*
If this array list was created by wrapping a given array, it is guaranteed
* that the type of the returned array will be the same. Otherwise, the returned
* array will be of type {@link Object Object[]} (in spite of the declared return type).
*
*
Warning: This behaviour may cause (unfathomable)
* run-time errors if a method expects an array
* actually of type {@code K[]}, but this methods returns an array
* of type {@link Object Object[]}.
*
* @return the backing array.
*/
public K[] elements() {
return a;
}
#endif
/** Wraps a given array into an array list of given size.
*
*
Note it is guaranteed
* that the type of the array returned by {@link #elements()} will be the same
* (see the comments in the class documentation).
*
* @param a an array to wrap.
* @param length the length of the resulting array list.
* @return a new array list of the given size, wrapping the given array.
*/
public static KEY_GENERIC ARRAY_LIST KEY_GENERIC wrap(final KEY_GENERIC_TYPE a[], final int length) {
if (length > a.length) throw new IllegalArgumentException("The specified length (" + length + ") is greater than the array size (" + a.length + ")");
final ARRAY_LIST KEY_GENERIC l = new ARRAY_LIST KEY_GENERIC_DIAMOND(a, true);
l.size = length;
return l;
}
/** Wraps a given array into an array list.
*
*
Note it is guaranteed
* that the type of the array returned by {@link #elements()} will be the same
* (see the comments in the class documentation).
*
* @param a an array to wrap.
* @return a new array list wrapping the given array.
*/
public static KEY_GENERIC ARRAY_LIST KEY_GENERIC wrap(final KEY_GENERIC_TYPE a[]) {
return wrap(a, a.length);
}
/** Creates a new empty array list.
*
* @return a new empty array list.
*/
public static KEY_GENERIC ARRAY_LIST KEY_GENERIC of() {
return new ARRAY_LIST KEY_GENERIC_DIAMOND();
}
/** Creates an array list using an array of elements.
*
* @param init a the array the will become the new backing array of the array list.
* @return a new array list backed by the given array.
* @see #wrap
*/
SAFE_VARARGS
public static KEY_GENERIC ARRAY_LIST KEY_GENERIC of(final KEY_GENERIC_TYPE... init) {
return wrap(init);
}
#if KEYS_INT_LONG_DOUBLE
/** Collects the result of a primitive {@code Stream} into a new ArrayList.
*
*
This method performs a terminal operation on the given {@code Stream}
*
* @apiNote Taking a primitive stream instead of returning something like a
* {@link java.util.stream.Collector Collector} is necessary because there is no
* primitive {@code Collector} equivalent in the Java API.
*/
public static KEY_GENERIC ARRAY_LIST KEY_GENERIC toList(JDK_PRIMITIVE_STREAM stream) {
return stream.collect(
ARRAY_LIST::new,
ARRAY_LIST::add,
ARRAY_LIST::addAll);
}
/** Collects the result of a primitive {@code Stream} into a new ArrayList, potentially pre-allocated to handle the given size.
*
*
This method performs a terminal operation on the given {@code Stream}
*
* @apiNote Taking a primitive stream instead returning something like a
* {@link java.util.stream.Collector Collector} is necessary because there is no
* primitive {@code Collector} equivalent in the Java API.
*/
public static KEY_GENERIC ARRAY_LIST KEY_GENERIC toListWithExpectedSize(JDK_PRIMITIVE_STREAM stream, int expectedSize) {
if (expectedSize <= DEFAULT_INITIAL_CAPACITY) {
// Already below default capacity. Just use all default construction instead of fiddling with atomics in SizeDecreasingSupplier
return toList(stream);
}
return stream.collect(
new COLLECTIONS.SizeDecreasingSupplier<
#if KEYS_REFERENCE
K,
#endif
ARRAY_LIST KEY_GENERIC>(
expectedSize, (int size) ->
size <= DEFAULT_INITIAL_CAPACITY ? new ARRAY_LIST KEY_GENERIC() : new ARRAY_LIST KEY_GENERIC(size)),
ARRAY_LIST::add,
ARRAY_LIST::addAll);
}
#elif KEYS_REFERENCE
// Collector wants a function that returns the collection being added to.
ARRAY_LIST KEY_GENERIC combine(ARRAY_LIST KEY_EXTENDS_GENERIC toAddFrom) {
addAll(toAddFrom);
return this;
}
private static final Collector> TO_LIST_COLLECTOR =
Collector.of(
ARRAY_LIST::new,
ARRAY_LIST::add,
ARRAY_LIST::combine);
/** Returns a {@link Collector} that collects a {@code Stream}'s elements into a new ArrayList. */
SUPPRESS_WARNINGS_KEY_UNCHECKED_RAWTYPES
public static KEY_GENERIC Collector toList() {
return (Collector) TO_LIST_COLLECTOR;
}
/** Returns a {@link Collector} that collects a {@code Stream}'s elements into a new ArrayList, potentially pre-allocated to handle the given size. */
public static KEY_GENERIC Collector toListWithExpectedSize(int expectedSize) {
if (expectedSize <= DEFAULT_INITIAL_CAPACITY) {
// Already below default capacity. Just use all default construction instead of fiddling with atomics in SizeDecreasingSupplier
return toList();
}
return Collector.of(
new COLLECTIONS.SizeDecreasingSupplier<
#if KEYS_REFERENCE
K,
#endif
ARRAY_LIST KEY_GENERIC>(
expectedSize, (int size) ->
size <= DEFAULT_INITIAL_CAPACITY ? new ARRAY_LIST KEY_GENERIC() : new ARRAY_LIST KEY_GENERIC(size)),
ARRAY_LIST::add,
ARRAY_LIST::combine);
}
#endif
/** Ensures that this array list can contain the given number of entries without resizing.
*
* @param capacity the new minimum capacity for this array list.
*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
public void ensureCapacity(final int capacity) {
if (capacity <= a.length || (a == ARRAYS.DEFAULT_EMPTY_ARRAY && capacity <= DEFAULT_INITIAL_CAPACITY)) return;
#if KEYS_PRIMITIVE
a = ARRAYS.ensureCapacity(a, capacity, size);
#else
if (wrapped) a = ARRAYS.ensureCapacity(a, capacity, size);
else {
if (capacity > a.length) {
final Object t[] = new Object[capacity];
System.arraycopy(a, 0, t, 0, size);
a = (KEY_GENERIC_TYPE[])t;
}
}
#endif
assert size <= a.length;
}
/** Grows this array list, ensuring that it can contain the given number of entries without resizing,
* and in case increasing the current capacity at least by a factor of 50%.
*
* @param capacity the new minimum capacity for this array list.
