All Downloads are FREE. Search and download functionalities are using the official Maven repository.

drv.BigArrayBigList.drv Maven / Gradle / Ivy

Go to download

fastutil extends the Java Collections Framework by providing type-specific maps, sets, lists, and queues with a small memory footprint and fast operations; it provides also big (64-bit) arrays, sets, and lists, sorting algorithms, fast, practical I/O classes for binary and text files, and facilities for memory mapping large files. This jar (fastutil-core.jar) contains data structures based on integers, longs, doubles, and objects, only; fastutil.jar contains all classes. If you have both jars in your dependencies, this jar should be excluded.

There is a newer version: 8.5.15
Show newest version
/*
 * Copyright (C) 2002-2022 Sebastiano Vigna
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */


package PACKAGE;

import java.util.Collection;
import java.util.Iterator;
import java.util.RandomAccess;
import java.util.NoSuchElementException;
import it.unimi.dsi.fastutil.BigArrays;
import static it.unimi.dsi.fastutil.BigArrays.length;
import it.unimi.dsi.fastutil.BigList;
import it.unimi.dsi.fastutil.Size64;
#if KEYS_REFERENCE
import java.util.function.Consumer;
import java.util.stream.Collector;
#endif

#if KEYS_PRIMITIVE

/** A type-specific big list based on a big array; provides some additional methods that use polymorphism to avoid (un)boxing.
 *
 * 

This class implements a lightweight, fast, open, optimized, * reuse-oriented version of big-array-based big lists. Instances of this class * represent a big list with a big array that is enlarged as needed when new entries * are created (by increasing its current length by 50%), but is * never made smaller (even on a {@link #clear()}). A family of * {@linkplain #trim() trimming methods} lets you control the size of the * backing big array; this is particularly useful if you reuse instances of this class. * Range checks are equivalent to those of {@link java.util}'s classes, but * they are delayed as much as possible. The backing big array is exposed by the * {@link #elements()} method. * *

This class implements the bulk methods {@code removeElements()}, * {@code addElements()} and {@code getElements()} using * high-performance system calls (e.g., {@link * System#arraycopy(Object,int,Object,int,int) System.arraycopy()}) instead of * expensive loops. * * @see java.util.ArrayList */ public class BIG_ARRAY_BIG_LIST KEY_GENERIC extends ABSTRACT_BIG_LIST KEY_GENERIC implements RandomAccess, Cloneable, java.io.Serializable { private static final long serialVersionUID = -7046029254386353130L; #else /** A type-specific big-array-based big list; provides some additional methods that use polymorphism to avoid (un)boxing. * *

This class implements a lightweight, fast, open, optimized, * reuse-oriented version of big-array-based big lists. Instances of this class * represent a big list with a big array that is enlarged as needed when new entries * are created (by increasing its current length to 50%), but is * never made smaller (even on a {@link #clear()}). A family of * {@linkplain #trim() trimming methods} lets you control the size of the * backing big array; this is particularly useful if you reuse instances of this class. * Range checks are equivalent to those of {@link java.util}'s classes, but * they are delayed as much as possible. * *

The backing big array is exposed by the {@link #elements()} method. If an instance * of this class was created {@linkplain #wrap(Object[][],long) by wrapping}, * backing-array reallocations will be performed using reflection, so that * {@link #elements()} can return a big array of the same type of the original big array; the comments * about efficiency made in {@link it.unimi.dsi.fastutil.objects.ObjectArrays} apply here. * *

This class implements the bulk methods {@code removeElements()}, * {@code addElements()} and {@code getElements()} using * high-performance system calls (e.g., {@link * System#arraycopy(Object,int,Object,int,int) System.arraycopy()}) instead of * expensive loops. * * @see java.util.ArrayList */ public class BIG_ARRAY_BIG_LIST KEY_GENERIC extends ABSTRACT_BIG_LIST KEY_GENERIC implements RandomAccess, Cloneable, java.io.Serializable { private static final long serialVersionUID = -7046029254386353131L; #endif /** The initial default capacity of a big-array big list. */ public static final int DEFAULT_INITIAL_CAPACITY = 10; #if ! KEYS_PRIMITIVE /** Whether the backing big array was passed to {@code wrap()}. In * this case, we must reallocate with the same type of big array. */ protected final boolean wrapped; #endif /** The backing big array. */ protected transient KEY_GENERIC_TYPE a[][]; /** The current actual size of the big list (never greater than the backing-array length). */ protected long size; /** Creates a new big-array big list using a given array. * *