*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
private void grow(int capacity) {
if (capacity <= a.length) return;
if (a != ARRAYS.DEFAULT_EMPTY_ARRAY)
capacity = (int)Math.max(Math.min((long)a.length + (a.length >> 1), it.unimi.dsi.fastutil.Arrays.MAX_ARRAY_SIZE), capacity);
else if (capacity < DEFAULT_INITIAL_CAPACITY) capacity = DEFAULT_INITIAL_CAPACITY;
#if KEYS_PRIMITIVE
a = ARRAYS.forceCapacity(a, capacity, size);
#else
if (wrapped) a = ARRAYS.forceCapacity(a, capacity, size);
else {
final Object t[] = new Object[capacity];
System.arraycopy(a, 0, t, 0, size);
a = (KEY_GENERIC_TYPE[])t;
}
#endif
assert size <= a.length;
}
@Override
public void add(final int index, final KEY_GENERIC_TYPE k) {
ensureIndex(index);
grow(size + 1);
if (index != size) System.arraycopy(a, index, a, index + 1, size - index);
a[index] = k;
size++;
assert size <= a.length;
}
@Override
public boolean add(final KEY_GENERIC_TYPE k) {
grow(size + 1);
a[size++] = k;
assert size <= a.length;
return true;
}
@Override
public KEY_GENERIC_TYPE GET_KEY(final int index) {
if (index >= size) throw new IndexOutOfBoundsException("Index (" + index + ") is greater than or equal to list size (" + size + ")");
return a[index];
}
@Override
public int indexOf(final KEY_TYPE k) {
for(int i = 0; i < size; i++) if (KEY_EQUALS(k, a[i])) return i;
return -1;
}
@Override
public int lastIndexOf(final KEY_TYPE k) {
for(int i = size; i-- != 0;) if (KEY_EQUALS(k, a[i])) return i;
return -1;
}
@Override
public KEY_GENERIC_TYPE REMOVE_KEY(final int index) {
if (index >= size) throw new IndexOutOfBoundsException("Index (" + index + ") is greater than or equal to list size (" + size + ")");
final KEY_GENERIC_TYPE old = a[index];
size--;
if (index != size) System.arraycopy(a, index + 1, a, index, size - index);
#if KEYS_REFERENCE
a[size] = null;
#endif
assert size <= a.length;
return old;
}
@Override
public boolean REMOVE(final KEY_TYPE k) {
int index = indexOf(k);
if (index == -1) return false;
REMOVE_KEY(index);
assert size <= a.length;
return true;
}
@Override
public KEY_GENERIC_TYPE set(final int index, final KEY_GENERIC_TYPE k) {
if (index >= size) throw new IndexOutOfBoundsException("Index (" + index + ") is greater than or equal to list size (" + size + ")");
KEY_GENERIC_TYPE old = a[index];
a[index] = k;
return old;
}
@Override
public void clear() {
#if KEYS_REFERENCE
Arrays.fill(a, 0, size, null);
#endif
size = 0;
assert size <= a.length;
}
@Override
public int size() {
return size;
}
@Override
public void size(final int size) {
if (size > a.length) a = ARRAYS.forceCapacity(a, size, this.size);
if (size > this.size) Arrays.fill(a, this.size, size, KEY_NULL);
#if KEYS_REFERENCE
else Arrays.fill(a, size, this.size, KEY_NULL);
#endif
this.size = size;
}
@Override
public boolean isEmpty() {
return size == 0;
}
/** Trims this array list so that the capacity is equal to the size.
*
* @see java.util.ArrayList#trimToSize()
*/
public void trim() {
trim(0);
}
/** Trims the backing array if it is too large.
*
* If the current array length is smaller than or equal to
* {@code n}, this method does nothing. Otherwise, it trims the
* array length to the maximum between {@code n} and {@link #size()}.
*
* This method is useful when reusing lists. {@linkplain #clear() Clearing a
* list} leaves the array length untouched. If you are reusing a list
* many times, you can call this method with a typical
* size to avoid keeping around a very large array just
* because of a few large transient lists.
*
* @param n the threshold for the trimming.
*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
public void trim(final int n) {
// TODO: use Arrays.trim() and preserve type only if necessary
if (n >= a.length || size == a.length) return;
final KEY_GENERIC_TYPE t[] = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[Math.max(n, size)];
System.arraycopy(a, 0, t, 0, size);
a = t;
assert size <= a.length;
}
private class SubList extends ABSTRACT_LIST.SUBLIST_RANDOM_ACCESS KEY_GENERIC {
private static final long serialVersionUID = -3185226345314976296L;
protected SubList(int from, int to) {
super(ARRAY_LIST.this, from, to);
}
// Most of the inherited methods should be fine, but we can override a few of them for performance.
// Needed because we can't access the parent class' instance variables directly in a different instance of SubList.
private KEY_GENERIC_TYPE[] getParentArray() {
return a;
}
@Override
public KEY_GENERIC_TYPE GET_KEY(int i) {
ensureRestrictedIndex(i);
return a[i + from];
}
private final class SubListIterator extends ITERATORS.AbstractIndexBasedListIterator KEY_GENERIC {
// We are using pos == 0 to be 0 relative to SubList.from (meaning you need to do a[from + i] when accessing array).
SubListIterator(int index) {
super(0, index);
}
@Override
protected final KEY_GENERIC_TYPE get(int i) { return a[from + i]; }
@Override
protected final void add(int i, KEY_GENERIC_TYPE k) { SubList.this.add(i, k); }
@Override
protected final void set(int i, KEY_GENERIC_TYPE k) { SubList.this.set(i, k); }
@Override
protected final void remove(int i) { SubList.this.REMOVE_KEY(i); }
@Override
protected final int getMaxPos() { return to - from; }
@Override
public KEY_GENERIC_TYPE NEXT_KEY() { if (! hasNext()) throw new NoSuchElementException(); return a[from + (lastReturned = pos++)]; }
@Override
public KEY_GENERIC_TYPE PREV_KEY() { if (! hasPrevious()) throw new NoSuchElementException(); return a[from + (lastReturned = --pos)]; }
@Override
public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) {
final int max = to - from;
while(pos < max) {
action.accept(a[from + (lastReturned = pos++)]);
}
}
}
@Override
public KEY_LIST_ITERATOR KEY_GENERIC listIterator(int index) {
return new SubListIterator(index);
}
private final class SubListSpliterator extends SPLITERATORS.LateBindingSizeIndexBasedSpliterator KEY_GENERIC {
// We are using pos == 0 to be 0 relative to real array 0
SubListSpliterator() {
super(from);
}
private SubListSpliterator(int pos, int maxPos) {
super(pos, maxPos);
}
@Override
protected final int getMaxPosFromBackingStore() { return to; }
@Override
protected final KEY_GENERIC_TYPE get(int i) { return a[i]; }
@Override
protected final SubListSpliterator makeForSplit(int pos, int maxPos) {
return new SubListSpliterator(pos, maxPos);
}
@Override
public boolean tryAdvance(final METHOD_ARG_KEY_CONSUMER action) {
if (pos >= getMaxPos()) return false;
action.accept(a[pos++]);
return true;
}
@Override
public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) {
final int max = getMaxPos();
while(pos < max) {
action.accept(a[pos++]);
}
}
}
@Override
public KEY_SPLITERATOR KEY_GENERIC spliterator() {
return new SubListSpliterator();
}
boolean contentsEquals(KEY_GENERIC_TYPE[] otherA, int otherAFrom, int otherATo) {
if (a == otherA && from == otherAFrom && to == otherATo) return true;
if (otherATo - otherAFrom != size()) {
return false;
}
int pos = from, otherPos = otherAFrom;
// We have already assured that the two ranges are the same size, so we only need to check one bound.
// TODO When minimum version of Java becomes Java 9, use the Arrays.equals which takes bounds, which is vectorized.
// Make sure to split out the reference equality case when you do this.
#if KEY_CLASS_Object
while(pos < to) if (!java.util.Objects.equals(a[pos++], otherA[otherPos++])) return false;
#else
while(pos < to) if (a[pos++] != otherA[otherPos++]) return false;
#endif
return true;
}
@Override
public boolean equals(Object o) {
if (o == this) return true;
if (o == null) return false;
if (!(o instanceof java.util.List)) return false;
if (o instanceof ARRAY_LIST) {
SUPPRESS_WARNINGS_KEY_UNCHECKED
ARRAY_LIST KEY_GENERIC other = (ARRAY_LIST KEY_GENERIC) o;
return contentsEquals(other.a, 0, other.size());
}
if (o instanceof ARRAY_LIST.SubList) {
SUPPRESS_WARNINGS_KEY_UNCHECKED
ARRAY_LIST KEY_GENERIC.SubList other = (ARRAY_LIST KEY_GENERIC.SubList) o;
return contentsEquals(other.getParentArray(), other.from, other.to);
}
return super.equals(o);
}
#if ! KEYS_USE_REFERENCE_EQUALITY
SUPPRESS_WARNINGS_KEY_UNCHECKED
int contentsCompareTo(KEY_GENERIC_TYPE[] otherA, int otherAFrom, int otherATo) {
#if KEYS_PRIMITIVE // Can't make this assumption for reference types in case we have a goofy Comparable that doesn't compare itself equal
if (a == otherA && from == otherAFrom && to == otherATo) return 0;
#endif
// TODO When minimum version of Java becomes Java 9, use Arrays.compare, which vectorizes.
KEY_GENERIC_TYPE e1, e2;
int r, i, j;
for(i = from, j = otherAFrom; i < to && i < otherATo; i++, j++) {
e1 = a[i];
e2 = otherA[j];
if ((r = KEY_CMP(e1, e2)) != 0) return r;
}
return i < otherATo ? -1 : (i < to ? 1 : 0);
}
SUPPRESS_WARNINGS_KEY_UNCHECKED
@Override
public int compareTo(final java.util.List extends KEY_GENERIC_CLASS> l) {
if (l instanceof ARRAY_LIST) {
SUPPRESS_WARNINGS_KEY_UNCHECKED
ARRAY_LIST KEY_GENERIC other = (ARRAY_LIST KEY_GENERIC) l;
return contentsCompareTo(other.a, 0, other.size());
}
if (l instanceof ARRAY_LIST.SubList) {
SUPPRESS_WARNINGS_KEY_UNCHECKED
ARRAY_LIST KEY_GENERIC.SubList other = (ARRAY_LIST KEY_GENERIC.SubList) l;
return contentsCompareTo(other.getParentArray(), other.from, other.to);
}
return super.compareTo(l);
}
#endif
// We don't override subList as we want AbstractList's "sub-sublist" nesting handling,
// which would be tricky to do here.
// TODO Do override it so array access isn't sent through N indirections.
// This will likely mean making this class static.
}
@Override
public LIST KEY_GENERIC subList(int from, int to) {
if (from == 0 && to == size()) return this;
ensureIndex(from);
ensureIndex(to);
if (from > to) throw new IndexOutOfBoundsException("Start index (" + from + ") is greater than end index (" + to + ")");
return new SubList(from, to);
}
/** Copies element of this type-specific list into the given array using optimized system calls.
*
* @param from the start index (inclusive).
* @param a the destination array.
* @param offset the offset into the destination array where to store the first element copied.
* @param length the number of elements to be copied.
*/
@Override
public void getElements(final int from, final KEY_TYPE[] a, final int offset, final int length) {
ARRAYS.ensureOffsetLength(a, offset, length);
System.arraycopy(this.a, from, a, offset, length);
}
/** Removes elements of this type-specific list using optimized system calls.
*
* @param from the start index (inclusive).
* @param to the end index (exclusive).
*/
@Override
public void removeElements(final int from, final int to) {
it.unimi.dsi.fastutil.Arrays.ensureFromTo(size, from, to);
System.arraycopy(a, to, a, from, size - to);
size -= (to - from);
#if KEYS_REFERENCE
int i = to - from;
while(i-- != 0) a[size + i] = null;
#endif
}
/** Adds elements to this type-specific list using optimized system calls.
*
* @param index the index at which to add elements.
* @param a the array containing the elements.
* @param offset the offset of the first element to add.
* @param length the number of elements to add.
*/
@Override
public void addElements(final int index, final KEY_GENERIC_TYPE a[], final int offset, final int length) {
ensureIndex(index);
ARRAYS.ensureOffsetLength(a, offset, length);
grow(size + length);
System.arraycopy(this.a, index, this.a, index + length, size - index);
System.arraycopy(a, offset, this.a, index, length);
size += length;
}
/** Sets elements to this type-specific list using optimized system calls.
*
* @param index the index at which to start setting elements.
* @param a the array containing the elements.
* @param offset the offset of the first element to add.
* @param length the number of elements to add.
*/
@Override
public void setElements(final int index, final KEY_GENERIC_TYPE a[], final int offset, final int length) {
ensureIndex(index);
ARRAYS.ensureOffsetLength(a, offset, length);
if (index + length > size) throw new IndexOutOfBoundsException("End index (" + (index + length) + ") is greater than list size (" + size + ")");
System.arraycopy(a, offset, this.a, index, length);
}
@Override
public void forEach(final METHOD_ARG_KEY_CONSUMER action) {
for (int i = 0; i < size; ++i) {
action.accept(a[i]);
}
}
@Override
public boolean addAll(int index, final STD_KEY_COLLECTION KEY_EXTENDS_GENERIC c) {
if (c instanceof LIST) {
return addAll(index, (LIST KEY_EXTENDS_GENERIC)c);
}
ensureIndex(index);
int n = c.size();
if (n == 0) return false;
grow(size + n);
System.arraycopy(a, index, a, index + n, size - index);
final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i = c.iterator();
size += n;
while(n-- != 0) a[index++] = i.NEXT_KEY();
assert size <= a.length;
return true;
}
@Override
public boolean addAll(final int index, final LIST KEY_EXTENDS_GENERIC l) {
ensureIndex(index);
final int n = l.size();
if (n == 0) return false;
grow(size + n);
System.arraycopy(a, index, a, index + n, size - index);
l.getElements(0, a, index, n);
size += n;
assert size <= a.length;
return true;
}
@Override
public boolean removeAll(final STD_KEY_COLLECTION KEY_GENERIC_WILDCARD c) {
final KEY_TYPE[] a = this.a;
int j = 0;
for(int i = 0; i < size; i++)
if (! c.contains(a[i])) a[j++] = a[i];
#if KEYS_REFERENCE
Arrays.fill(a, j, size, null);
#endif
final boolean modified = size != j;
size = j;
return modified;
}
#if KEYS_PRIMITIVE
@Override
public KEY_TYPE[] toArray(KEY_TYPE a[]) {
if (a == null || a.length < size) a = java.util.Arrays.copyOf(a, size);
System.arraycopy(this.a, 0, a, 0, size);
return a;
}
#else
@Override
public Object[] toArray() {
// A subtle part of the spec says the returned array must be Object[] exactly.
return Arrays.copyOf(a, size(), Object[].class);
}
SUPPRESS_WARNINGS_KEY_UNCHECKED
@Override
public KEY_GENERIC KEY_GENERIC_TYPE[] toArray(KEY_GENERIC_TYPE a[]) {
if (a == null) {
a = KEY_GENERIC_ARRAY_CAST new Object[size()];
} else if (a.length < size()) {
a = KEY_GENERIC_ARRAY_CAST Array.newInstance(a.getClass().getComponentType(), size());
}
System.arraycopy(this.a, 0, a, 0, size());
if (a.length > size()) {
a[size()] = null;
}
return a;
}
#endif
@Override
public KEY_LIST_ITERATOR KEY_GENERIC listIterator(final int index) {
ensureIndex(index);
return new KEY_LIST_ITERATOR KEY_GENERIC() {
int pos = index, last = -1;
@Override
public boolean hasNext() { return pos < size; }
@Override
public boolean hasPrevious() { return pos > 0; }
@Override
public KEY_GENERIC_TYPE NEXT_KEY() { if (! hasNext()) throw new NoSuchElementException(); return a[last = pos++]; }
@Override
public KEY_GENERIC_TYPE PREV_KEY() { if (! hasPrevious()) throw new NoSuchElementException(); return a[last = --pos]; }
@Override
public int nextIndex() { return pos; }
@Override
public int previousIndex() { return pos - 1; }
@Override
public void add(KEY_GENERIC_TYPE k) {
ARRAY_LIST.this.add(pos++, k);
last = -1;
}
@Override
public void set(KEY_GENERIC_TYPE k) {
if (last == -1) throw new IllegalStateException();
ARRAY_LIST.this.set(last, k);
}
@Override
public void remove() {
if (last == -1) throw new IllegalStateException();
ARRAY_LIST.this.REMOVE_KEY(last);
/* If the last operation was a next(), we are removing an element *before* us, and we must decrease pos correspondingly. */
if (last < pos) pos--;
last = -1;
}
@Override
public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) {
while (pos < size) {
action.accept(a[last = pos++]);
}
}
@Override
public int back(int n) {
if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n);
final int remaining = size - pos;
if (n < remaining) {
pos -= n;
} else {
n = remaining;
pos = 0;
}
last = pos;
return n;
}
@Override
public int skip(int n) {
if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n);
final int remaining = size - pos;
if (n < remaining) {
pos += n;
} else {
n = remaining;
pos = size;
}
last = pos - 1;
return n;
}
};
}
// If you update this, you will probably want to update ArraySet as well
private final class Spliterator implements KEY_SPLITERATOR KEY_GENERIC {
// Until we split, we will track the size of the list.