This constructor is only meant to be used by the wrapping methods. * * @param a the big array that will be used to back this big-array big list. */ protected BIG_ARRAY_BIG_LIST(final KEY_GENERIC_TYPE a[][], @SuppressWarnings("unused") boolean dummy) { this.a = a; #if ! KEYS_PRIMITIVE this.wrapped = true; #endif } /** Creates a new big-array big list with given capacity. * * @param capacity the initial capacity of the array list (may be 0). */ SUPPRESS_WARNINGS_KEY_UNCHECKED public BIG_ARRAY_BIG_LIST(final long capacity) { if (capacity < 0) throw new IllegalArgumentException("Initial capacity (" + capacity + ") is negative"); if (capacity == 0) a = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.EMPTY_BIG_ARRAY; else a = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.newBigArray(capacity); #if ! KEYS_PRIMITIVE wrapped = false; #endif } /** Creates a new big-array big list with {@link #DEFAULT_INITIAL_CAPACITY} capacity. */ SUPPRESS_WARNINGS_KEY_UNCHECKED public BIG_ARRAY_BIG_LIST() { a = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.DEFAULT_EMPTY_BIG_ARRAY; // We delay allocation #if ! KEYS_PRIMITIVE wrapped = false; #endif } /** Creates a new big-array big list and fills it with a given type-specific collection. * * @param c a type-specific collection that will be used to fill the array list. */ public BIG_ARRAY_BIG_LIST(final COLLECTION KEY_EXTENDS_GENERIC c) { this(Size64.sizeOf(c)); if (c instanceof BIG_LIST) { ((BIG_LIST KEY_EXTENDS_GENERIC)c).getElements(0, a, 0, size = Size64.sizeOf(c)); } else { for(KEY_ITERATOR KEY_EXTENDS_GENERIC i = c.iterator(); i.hasNext();) add(i.NEXT_KEY()); } } #if KEYS_REFERENCE /** Creates a new big-array big list and fills it with a given collection. * * @param c a collection that will be used to fill the array list. */ public BIG_ARRAY_BIG_LIST(final Collection KEY_EXTENDS_GENERIC c) { this(Size64.sizeOf(c)); if (c instanceof BIG_LIST) { ((BIG_LIST KEY_EXTENDS_GENERIC)c).getElements(0, a, 0, size = Size64.sizeOf(c)); } else { for(Iterator KEY_EXTENDS_GENERIC i = c.iterator(); i.hasNext();) add(i.next()); } } #endif /** Creates a new big-array big list and fills it with a given type-specific list. * * @param l a type-specific list that will be used to fill the array list. */ public BIG_ARRAY_BIG_LIST(final BIG_LIST KEY_EXTENDS_GENERIC l) { this(l.size64()); l.getElements(0, a, 0, size = l.size64()); } /** Creates a new big-array big list and fills it with the elements of a given big array. * * @param a a big array whose elements will be used to fill the array list. */ public BIG_ARRAY_BIG_LIST(final KEY_GENERIC_TYPE a[][]) { this(a, 0, length(a)); } /** Creates a new big-array big list and fills it with the elements of a given big array. * * @param a a big array whose elements will be used to fill the array list. * @param offset the first element to use. * @param length the number of elements to use. */ public BIG_ARRAY_BIG_LIST(final KEY_GENERIC_TYPE a[][], final long offset, final long length) { this(length); BigArrays.copy(a, offset, this.a, 0, length); size = length; } /** Creates a new big-array big list and fills it with the elements returned by an iterator.. * * @param i an iterator whose returned elements will fill the array list. */ public BIG_ARRAY_BIG_LIST(final Iterator i) { this(); while(i.hasNext()) this.add(KEY_CLASS2TYPE(i.next())); } /** Creates a new big-array big list and fills it with the elements returned by a type-specific iterator.. * * @param i a type-specific iterator whose returned elements will fill the array list. */ public BIG_ARRAY_BIG_LIST(final KEY_ITERATOR KEY_EXTENDS_GENERIC i) { this(); while(i.hasNext()) this.add(i.NEXT_KEY()); } #if KEYS_PRIMITIVE /** Returns the backing big array of this big list. * * @return the backing big array. */ public KEY_GENERIC_TYPE[][] elements() { return a; } #else /** Returns the backing big array of this big list. * *