// Once we split, then we stop updating on structural modifications.
// Aka, size is late-binding.
boolean hasSplit = false;
int pos, max;
#ifdef TEST
// Sentinel to make sure we don't accidentally use size when we mean max
@Deprecated
private final Object size = null;
#endif
public Spliterator() {
this(0, ARRAY_LIST.this.size, false);
}
private Spliterator(int pos, int max, boolean hasSplit) {
assert pos <= max : "pos " + pos + " must be <= max " + max;
this.pos = pos;
this.max = max;
this.hasSplit = hasSplit;
}
private int getWorkingMax() {
return hasSplit ? max : ARRAY_LIST.this.size;
}
@Override
public int characteristics() { return SPLITERATORS.LIST_SPLITERATOR_CHARACTERISTICS; }
@Override
public long estimateSize() { return getWorkingMax() - pos; }
@Override
public boolean tryAdvance(final METHOD_ARG_KEY_CONSUMER action) {
if (pos >= getWorkingMax()) return false;
action.accept(a[pos++]);
return true;
}
@Override
public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) {
for (final int max = getWorkingMax(); pos < max; ++pos) {
action.accept(a[pos]);
}
}
@Override
public long skip(long n) {
if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n);
final int max = getWorkingMax();
if (pos >= max) return 0;
final int remaining = max - pos;
if (n < remaining) {
pos = it.unimi.dsi.fastutil.SafeMath.safeLongToInt(pos + n);
return n;
}
n = remaining;
pos = max;
return n;
}
@Override
public KEY_SPLITERATOR KEY_GENERIC trySplit() {
final int max = getWorkingMax();
int retLen = (max - pos) >> 1;
if (retLen <= 1) return null;
// Update instance max with the last seen list size (if needed) before continuing
this.max = max;
int myNewPos = pos + retLen;
int retMax = myNewPos;
int oldPos = pos;
this.pos = myNewPos;
this.hasSplit = true;
return new Spliterator(oldPos, retMax, true);
}
}
/** {@inheritDoc}
*
*
The returned spliterator is late-binding; it will track structural changes
* after the current index, up until the first {@link java.util.Spliterator#trySplit() trySplit()},
* at which point the maximum index will be fixed.
*
Structural changes before the current index or after the first
* {@link java.util.Spliterator#trySplit() trySplit()} will result in unspecified behavior.
*/
@Override
public KEY_SPLITERATOR KEY_GENERIC spliterator() {
// If it wasn't for the possibility of the list being expanded or shrunk,
// we could return SPLITERATORS.wrap(a, 0, size).
return new Spliterator();
}
SUPPRESS_WARNINGS_KEY_UNCHECKED
@Override
public void sort(final KEY_COMPARATOR KEY_SUPER_GENERIC comp) {
if (comp == null) {
ARRAYS.stableSort(a, 0, size);
} else {
ARRAYS.stableSort(a, 0, size, comp);
}
}
@Override
public void unstableSort(final KEY_COMPARATOR KEY_SUPER_GENERIC comp) {
if (comp == null) {
ARRAYS.unstableSort(a, 0, size);
} else {
ARRAYS.unstableSort(a, 0, size, comp);
}
}
@Override
SUPPRESS_WARNINGS_KEY_UNCHECKED
public ARRAY_LIST KEY_GENERIC clone() {
ARRAY_LIST KEY_GENERIC cloned = null;
// Test for fastpath we can do if exactly an ArrayList
if (getClass() == ARRAY_LIST.class) {
// Preserve backwards compatibility and make new list have Object[] even if it was wrapped from some subclass.
cloned = new ARRAY_LIST KEY_GENERIC_DIAMOND(copyArraySafe(a, size), false);
cloned.size = size;
} else {
try {
cloned = (ARRAY_LIST KEY_GENERIC)super.clone();
} catch (CloneNotSupportedException err) {
// Can't happen
throw new InternalError(err);
}
// Preserve backwards compatibility and make new list have Object[] even if it was wrapped from some subclass.
cloned.a = copyArraySafe(a, size);
#if ! KEYS_PRIMITIVE
// We can't clear cloned.wrapped because it is final.
#endif
}
return cloned;
}
/** Compares this type-specific array list to another one.
*
* @apiNote This method exists only for sake of efficiency. The implementation
* inherited from the abstract implementation would already work.
*
* @param l a type-specific array list.
* @return true if the argument contains the same elements of this type-specific array list.
*/
public boolean equals(final ARRAY_LIST KEY_GENERIC l) {
// TODO When minimum version of Java becomes Java 9, use the Arrays.equals which takes bounds, which is vectorized.
if (l == this) return true;
int s = size();
if (s != l.size()) return false;
final KEY_GENERIC_TYPE[] a1 = a;
final KEY_GENERIC_TYPE[] a2 = l.a;
if (a1 == a2 && s == l.size()) return true;
#if KEY_CLASS_Object
while(s-- != 0) if (! java.util.Objects.equals(a1[s], a2[s])) return false;
#else
while(s-- != 0) if (a1[s] != a2[s]) return false;
#endif
return true;
}
#if KEYS_REFERENCE
@SuppressWarnings({"unchecked", "unlikely-arg-type"})
#else
@SuppressWarnings("unlikely-arg-type")
#endif
@Override
public boolean equals(final Object o) {
if (o == this) return true;
if (o == null) return false;
if (!(o instanceof java.util.List)) return false;
if (o instanceof ARRAY_LIST) {
// Safe cast because we are only going to take elements from other list, never give them
return equals((ARRAY_LIST KEY_GENERIC) o);
}
if (o instanceof ARRAY_LIST.SubList) {
// Safe cast because we are only going to take elements from other list, never give them
// Sublist has an optimized sub-array based comparison, reuse that.
return ((ARRAY_LIST KEY_GENERIC.SubList)o).equals(this);
}
return super.equals(o);
}
#if ! KEYS_USE_REFERENCE_EQUALITY
/** Compares this array list to another array list.
*
* @apiNote This method exists only for sake of efficiency. The implementation
* inherited from the abstract implementation would already work.
*
* @param l an array list.
* @return a negative integer,
* zero, or a positive integer as this list is lexicographically less than, equal
* to, or greater than the argument.
*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
public int compareTo(final ARRAY_LIST KEY_EXTENDS_GENERIC l) {
final int s1 = size(), s2 = l.size();
final KEY_GENERIC_TYPE a1[] = a, a2[] = l.a;
#if KEYS_PRIMITIVE // Can't make this assumption for reference types in case we have a goofy Comparable that doesn't compare itself equal
if (a1 == a2 && s1 == s2) return 0;
#endif
// TODO When minimum version of Java becomes Java 9, use Arrays.compare, which vectorizes.