If this big-array big list was created by wrapping a given big array, it is guaranteed * that the type of the returned big array will be the same. Otherwise, the returned * big array will be an big array of objects. * * @return the backing big array. */ public KEY_GENERIC_TYPE[][] elements() { return a; } #endif /** Wraps a given big array into a big-array list of given size. * * @param a a big array to wrap. * @param length the length of the resulting big-array list. * @return a new big-array list of the given size, wrapping the given big array. */ public static KEY_GENERIC BIG_ARRAY_BIG_LIST KEY_GENERIC wrap(final KEY_GENERIC_TYPE a[][], final long length) { if (length > length(a)) throw new IllegalArgumentException("The specified length (" + length + ") is greater than the array size (" + length(a) + ")"); final BIG_ARRAY_BIG_LIST KEY_GENERIC l = new BIG_ARRAY_BIG_LIST KEY_GENERIC_DIAMOND(a, false); l.size = length; return l; } /** Wraps a given big array into a big-array big list. * * @param a a big array to wrap. * @return a new big-array big list wrapping the given array. */ public static KEY_GENERIC BIG_ARRAY_BIG_LIST KEY_GENERIC wrap(final KEY_GENERIC_TYPE a[][]) { return wrap(a, length(a)); } /** Creates a new empty big array list. * * @return a new empty big-array big list. */ public static KEY_GENERIC BIG_ARRAY_BIG_LIST KEY_GENERIC of() { return new BIG_ARRAY_BIG_LIST KEY_GENERIC_DIAMOND(); } /** Creates a big array list using a list of elements. * * @param init a list of elements that will be used to initialize the big list. * It is possible (but not assured) that the returned big-array big list will be * backed by the given array in one of its segments. * @return a new big-array big list containing the given elements. * @see BigArrays#wrap */ SAFE_VARARGS public static KEY_GENERIC BIG_ARRAY_BIG_LIST KEY_GENERIC of(final KEY_GENERIC_TYPE... init) { return wrap(BigArrays.wrap(init)); } #if KEYS_INT_LONG_DOUBLE /** Collects the result of a primitive {@code Stream} into a new BigArrayBigList. * *

This method performs a terminal operation on the given {@code Stream} * * @apiNote Taking a primitive stream instead of returning something like a * {@link java.util.stream.Collector Collector} is necessary because there is no * primitive {@code Collector} equivalent in the Java API. */ public static KEY_GENERIC BIG_ARRAY_BIG_LIST KEY_GENERIC toBigList(JDK_PRIMITIVE_STREAM stream) { return stream.collect( BIG_ARRAY_BIG_LIST::new, BIG_ARRAY_BIG_LIST::add, BIG_ARRAY_BIG_LIST::addAll); } /** Collects the result of a primitive {@code Stream} into a new BigArrayBigList. * *