KEY_GENERIC_TYPE e1, e2;
int r, i;
for(i = 0; i < s1 && i < s2; i++) {
e1 = a1[i];
e2 = a2[i];
if ((r = KEY_CMP(e1, e2)) != 0) return r;
}
return i < s2 ? -1 : (i < s1 ? 1 : 0);
}
SUPPRESS_WARNINGS_KEY_UNCHECKED
@Override
public int compareTo(final java.util.List extends KEY_GENERIC_CLASS> l) {
if (l instanceof ARRAY_LIST) {
return compareTo((ARRAY_LIST KEY_EXTENDS_GENERIC)l);
}
if (l instanceof ARRAY_LIST.SubList) {
// Must negate because we are inverting the order of the comparison.
return -((ARRAY_LIST KEY_GENERIC.SubList) l).compareTo(this);
}
return super.compareTo(l);
}
#endif
private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException {
s.defaultWriteObject();
for(int i = 0; i < size; i++) s.WRITE_KEY(a[i]);
}
SUPPRESS_WARNINGS_KEY_UNCHECKED
private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
a = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[size];
for(int i = 0; i < size; i++) a[i] = KEY_GENERIC_CAST s.READ_KEY();
}
#ifdef TEST
private static long seed = System.currentTimeMillis();
private static java.util.Random r = new java.util.Random(seed);
private static KEY_TYPE genKey() {
#if KEY_CLASS_Byte || KEY_CLASS_Short || KEY_CLASS_Character
return (KEY_TYPE)(r.nextInt());
#elif KEYS_PRIMITIVE
return r.NEXT_KEY();
#elif KEY_CLASS_Object
return Integer.toBinaryString(r.nextInt());
#else
return new java.io.Serializable() {};
#endif
}
private static int genIndex(int size) {
return size == 0 ? 0 : r.nextInt(size);
}
private static java.text.NumberFormat format = new java.text.DecimalFormat("#,###.00");
private static java.text.FieldPosition p = new java.text.FieldPosition(0);
private static String format(double d) {
StringBuffer s = new StringBuffer();
return format.format(d, s, p).toString();
}
private static final int WARMUP_CYCLES = 12;
private static final int NUM_RUNS = 25;
private static final int GC_EVERY = 5;
// TODO Use a ASSERTS like preprocessor variable?
private static final boolean PARALLEL_STREAMS = Boolean.getBoolean("useParallelStreams");
private static final int intDivRoundUp(int numerator, int denominator) {
return (numerator + denominator - 1) / denominator;
}
// WARNING: This benchmark runs in amortized time O(n^(3/2)). Don't choose huge n values for this test (about 10,000,000 starts showing significant slowdown)
private static void speedTest(final int n, boolean comp) {
if (n < 0) throw new IllegalArgumentException("n: " + n + " must be >0 (overflow?)");
java.util.ArrayList t;
ARRAY_LIST m;
int i;
int j;
KEY_TYPE k[] = new KEY_TYPE[n];
KEY_TYPE nk[] = new KEY_TYPE[n];
int randIndexes[] = new int[n];
long ns;
for(i = 0; i < n; i++) {
k[i] = genKey();
nk[i] = genKey();
randIndexes[i] = genIndex(i);
}
final int nRandom = (int)Math.sqrt(n);
final int nSequential = n - nRandom;
double totAddEnd = 0, totAddRandom = 0, totYes = 0, totNo = 0, totIter = 0, totRemEnd = 0, totRemRandom = 0, toStreamSum = 0, d;
if (comp) { for(j = 0; j < NUM_RUNS; j++) {
if ((j + 1) % GC_EVERY == 0) System.gc();
t = new java.util.ArrayList(16);
/* We add to t at a random position. */
ns = System.nanoTime();
for(i = 0; i < nRandom; i++) t.add(randIndexes[i], KEY2OBJ(k[i]));
d = (System.nanoTime() - ns) / (double)nRandom;
if (j >= WARMUP_CYCLES) totAddRandom += d;
System.out.print("AddToRandom: " + format(d) + "ns ");
/* We add to t at end. */
ns = System.nanoTime();
for(; i < n; i++) t.add(KEY2OBJ(k[i]));
d = (System.nanoTime() - ns) / (double)nSequential;
if (j >= WARMUP_CYCLES) totAddEnd += d;
System.out.print("AddToEnd: " + format(d) + "ns ");
/* We check things in t. */
ns = System.nanoTime();
for(i = 0; i < nRandom; i++) t.contains(KEY2OBJ(k[i]));
d = (System.nanoTime() - ns) / (double)nRandom;
if (j >= WARMUP_CYCLES) totYes += d;
System.out.print("Yes: " + format(d) + "ns ");
/* We check for things likely not in t. */
ns = System.nanoTime();
for(i = 0; i < nRandom; i++) t.contains(KEY2OBJ(nk[i]));
d = (System.nanoTime() - ns) / (double)nRandom;
if (j >= WARMUP_CYCLES) totNo += d;
System.out.print("No: " + format(d) + "ns ");
/* We iterate on t. */
ns = System.nanoTime();
for(java.util.Iterator it = t.iterator(); it.hasNext(); it.next());
d = (System.nanoTime() - ns) / (double)n;
if (j >= WARMUP_CYCLES) totIter += d;
System.out.print("Iter: " + format(d) + "ns ");
#if KEYS_PRIMITIVE && ! KEY_CLASS_Boolean
/* We sum on t. */
ns = System.nanoTime();
#if KEYS_BYTE_CHAR_SHORT_FLOAT
// Since the primitive stream has to upcast to a widened primitive, for fairness we will upcast here too
#endif
java.util.stream.Stream tStream = ((java.util.List)t).stream();
if (PARALLEL_STREAMS) tStream = tStream.parallel();
#if KEY_CLASS_Character
tStream.MAP_TO_KEY_WIDENED(Character::charValue).sum();
#else
tStream.MAP_TO_KEY_WIDENED(KEY_CLASS::KEY_WIDENED_VALUE).sum();
#endif
d = (System.nanoTime() - ns) / (double)n;
if (j >= WARMUP_CYCLES) toStreamSum += d;
System.out.print("Stream sum: " + format(d) + "ns ");
#endif
// Don't bother with remove(KEY); that is just going to be a contains + remove random.