This method performs a terminal operation on the given {@code Stream} * * @apiNote Taking a primitive stream instead returning something like a * {@link java.util.stream.Collector Collector} is necessary because there is no * primitive {@code Collector} equivalent in the Java API. * @implNote The current implementation preallocates the full size for every worker thread when used on parallel streams. * This can be quite wasteful, as worker threads other then the first don't usually handle the contents of the full stream. */ public static KEY_GENERIC BIG_ARRAY_BIG_LIST KEY_GENERIC toBigListWithExpectedSize(JDK_PRIMITIVE_STREAM stream, long expectedSize) { return stream.collect( () -> new BIG_ARRAY_BIG_LIST KEY_GENERIC(expectedSize), BIG_ARRAY_BIG_LIST::add, BIG_ARRAY_BIG_LIST::addAll); } #elif KEYS_REFERENCE // Collector wants a function that returns the collection being added to. private BIG_ARRAY_BIG_LIST KEY_GENERIC combine(BIG_ARRAY_BIG_LIST KEY_EXTENDS_GENERIC toAddFrom) { addAll(toAddFrom); return this; } private static final Collector> TO_LIST_COLLECTOR = Collector.of( BIG_ARRAY_BIG_LIST::new, BIG_ARRAY_BIG_LIST::add, BIG_ARRAY_BIG_LIST::combine); /** Returns a {@link Collector} that collects a {@code Stream}'s elements into a new ArrayList. */ SUPPRESS_WARNINGS_KEY_UNCHECKED_RAWTYPES public static KEY_GENERIC Collector toBigList() { return (Collector) TO_LIST_COLLECTOR; } /** * Returns a {@link Collector} that collects a {@code Stream}'s elements into a new ArrayList. * * @implNote The current implementation preallocates the full size for every worker thread when used on parallel streams. * This can be quite wasteful, as worker threads other then the first don't usually handle the contents of the full stream. */ public static KEY_GENERIC Collector toBigListWithExpectedSize(long expectedSize) { return Collector.of( () -> new BIG_ARRAY_BIG_LIST KEY_GENERIC(expectedSize), BIG_ARRAY_BIG_LIST::add, BIG_ARRAY_BIG_LIST::combine); } #endif /** Ensures that this big-array big list can contain the given number of entries without resizing. * * @param capacity the new minimum capacity for this big-array big list. */ SUPPRESS_WARNINGS_KEY_UNCHECKED public void ensureCapacity(final long capacity) { if (capacity <= length(a) || a == BIG_ARRAYS.DEFAULT_EMPTY_BIG_ARRAY) return; #if KEYS_PRIMITIVE a = BigArrays.forceCapacity(a, capacity, size); #else if (wrapped) a = BigArrays.forceCapacity(a, capacity, size); else { if (capacity > length(a)) { final Object t[][] = BIG_ARRAYS.newBigArray(capacity); BigArrays.copy(a, 0, t, 0, size); a = (KEY_GENERIC_TYPE[][])t; } } #endif assert size <= length(a); } /** Grows this big-array big list, ensuring that it can contain the given number of entries without resizing, * and in case increasing current capacity at least by a factor of 50%. * * @param capacity the new minimum capacity for this big-array big list. */ SUPPRESS_WARNINGS_KEY_UNCHECKED private void grow(long capacity) { final long oldLength = length(a); if (capacity <= oldLength) return; if (a != BIG_ARRAYS.DEFAULT_EMPTY_BIG_ARRAY) capacity = Math.max(oldLength + (oldLength >> 1), capacity); else if (capacity < DEFAULT_INITIAL_CAPACITY) capacity = DEFAULT_INITIAL_CAPACITY; #if KEYS_PRIMITIVE a = BigArrays.forceCapacity(a, capacity, size); #else if (wrapped) a = BigArrays.forceCapacity(a, capacity, size); else { final Object t[][] = BIG_ARRAYS.newBigArray(capacity); BigArrays.copy(a, 0, t, 0, size); a = (KEY_GENERIC_TYPE[][])t; } #endif assert size <= length(a); } @Override public void add(final long index, final KEY_GENERIC_TYPE k) { ensureIndex(index); grow(size + 1); if (index != size) BigArrays.copy(a, index, a, index + 1, size - index); BigArrays.set(a, index, k); size++; assert size <= length(a); } @Override public boolean add(final KEY_GENERIC_TYPE k) { grow(size + 1); BigArrays.set(a, size++, k); assert size <= length(a); return true; } @Override public KEY_GENERIC_TYPE GET_KEY(final long index) { if (index >= size) throw new IndexOutOfBoundsException("Index (" + index + ") is greater than or equal to list size (" + size + ")"); return BigArrays.get(a, index); } @Override public long indexOf(final KEY_TYPE k) { for(long i = 0; i < size; i++) if (KEY_EQUALS(k, BigArrays.get(a, i))) return i; return -1; } @Override public long lastIndexOf(final KEY_TYPE k) { for(long i = size; i-- != 0;) if (KEY_EQUALS(k, BigArrays.get(a, i))) return i; return -1; } @Override public KEY_GENERIC_TYPE REMOVE_KEY(final long index) { if (index >= size) throw new IndexOutOfBoundsException("Index (" + index + ") is greater than or equal to list size (" + size + ")"); final KEY_GENERIC_TYPE old = BigArrays.get(a, index); size--; if (index != size) BigArrays.copy(a, index + 1, a, index, size - index); #if KEYS_REFERENCE BigArrays.set(a, size, null); #endif assert size <= length(a); return old; } @Override public boolean REMOVE(final KEY_TYPE k) { final long index = indexOf(k); if (index == -1) return false; REMOVE_KEY(index); assert size <= length(a); return true; } @Override public KEY_GENERIC_TYPE set(final long index, final KEY_GENERIC_TYPE k) { if (index >= size) throw new IndexOutOfBoundsException("Index (" + index + ") is greater than or equal to list size (" + size + ")"); KEY_GENERIC_TYPE old = BigArrays.get(a, index); BigArrays.set(a, index, k); return old; } #if KEYS_PRIMITIVE @Override public boolean removeAll(final COLLECTION c) { KEY_GENERIC_TYPE[] s = null, d = null; int ss = -1, sd = BigArrays.SEGMENT_SIZE, ds = -1, dd = BigArrays.SEGMENT_SIZE; for (long i = 0; i < size; i++) { if (sd == BigArrays.SEGMENT_SIZE) { sd = 0; s = a[++ss]; } if (!c.contains(s[sd])) { if (dd == BigArrays.SEGMENT_SIZE) { d = a[++ds]; dd = 0; } d[dd++] = s[sd]; } sd++; } final long j = BigArrays.index(ds, dd); #if KEYS_REFERENCE BigArrays.fill(a, j, size, null); #endif final boolean modified = size != j; size = j; return modified; } #endif @Override public boolean removeAll(final Collection c) { KEY_GENERIC_TYPE[] s = null, d = null; int ss = -1, sd = BigArrays.SEGMENT_SIZE, ds = -1, dd = BigArrays.SEGMENT_SIZE; for (long i = 0; i < size; i++) { if (sd == BigArrays.SEGMENT_SIZE) { sd = 0; s = a[++ss]; } if (!c.contains(KEY2OBJ(s[sd]))) { if (dd == BigArrays.SEGMENT_SIZE) { d = a[++ds]; dd = 0; } d[dd++] = s[sd]; } sd++; } final long j = BigArrays.index(ds, dd); #if KEYS_REFERENCE BigArrays.fill(a, j, size, null); #endif final boolean modified = size != j; size = j; return modified; } @Override public boolean addAll(long index, final STD_KEY_COLLECTION KEY_EXTENDS_GENERIC c) { if (c instanceof LIST) { return addAll(index, (LIST KEY_EXTENDS_GENERIC)c); } if (c instanceof BIG_LIST) { return addAll(index, (BIG_LIST KEY_EXTENDS_GENERIC)c); } ensureIndex(index); int n = c.size(); if (n == 0) return false; grow(size + n); BigArrays.copy(a, index, a, index + n, size - index); final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i = c.iterator(); size += n; assert size <= length(a); while(n-- != 0) BigArrays.set(a, index++, i.NEXT_KEY()); return true; } @Override public boolean addAll(final long index, final BIG_LIST KEY_EXTENDS_GENERIC list) { ensureIndex(index); final long n = list.size64(); if (n == 0) return false; grow(size + n); BigArrays.copy(a, index, a, index + n, size - index); list.getElements(0, a, index, n); size += n; assert size <= length(a); return true; } @Override public boolean addAll(final long index, final LIST KEY_EXTENDS_GENERIC list) { ensureIndex(index); int n = list.size(); if (n == 0) return false; grow(size + n); BigArrays.copy(a, index, a, index + n, size - index); size += n; assert size <= length(a); int segment = BigArrays.segment(index); int displ = BigArrays.displacement(index); int pos = 0; while(n > 0) { final int l = Math.min(a[segment].length - displ, n); list.getElements(pos, a[segment], displ, l); if ((displ += l) == BigArrays.SEGMENT_SIZE) { displ = 0; segment++; } pos += l; n -= l; } return true; } @Override public void clear() { #if KEYS_REFERENCE BigArrays.fill(a, 0, size, null); #endif size = 0; assert size <= length(a); } @Override public long size64() { return size; } @Override public void size(final long size) { if (size > length(a)) a = BigArrays.forceCapacity(a, size, this.size); if (size > this.size) BigArrays.fill(a, this.size, size, KEY_NULL); #if KEYS_REFERENCE else BigArrays.fill(a, size, this.size, KEY_NULL); #endif this.size = size; } @Override public boolean isEmpty() { return size == 0; } /** Trims this big-array big list so that the capacity is equal to the size. * * @see java.util.ArrayList#trimToSize() */ public void trim() { trim(0); } /** Trims the backing big array if it is too large. * * If the current big array length is smaller than or equal to * {@code n}, this method does nothing. Otherwise, it trims the * big-array length to the maximum between {@code n} and {@link #size64()}. * *