/* We remove from end */
ns = System.nanoTime();
for(i = 0; i < nSequential; i++) t.remove(t.size() - 1);
d = (System.nanoTime() - ns) / (double)nSequential;
if (j >= WARMUP_CYCLES) totRemEnd += d;
System.out.print("RemEnd: " + format(d) + "ns ");
/* We remove randomly */
ns = System.nanoTime();
for(i = 0; i < nRandom; i++) t.remove(randIndexes[t.size() - 1]);
d = (System.nanoTime() - ns) / (double)nRandom;
if (j >= WARMUP_CYCLES) totRemRandom += d;
System.out.print("RemRandom: " + format(d) + "ns ");
System.out.println();
}
System.out.println();
System.out.println("java.util AddToRandom: " + format(totAddRandom/(j-WARMUP_CYCLES)) + " AddToEnd: " + format(totAddEnd/(j-WARMUP_CYCLES)) + "ns Yes: " + format(totYes/(j-WARMUP_CYCLES)) + "ns No: " + format(totNo/(j-WARMUP_CYCLES)) + "ns Iter: " + format(totIter/(j-WARMUP_CYCLES)) + "ns StreamSum: " + format(toStreamSum/(j-WARMUP_CYCLES)) + "ns RemEnd: " + format(totRemEnd/(j-WARMUP_CYCLES)) + "ns RemRandom: " + format(totRemRandom/(j-WARMUP_CYCLES)) + "ns");
System.out.println();
totAddEnd = totAddRandom = totYes = totNo = totIter = totRemEnd = totRemRandom = toStreamSum = 0;
}
for(j = 0; j < NUM_RUNS; j++) {
if ((j + 1) % GC_EVERY == 0) System.gc();
m = new ARRAY_LIST(16);
/* We add to m at a random position. */
ns = System.nanoTime();
for(i = 0; i < nRandom; i++) m.add(randIndexes[i], k[i]);
d = (System.nanoTime() - ns) / (double)nRandom;
if (j >= WARMUP_CYCLES) totAddRandom += d;
System.out.print("AddToRandom: " + format(d) + "ns ");
/* We add to m at end. */
ns = System.nanoTime();
for(; i < n; i++) m.add(k[i]);
d = (System.nanoTime() - ns) / (double)nSequential;
if (j >= WARMUP_CYCLES) totAddEnd += d;
System.out.print("AddToEnd: " + format(d) + "ns ");
/* We check things in m. */
ns = System.nanoTime();
for(i = 0; i < nRandom; i++) m.contains(k[i]);
d = (System.nanoTime() - ns) / (double)nRandom;
if (j >= WARMUP_CYCLES) totYes += d;
System.out.print("Yes: " + format(d) + "ns ");
/* We check for things likely not in m. */
ns = System.nanoTime();
for(i = 0; i < nRandom; i++) m.contains(nk[i]);
d = (System.nanoTime() - ns) / (double)nRandom;
if (j >= WARMUP_CYCLES) totNo += d;
System.out.print("No: " + format(d) + "ns ");
/* We iterate on m. */
ns = System.nanoTime();
for(KEY_ITERATOR it = (KEY_ITERATOR)m.iterator(); it.hasNext(); it.NEXT_KEY());
d = (System.nanoTime() - ns) / (double)n;
if (j >= WARMUP_CYCLES) totIter += d;
System.out.print("Iter: " + format(d) + "ns ");
#if KEYS_PRIMITIVE && ! KEY_CLASS_Boolean
/* We sum on m. */
ns = System.nanoTime();
JDK_PRIMITIVE_STREAM mStream = m.KEY_WIDENED_STREAM_METHOD();
if (PARALLEL_STREAMS) mStream = mStream.parallel();
mStream.sum();
d = (System.nanoTime() - ns) / (double)n;
if (j >= WARMUP_CYCLES) toStreamSum += d;
System.out.print("Stream sum: " + format(d) + "ns ");
#endif
// Don't bother with rem(KEY); that is just going to be a contains + remove random.
/* We remove from end */
ns = System.nanoTime();
for(i = 0; i < nSequential; i++) m.REMOVE_KEY(m.size() - 1);
d = (System.nanoTime() - ns) / (double)nSequential;
if (j >= WARMUP_CYCLES) totRemEnd += d;
System.out.print("RemEnd: " + format(d) + "ns ");
/* We remove randomly */
ns = System.nanoTime();
for(i = 0; i < nRandom; i++) m.REMOVE_KEY(randIndexes[m.size() - 1]);
d = (System.nanoTime() - ns) / (double)nRandom;
if (j >= WARMUP_CYCLES) totRemRandom += d;
System.out.print("RemRandom: " + format(d) + "ns ");
System.out.println();
}
System.out.println();
System.out.println("fastutil AddToRandom: " + format(totAddRandom/(j-WARMUP_CYCLES)) + " AddToEnd: " + format(totAddEnd/(j-WARMUP_CYCLES)) + "ns Yes: " + format(totYes/(j-WARMUP_CYCLES)) + "ns No: " + format(totNo/(j-WARMUP_CYCLES)) + "ns Iter: " + format(totIter/(j-WARMUP_CYCLES)) + "ns StreamSum: " + format(toStreamSum/(j-WARMUP_CYCLES)) + "ns RemEnd: " + format(totRemEnd/(j-WARMUP_CYCLES)) + "ns RemRandom: " + format(totRemRandom/(j-WARMUP_CYCLES)) + "ns");
System.out.println();
}
private static void fatal(String msg) {
throw new AssertionError(msg);
}
private static void ensure(boolean cond, String msg) {
if (cond) return;
fatal(msg);
}
private static void ensure(boolean cond, java.util.function.Supplier msgSupplier) {
if (cond) return;
fatal(msgSupplier.get());
}
private static Object[] k, v, nk;
private static KEY_TYPE kt[];
private static KEY_TYPE nkt[];
private static ARRAY_LIST topList;
protected static void testLists(LIST m, java.util.List t, int n, int level) throws Exception {
long ms;
Exception mThrowsIllegal, tThrowsIllegal, mThrowsOutOfBounds, tThrowsOutOfBounds;
Object rt = null;
KEY_TYPE rm = KEY_NULL;
if (level > 4) return;
/* Now we check that both sets agree on random keys. For m we use the polymorphic method. */
for(int i = 0; i < n; i++) {
int p = r.nextInt() % (n * 2);
KEY_TYPE T = genKey();
mThrowsOutOfBounds = tThrowsOutOfBounds = null;
try {
m.set(p, T);
}
catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }
try {
t.set(p, KEY2OBJ(T));
}
catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }
ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + level + ", " + seed + "): set() divergence at start in IndexOutOfBoundsException for index " + p + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")");
if (mThrowsOutOfBounds == null) ensure(t.get(p).equals(KEY2OBJ(m.GET_KEY(p))), "Error (" + level + ", " + seed + "): m and t differ after set() on position " + p + " (" + m.GET_KEY(p) + ", " + t.get(p) + ")");
p = r.nextInt() % (n * 2);
mThrowsOutOfBounds = tThrowsOutOfBounds = null;
try {
m.GET_KEY(p);
}
catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }
try {
t.get(p);
}
catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }
ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + level + ", " + seed + "): get() divergence at start in IndexOutOfBoundsException for index " + p + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")");
if (mThrowsOutOfBounds == null) ensure(t.get(p).equals(KEY2OBJ(m.GET_KEY(p))), "Error (" + level + ", " + seed + "): m and t differ aftre get() on position " + p + " (" + m.GET_KEY(p) + ", " + t.get(p) + ")");
}
/* Now we check that both sets agree on random keys. For m we use the standard method. */
for(int i = 0; i < n; i++) {
int p = r.nextInt() % (n * 2);
mThrowsOutOfBounds = tThrowsOutOfBounds = null;
try {
m.get(p);
}
catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }
try {
t.get(p);
}
catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }
ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + level + ", " + seed + "): get() divergence at start in IndexOutOfBoundsException for index " + p + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")");
if (mThrowsOutOfBounds == null) ensure(t.get(p).equals(m.get(p)), "Error (" + level + ", " + seed + "): m and t differ at start on position " + p + " (" + m.get(p) + ", " + t.get(p) + ")");
}
/* Now we check that m and t are equal. */
if (!m.equals(t) || ! t.equals(m)) System.err.println("m: " + m + " t: " + t);
ensure(m.equals(t), "Error (" + level + ", " + seed + "): ! m.equals(t) at start");
ensure(t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals(m) at start");
/* Now we check that m actually holds that data. */
for(Iterator i=t.iterator(); i.hasNext();) {
ensure(m.contains(i.next()), "Error (" + level + ", " + seed + "): m and t differ on an entry after insertion (iterating on t)");
}
/* Now we check that m actually holds that data, but iterating on m. */
for(Iterator i=m.listIterator(); i.hasNext();) {
ensure(t.contains(i.next()), "Error (" + level + ", " + seed + "): m and t differ on an entry after insertion (iterating on m)");
}
/* Now we check that inquiries about random data give the same answer in m and t. For
m we use the polymorphic method. */
for(int i=0; i "Error (" + level + ", " + seed + m + t + "): ! m.equals(t) after addAll");