This method is useful when reusing big lists. {@linkplain #clear() Clearing a * big list} leaves the big-array length untouched. If you are reusing a big list * many times, you can call this method with a typical * size to avoid keeping around a very large big array just * because of a few large transient big lists. * * @param n the threshold for the trimming. */ public void trim(final long n) { final long arrayLength = length(a); if (n >= arrayLength || size == arrayLength) return; a = BigArrays.trim(a, Math.max(n, size)); assert size <= length(a); } private class SubList extends ABSTRACT_BIG_LIST.SUBLIST_RANDOM_ACCESS KEY_GENERIC { private static final long serialVersionUID = -3185226345314976296L; protected SubList(long from, long to) { super(BIG_ARRAY_BIG_LIST.this, from, to); } // Needed because we can't access the parent class' instance variables directly in a different instance of SubList. private KEY_GENERIC_TYPE[][] getParentArray() { return a; } // Most of the inherited methods should be fine, but we can override a few of them for performance. @Override public KEY_GENERIC_TYPE GET_KEY(long i) { ensureRestrictedIndex(i); return BigArrays.get(a, i + from); } private final class SubListIterator extends BIG_LIST_ITERATORS.AbstractIndexBasedBigListIterator KEY_GENERIC { // We are using pos == 0 to be 0 relative to SubList.from (meaning you need to do a[from + i] when accessing array). SubListIterator(long index) { super(0, index); } @Override protected final KEY_GENERIC_TYPE get(long i) { return BigArrays.get(a, from + i); } @Override protected final void add(long i, KEY_GENERIC_TYPE k) { SubList.this.add(i, k); } @Override protected final void set(long i, KEY_GENERIC_TYPE k) { SubList.this.set(i, k); } @Override protected final void remove(long i) { SubList.this.REMOVE_KEY(i); } @Override protected final long getMaxPos() { return to - from; } @Override public KEY_GENERIC_TYPE NEXT_KEY() { if (! hasNext()) throw new NoSuchElementException(); return BigArrays.get(a, from + (lastReturned = pos++)); } @Override public KEY_GENERIC_TYPE PREV_KEY() { if (! hasPrevious()) throw new NoSuchElementException(); return BigArrays.get(a, from + (lastReturned = --pos)); } @Override public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) { final long max = to - from; while(pos < max) { action.accept(BigArrays.get(a, from + (lastReturned = pos++))); } } } @Override public KEY_BIG_LIST_ITERATOR KEY_GENERIC listIterator(long index) { return new SubListIterator(index); } private final class SubListSpliterator extends BIG_SPLITERATORS.LateBindingSizeIndexBasedSpliterator KEY_GENERIC { // We are using pos == 0 to be 0 relative to real array 0 SubListSpliterator() { super(from); } private SubListSpliterator(long pos, long maxPos) { super(pos, maxPos); } @Override protected final long getMaxPosFromBackingStore() { return to; } @Override protected final KEY_GENERIC_TYPE get(long i) { return BigArrays.get(a, i); } @Override protected final SubListSpliterator makeForSplit(long pos, long maxPos) { return new SubListSpliterator(pos, maxPos); } @Override protected final long computeSplitPoint() { long defaultSplit = super.computeSplitPoint(); // Align to outer array starting point if possible. // We add/subtract one to the bounds to ensure the new pos will always shrink the range return BigArrays.nearestSegmentStart(defaultSplit, pos + 1, getMaxPos() - 1); } @Override public boolean tryAdvance(final METHOD_ARG_KEY_CONSUMER action) { if (pos >= getMaxPos()) return false; action.accept(BigArrays.get(a, pos++)); return true; } @Override public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) { final long max = getMaxPos(); while(pos < max) { action.accept(BigArrays.get(a, pos++)); } } } @Override public KEY_SPLITERATOR KEY_GENERIC spliterator() { return new SubListSpliterator(); } boolean contentsEquals(KEY_GENERIC_TYPE[][] otherA, long otherAFrom, long otherATo) { if (a == otherA && from == otherAFrom && to == otherATo) return true; if (otherATo - otherAFrom != size64()) { return false; } long pos = to, otherPos = otherATo; // We have already assured that the two ranges are the same size, so we only need to check one bound. // If BigArrays.equals ever gets an overload that accepts bounds, use that instead // (but make sure to break out the reference equality case). #if KEY_CLASS_Object while(--pos >= from) if (! java.util.Objects.equals(BigArrays.get(a, pos), BigArrays.get(otherA, --otherPos))) return false; #else while(--pos >= from) if (BigArrays.get(a, pos) != BigArrays.get(otherA, --otherPos)) return false; #endif return true; } @Override public boolean equals(Object o) { if (o == this) return true; if (o == null) return false; if (!(o instanceof BigList)) return false; if (o instanceof BIG_ARRAY_BIG_LIST) { SUPPRESS_WARNINGS_KEY_UNCHECKED BIG_ARRAY_BIG_LIST KEY_GENERIC other = (BIG_ARRAY_BIG_LIST KEY_GENERIC) o; return contentsEquals(other.a, 0, other.size64()); } if (o instanceof BIG_ARRAY_BIG_LIST.SubList) { SUPPRESS_WARNINGS_KEY_UNCHECKED BIG_ARRAY_BIG_LIST KEY_GENERIC.SubList other = (BIG_ARRAY_BIG_LIST KEY_GENERIC.SubList) o; return contentsEquals(other.getParentArray(), other.from, other.to); } return super.equals(o); } #if ! KEYS_USE_REFERENCE_EQUALITY SUPPRESS_WARNINGS_KEY_UNCHECKED int contentsCompareTo(KEY_GENERIC_TYPE[][] otherA, long otherAFrom, long otherATo) { #if KEYS_PRIMITIVE // Can't make this assumption for reference types in case we have a goofy Comparable that doesn't compare itself equal if (a == otherA && from == otherAFrom && to == otherATo) return 0; #endif // TODO When minimum version of Java becomes Java 9, use Arrays.compare, which vectorizes. KEY_GENERIC_TYPE e1, e2; int r; long i, j; for(i = from, j = otherAFrom; i < to && i < otherATo; i++, j++) { e1 = BigArrays.get(a, i); e2 = BigArrays.get(otherA, j); if ((r = KEY_CMP(e1, e2)) != 0) return r; } return i < otherATo ? -1 : (i < to ? 1 : 0); } SUPPRESS_WARNINGS_KEY_UNCHECKED @Override public int compareTo(final BigList l) { if (l instanceof BIG_ARRAY_BIG_LIST) { SUPPRESS_WARNINGS_KEY_UNCHECKED BIG_ARRAY_BIG_LIST KEY_GENERIC other = (BIG_ARRAY_BIG_LIST KEY_GENERIC) l; return contentsCompareTo(other.a, 0, other.size64()); } if (l instanceof BIG_ARRAY_BIG_LIST.SubList) { SUPPRESS_WARNINGS_KEY_UNCHECKED BIG_ARRAY_BIG_LIST KEY_GENERIC.SubList other = (BIG_ARRAY_BIG_LIST KEY_GENERIC.SubList) l; return contentsCompareTo(other.getParentArray(), other.from, other.to); } return super.compareTo(l); } #endif // We don't override subList as we want AbstractList's "sub-sublist" nesting handling, // which would be tricky to do here. // TODO Do override it so array access isn't sent through N indirections. // This will likely mean making this class static. } @Override public BIG_LIST KEY_GENERIC subList(long from, long to) { if (from == 0 && to == size64()) return this; ensureIndex(from); ensureIndex(to); if (from > to) throw new IndexOutOfBoundsException("Start index (" + from + ") is greater than end index (" + to + ")"); return new SubList(from, to); } /** Copies element of this type-specific list into the given big array using optimized system calls. * * @param from the start index (inclusive). * @param a the destination big