ensure(t.equals(m), () -> "Error (" + level + ", " + seed + m + t + "): ! t.equals(m) after addAll");
}
if (m.size() > n) {
m.size(n);
while(t.size() != n) t.remove(t.size() -1);
}
/* Now we add random data in m and t using addAll on a type-specific collection, checking that the result is the same. */
for(int i=0; i "Error (" + level + ", " + seed + m + t + "): ! m.equals(t) after polymorphic addAll");
ensure(t.equals(m), () -> "Error (" + level + ", " + seed + m + t + "): ! t.equals(m) after polymorphic addAll");
}
if (m.size() > n) {
m.size(n);
while(t.size() != n) t.remove(t.size() -1);
}
/* Now we add random data in m and t using addAll on a list, checking that the result is the same. */
for(int i=0; i n) {
m.size(n);
while(t.size() != n) t.remove(t.size() -1);
}
/* Now we check that m actually holds the same data. */
for(Iterator i=t.iterator(); i.hasNext();) {
ensure(m.contains(i.next()), "Error (" + level + ", " + seed + "): m and t differ on an entry after removal (iterating on t)");
}
/* Now we check that m actually holds that data, but iterating on m. */
for(Iterator i=m.listIterator(); i.hasNext();) {
ensure(t.contains(i.next()), "Error (" + level + ", " + seed + "): m and t differ on an entry after removal (iterating on m)");
}
/* Now we check that both sets agree on random keys. For m we use the standard method. */
for(int i = 0; i < n; i++) {
int p = r.nextInt() % (n * 2);
mThrowsOutOfBounds = tThrowsOutOfBounds = null;
try {
m.get(p);
}
catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }
try {
t.get(p);
}
catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }
ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + level + ", " + seed + "): get() divergence in IndexOutOfBoundsException for index " + p + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")");
if (mThrowsOutOfBounds == null) ensure(t.get(p).equals(m.get(p)), "Error (" + level + ", " + seed + "): m and t differ on position " + p + " (" + m.get(p) + ", " + t.get(p) +")");
}
/* Now we inquiry about the content with indexOf()/lastIndexOf(). */
for(int i=0; i<10*n; i++) {
KEY_TYPE T = genKey();
ensure(m.indexOf(KEY2OBJ(T)) == t.indexOf(KEY2OBJ(T)),
"Error (" + level + ", " + seed + "): indexOf() divergence for " + T + " (" + m.indexOf(KEY2OBJ(T)) + ", " + t.indexOf(KEY2OBJ(T)) + ")");
ensure(m.lastIndexOf(KEY2OBJ(T)) == t.lastIndexOf(KEY2OBJ(T)),
"Error (" + level + ", " + seed + "): lastIndexOf() divergence for " + T + " (" + m.lastIndexOf(KEY2OBJ(T)) + ", " + t.lastIndexOf(KEY2OBJ(T)) + ")");
ensure(m.indexOf(T) == t.indexOf(KEY2OBJ(T)),
"Error (" + level + ", " + seed + "): polymorphic indexOf() divergence for " + T + " (" + m.indexOf(T) + ", " + t.indexOf(KEY2OBJ(T)) + ")");
ensure(m.lastIndexOf(T) == t.lastIndexOf(KEY2OBJ(T)),
"Error (" + level + ", " + seed + "): polymorphic lastIndexOf() divergence for " + T + " (" + m.lastIndexOf(T) + ", " + t.lastIndexOf(KEY2OBJ(T)) + ")");
}
/* Now we check cloning. */
if (level == 0) {
ensure(m.equals(((ARRAY_LIST)m).clone()), "Error (" + level + ", " + seed + "): m does not equal m.clone()");
ensure(((ARRAY_LIST)m).clone().equals(m), "Error (" + level + ", " + seed + "): m.clone() does not equal m");
}
/* Now we play with constructors. */
ensure(m.equals(new ARRAY_LIST((Collection)m)), "Error (" + level + ", " + seed + "): m does not equal new (Collection m)");
ensure((new ARRAY_LIST((Collection)m)).equals(m), "Error (" + level + ", " + seed + "): new (Collection m)does not equal m");
ensure(m.equals(new ARRAY_LIST(new java.util.ArrayList(m))), "Error (" + level + ", " + seed + "): m does not equal new (Collection m)");
ensure((new ARRAY_LIST(new java.util.ArrayList(m)).equals(m)), "Error (" + level + ", " + seed + "): new (Collection m)does not equal m");
ensure(m.equals(new ARRAY_LIST((COLLECTION)m)), "Error (" + level + ", " + seed + "): m does not equal new (type-specific Collection m)");
ensure((new ARRAY_LIST((COLLECTION)m)).equals(m), "Error (" + level + ", " + seed + "): new (type-specific Collection m) does not equal m");
ensure(m.equals(new ARRAY_LIST((LIST)m)), "Error (" + level + ", " + seed + "): m does not equal new (type-specific List m)");
ensure((new ARRAY_LIST((LIST)m)).equals(m), "Error (" + level + ", " + seed + "): new (type-specific List m) does not equal m");
ensure(m.equals(new ARRAY_LIST(m.listIterator())), "Error (" + level + ", " + seed + "): m does not equal new (m.listIterator())");
ensure((new ARRAY_LIST(m.listIterator())).equals(m), "Error (" + level + ", " + seed + "): new (m.listIterator()) does not equal m");
ensure(m.equals(new ARRAY_LIST(m.iterator())), "Error (" + level + ", " + seed + "): m does not equal new (m.type_specific_iterator())");
ensure((new ARRAY_LIST(m.iterator())).equals(m), "Error (" + level + ", " + seed + "): new (m.type_specific_iterator()) does not equal m");
/* Now we play with conversion to array, wrapping and copying. */
ensure(m.equals(new ARRAY_LIST(m.TO_KEY_ARRAY())), "Error (" + level + ", " + seed + "): m does not equal new (toArray(m))");
ensure((new ARRAY_LIST(m.TO_KEY_ARRAY())).equals(m), "Error (" + level + ", " + seed + "): new (toArray(m)) does not equal m");
ensure(m.equals(wrap(m.TO_KEY_ARRAY())), "Error (" + level + ", " + seed + "): m does not equal wrap (toArray(m))");
ensure((wrap(m.TO_KEY_ARRAY())).equals(m), "Error (" + level + ", " + seed + "): wrap (toArray(m)) does not equal m");
int h = m.hashCode();
/* Now we save and read m. */
LIST m2 = null;
{
java.io.File ff = new java.io.File("it.unimi.dsi.fastutil.test." + m.getClass().getSimpleName() + "." + n);
java.io.OutputStream os = new java.io.FileOutputStream(ff);
java.io.ObjectOutputStream oos = new java.io.ObjectOutputStream(os);
oos.writeObject(m);
oos.close();
java.io.InputStream is = new java.io.FileInputStream(ff);
java.io.ObjectInputStream ois = new java.io.ObjectInputStream(is);
m2 = (LIST)ois.readObject();
ois.close();
ff.delete();
}
#if ! KEYS_USE_REFERENCE_EQUALITY
ensure(m2.hashCode() == h, "Error (" + level + ", " + seed + "): hashCode() changed after save/read");
/* Now we check that m2 actually holds that data. */
ensure(m2.equals(t), "Error (" + level + ", " + seed + "): ! m2.equals(t) after save/read");
ensure(t.equals(m2), "Error (" + level + ", " + seed + "): ! t.equals(m2) after save/read");
/* Now we take out of m everything, and check that it is empty. */
for(Iterator i=t.iterator(); i.hasNext();) m2.remove(i.next());
ensure(m2.isEmpty(), "Error (" + level + ", " + seed + "): m2 is not empty (as it should be)");
#endif
/* Now we play with iterators. */
{
KEY_LIST_ITERATOR i;
java.util.ListIterator j;
Object J;
i = m.listIterator();
j = t.listIterator();
for(int k = 0; k < 2*n; k++) {
ensure(i.hasNext() == j.hasNext(), "Error (" + level + ", " + seed + "): divergence in hasNext()");
ensure(i.hasPrevious() == j.hasPrevious(), "Error (" + level + ", " + seed + "): divergence in hasPrevious()");
if (r.nextFloat() < .8 && i.hasNext()) {
ensure(i.next().equals(J = j.next()), "Error (" + level + ", " + seed + "): divergence in next()");
if (r.nextFloat() < 0.2) {
i.remove();
j.remove();
}
else if (r.nextFloat() < 0.2) {
KEY_TYPE T = genKey();
i.set(T);
j.set(KEY2OBJ(T));
}
else if (r.nextFloat() < 0.2) {
KEY_TYPE T = genKey();
i.add(T);
j.add(KEY2OBJ(T));
}
}
else if (r.nextFloat() < .2 && i.hasPrevious()) {
ensure(i.previous().equals(J = j.previous()), "Error (" + level + ", " + seed + "): divergence in previous()");
if (r.nextFloat() < 0.2) {
i.remove();
j.remove();
}
else if (r.nextFloat() < 0.2) {
KEY_TYPE T = genKey();
i.set(T);
j.set(KEY2OBJ(T));
}
else if (r.nextFloat() < 0.2) {
KEY_TYPE T = genKey();
i.add(T);
j.add(KEY2OBJ(T));
}
}
ensure(i.nextIndex() == j.nextIndex(), "Error (" + level + ", " + seed + "): divergence in nextIndex()");
ensure(i.previousIndex() == j.previousIndex(), "Error (" + level + ", " + seed + "): divergence in previousIndex()");
}
}
/* Now we play with spliterators.