array. * @param offset the offset into the destination array where to store the first element copied. * @param length the number of elements to be copied. */ @Override public void getElements(final long from, final KEY_TYPE[][] a, final long offset, final long length) { BigArrays.copy(this.a, from, a, offset, length); } /** Copies element of this type-specific list into the given array using optimized system calls. * * @param from the start index (inclusive). * @param a the destination array. * @param offset the offset into the destination array where to store the first element copied. * @param length the number of elements to be copied. */ @Override public void getElements(final long from, final KEY_TYPE[] a, final int offset, final int length) { BigArrays.copyFromBig(this.a, from, a, offset, length); } /** Removes elements of this type-specific list using optimized system calls. * * @param from the start index (inclusive). * @param to the end index (exclusive). */ @Override public void removeElements(final long from, final long to) { BigArrays.ensureFromTo(size, from, to); BigArrays.copy(a, to, a, from, size - to); size -= (to - from); #if KEYS_REFERENCE BigArrays.fill(a, size, size + to - from, null); #endif } /** Adds elements to this type-specific list using optimized system calls. * * @param index the index at which to add elements. * @param a the big array containing the elements. * @param offset the offset of the first element to add. * @param length the number of elements to add. */ @Override public void addElements(final long index, final KEY_GENERIC_TYPE a[][], final long offset, final long length) { ensureIndex(index); BigArrays.ensureOffsetLength(a, offset, length); grow(size + length); BigArrays.copy(this.a, index, this.a, index + length, size - index); BigArrays.copy(a, offset, this.a, index, length); size += length; } /** Copies elements in the given big array into this type-specific list using optimized system calls. * * @param index the start index (inclusive). * @param a the destination big array. * @param offset the offset into the destination array where to store the first element copied. * @param length the number of elements to be copied. */ @Override public void setElements(final long index, final KEY_TYPE[][] a, final long offset, final long length) { BigArrays.copy(a, offset, this.a, index, length); } @Override public void forEach(final METHOD_ARG_KEY_CONSUMER action) { for (long i = 0; i < size; ++i) { action.accept(BigArrays.get(a, i)); } } @Override public KEY_BIG_LIST_ITERATOR KEY_GENERIC listIterator(final long index) { ensureIndex(index); return new KEY_BIG_LIST_ITERATOR KEY_GENERIC() { long pos = index, last = -1; @Override public boolean hasNext() { return pos < size; } @Override public boolean hasPrevious() { return pos > 0; } @Override public KEY_GENERIC_TYPE NEXT_KEY() { if (! hasNext()) throw new NoSuchElementException(); return BigArrays.get(a, last = pos++); } @Override public KEY_GENERIC_TYPE PREV_KEY() { if (! hasPrevious()) throw new NoSuchElementException(); return BigArrays.get(a, last = --pos); } @Override public long nextIndex() { return pos; } @Override public long previousIndex() { return pos - 1; } @Override public void add(KEY_GENERIC_TYPE k) { BIG_ARRAY_BIG_LIST.this.add(pos++, k); last = -1; } @Override public void set(KEY_GENERIC_TYPE k) { if (last == -1) throw new IllegalStateException(); BIG_ARRAY_BIG_LIST.this.set(last, k); } @Override public void remove() { if (last == -1) throw new IllegalStateException(); BIG_ARRAY_BIG_LIST.this.REMOVE_KEY(last); /* If the last operation was a next(), we are removing an element *before* us, and we must decrease pos correspondingly. */ if (last < pos) pos--; last = -1; } @Override public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) { while (pos < size) { action.accept(BigArrays.get(a, last = pos++)); } } @Override public long back(long n) { if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n); final long remaining = size - pos; if (n < remaining) { pos -= n; } else { n = remaining; pos = 0; } last = pos; return n; } @Override public long skip(long n) { if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n); final long remaining = size - pos; if (n < remaining) { pos += n; } else { n = remaining; pos = size; } last = pos - 1; return n; } }; } private final class Spliterator implements KEY_SPLITERATOR KEY_GENERIC { // Until we split, we will track the size of the list. // Once we split, then we stop updating on structural modifications. // Aka, size is late-binding. boolean hasSplit = false; long pos, max; #ifdef TEST // Sentinel to make sure we don't accidentally use size when we mean max @Deprecated private final Object size = null; #endif public Spliterator() { this(0, BIG_ARRAY_BIG_LIST.this.size, false); } private Spliterator(long pos, long max, boolean hasSplit) { assert pos <= max : "pos " + pos + " must be <= max " + max; this.pos = pos; this.max = max; this.hasSplit = hasSplit; } private long getWorkingMax() { return hasSplit ? max : BIG_ARRAY_BIG_LIST.this.size; } @Override public int characteristics() { return SPLITERATORS.LIST_SPLITERATOR_CHARACTERISTICS; } @Override public long estimateSize() { return getWorkingMax() - pos; } @Override public boolean tryAdvance(final METHOD_ARG_KEY_CONSUMER action) { if (pos >= getWorkingMax()) return false; action.accept(BigArrays.get(a, pos++)); return true; } @Override public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) { for (final long max = getWorkingMax(); pos < max; ++pos) { action.accept(BigArrays.get(a, pos)); } } @Override public long skip(long n) { if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n); final long max = getWorkingMax(); if (pos >= max) return 0; final long remaining = max - pos; if (n < remaining) { pos += n; return n; } n = remaining; pos = max; return n; } @Override public KEY_SPLITERATOR KEY_GENERIC trySplit() { final long max = getWorkingMax(); long retLen = (max - pos) >> 1; if (retLen <= 1) return null; // Update instance max with the last seen list size (if needed) before continuing this.max = max; long myNewPos = pos + retLen; // Align to an outer array boundary if possible // We add/subtract one to the bounds to ensure the new pos will always shrink the range myNewPos = BigArrays.nearestSegmentStart(myNewPos, pos + 1, max - 1); long retMax = myNewPos; long oldPos = pos; this.pos = myNewPos; this.hasSplit = true; return new Spliterator(oldPos, retMax, true); } } @Override public KEY_SPLITERATOR KEY_GENERIC spliterator() { return new Spliterator(); } SUPPRESS_WARNINGS_KEY_UNCHECKED @Override public BIG_ARRAY_BIG_LIST KEY_GENERIC clone() { BIG_ARRAY_BIG_LIST KEY_GENERIC c; // Test for fastpath we can do if exactly an BigArrayBigList if (getClass() == BIG_ARRAY_BIG_LIST.class) { c = new BIG_ARRAY_BIG_LIST KEY_GENERIC_DIAMOND(size); c.size = size; } else { try { c = (BIG_ARRAY_BIG_LIST KEY_GENERIC)super.clone(); } catch (CloneNotSupportedException e) { // Can't happen throw new InternalError(e); } c.a = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.newBigArray(size); } BigArrays.copy(a, 0, c.a, 0, size); return c; } /** Compares this type-specific big-array list to another one. * *