*
* Or rather we would, except comparing results of spliterators directly is a bit painful.
* However, there is an easy workaround; use streams, which are built on Spliterators.
*/
{
#if KEYS_REFERENCE
java.util.stream.Stream i = m.stream();
java.util.stream.Stream j = t.stream();
#elif KEY_CLASS_Boolean
java.util.stream.Stream i = m.stream();
java.util.stream.Stream j = t.stream();
#else
JDK_PRIMITIVE_STREAM i = m.KEY_WIDENED_STREAM_METHOD();
java.util.stream.Stream j = t.stream();
#endif
if (PARALLEL_STREAMS) {
i = i.parallel();
j = j.parallel();
}
#if KEYS_REFERENCE || KEY_CLASS_Boolean
Object[] iArray = i.toArray();
Object[] jArray = j.toArray();
#elif KEY_CLASS_Character
KEY_TYPE_WIDENED[] iArray = i.toArray();
KEY_TYPE_WIDENED[] jArray = j.MAP_TO_KEY_WIDENED(c -> (int)c.charValue()).toArray();
#else
KEY_TYPE_WIDENED[] iArray = i.toArray();
KEY_TYPE_WIDENED[] jArray = j.MAP_TO_KEY_WIDENED(Number::KEY_WIDENED_VALUE).toArray();
#endif
ensure(java.util.Arrays.equals(iArray, jArray), "Error (" + level + ", " + seed + "): divergence in toArray() from streams (" + java.util.Arrays.toString(iArray) + " != " + java.util.Arrays.toString(jArray) + ")");
}
{
Object previous = null;
Object I, J;
int from = r.nextInt(m.size() +1);
KEY_LIST_ITERATOR i;
java.util.ListIterator j;
i = m.listIterator(from);
j = t.listIterator(from);
for(int k = 0; k < 2*n; k++) {
ensure(i.hasNext() == j.hasNext(), "Error (" + level + ", " + seed + "): divergence in hasNext() (iterator with starting point " + from + ")");
ensure(i.hasPrevious() == j.hasPrevious() , "Error (" + level + ", " + seed + "): divergence in hasPrevious() (iterator with starting point " + from + ")");
if (r.nextFloat() < .8 && i.hasNext()) {
ensure((I = i.next()).equals(J = j.next()), "Error (" + level + ", " + seed + "): divergence in next() (" + I + ", " + J + ", iterator with starting point " + from + ")");
//System.err.println("Done next " + I + " " + J + " " + badPrevious);
if (r.nextFloat() < 0.2) {
//System.err.println("Removing in next");
i.remove();
j.remove();
}
else if (r.nextFloat() < 0.2) {
KEY_TYPE T = genKey();
i.set(T);
j.set(KEY2OBJ(T));
}
else if (r.nextFloat() < 0.2) {
KEY_TYPE T = genKey();
i.add(T);
j.add(KEY2OBJ(T));
}
}
else if (r.nextFloat() < .2 && i.hasPrevious()) {
ensure((I = i.previous()).equals(J = j.previous()), "Error (" + level + ", " + seed + "): divergence in previous() (" + I + ", " + J + ", iterator with starting point " + from + ")");
if (r.nextFloat() < 0.2) {
//System.err.println("Removing in prev");
i.remove();
j.remove();
}
else if (r.nextFloat() < 0.2) {
KEY_TYPE T = genKey();
i.set(T);
j.set(KEY2OBJ(T));
}
else if (r.nextFloat() < 0.2) {
KEY_TYPE T = genKey();
i.add(T);
j.add(KEY2OBJ(T));
}
}
}
}
/* Now we check that m actually holds that data. */
ensure(m.equals(t), "Error (" + level + ", " + seed + "): ! m.equals(t) after iteration");
ensure(t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals(m) after iteration");
/* Now we select a pair of keys and create a subset. */
if (! m.isEmpty()) {
int start = r.nextInt(m.size());
int end = start + r.nextInt(m.size() - start);
//System.err.println("Checking subList from " + start + " to " + end + " (level=" + (level+1) + ")...");
testLists(m.subList(start, end), t.subList(start, end), n, level + 1);
ensure(m.equals(t), () -> "Error (" + level + ", " + seed + m + t + "): ! m.equals(t) after subList");
ensure(t.equals(m), () -> "Error (" + level + ", " + seed + "): ! t.equals(m) after subList");
}
m.clear();
t.clear();
ensure(m.isEmpty(), "Error (" + level + ", " + seed + "): m is not empty after clear()");
}
protected static void runTest(int n) throws Exception {
ARRAY_LIST m = new ARRAY_LIST();
java.util.ArrayList t = new java.util.ArrayList();
topList = m;
k = new Object[n];
nk = new Object[n];
kt = new KEY_TYPE[n];
nkt = new KEY_TYPE[n];
for(int i = 0; i < n; i++) {
#if KEYS_REFERENCE
k[i] = kt[i] = genKey();
nk[i] = nkt[i] = genKey();
#else
k[i] = new KEY_CLASS(kt[i] = genKey());
nk[i] = new KEY_CLASS(nkt[i] = genKey());
#endif
}
/* We add pairs to t. */
for(int i = 0; i < n; i++) t.add(k[i]);
/* We add to m the same data */
m.addAll(t);
testLists(m, t, n, 0);
System.out.println("Test OK");
return;
}
public static void main(String args[]) throws Exception {
int n = Integer.parseInt(args[1]);
if (args.length > 2) r = new java.util.Random(seed = Long.parseLong(args[2]));
try {
if ("speedTest".equals(args[0]) || "speedComp".equals(args[0])) speedTest(n, "speedComp".equals(args[0]));
else if ("test".equals(args[0])) runTest(n);
} catch(Throwable e) {
e.printStackTrace(System.err);
System.err.println("seed: " + seed);
throw e;
}
}
#endif
}