This method exists only for sake of efficiency. The implementation * inherited from the abstract implementation would already work. * * @param l a type-specific big-array list. * @return true if the argument contains the same elements of this type-specific big-array list. */ public boolean equals(final BIG_ARRAY_BIG_LIST KEY_GENERIC l) { if (l == this) return true; long s = size64(); if (s != l.size64()) return false; final KEY_GENERIC_TYPE[][] a1 = a; final KEY_GENERIC_TYPE[][] a2 = l.a; // Already checked s == l.size64 above if (a1 == a2) return true; // Backwards loop is faster then forwards loop, at least in Java 8 and below. #if KEY_CLASS_Object while(s-- != 0) if (! java.util.Objects.equals(BigArrays.get(a1, s), BigArrays.get(a2, s))) return false; #else while(s-- != 0) if (BigArrays.get(a1, s) != BigArrays.get(a2, s)) return false; #endif return true; } #if KEYS_PRIMITIVE @SuppressWarnings("unlikely-arg-type" ) #else @SuppressWarnings({ "unchecked", "unlikely-arg-type" }) #endif @Override public boolean equals(final Object o) { if (o == this) return true; if (o == null) return false; if (!(o instanceof BigList)) return false; if (o instanceof BIG_ARRAY_BIG_LIST) { // Safe cast because we are only going to take elements from other list, never give them return equals((BIG_ARRAY_BIG_LIST KEY_GENERIC) o); } if (o instanceof BIG_ARRAY_BIG_LIST.SubList) { // Safe cast because we are only going to take elements from other list, never give them // Sublist has an optimized sub-array based comparison, reuse that. return ((BIG_ARRAY_BIG_LIST KEY_GENERIC.SubList)o).equals(this); } return super.equals(o); } #if ! KEYS_USE_REFERENCE_EQUALITY /** Compares this big list to another big list. * *

This method exists only for sake of efficiency. The implementation * inherited from the abstract implementation would already work. * * @param l a big list. * @return a negative integer, * zero, or a positive integer as this big list is lexicographically less than, equal * to, or greater than the argument. */ SUPPRESS_WARNINGS_KEY_UNCHECKED public int compareTo(final BIG_ARRAY_BIG_LIST KEY_EXTENDS_GENERIC l) { final long s1 = size64(), s2 = l.size64(); final KEY_GENERIC_TYPE a1[][] = a, a2[][] = l.a; #if KEYS_PRIMITIVE // Can't make this assumption for reference types in case we have a goofy Comparable that doesn't compare itself equal if (a1 == a2 && s1 == s2) return 0; #endif KEY_GENERIC_TYPE e1, e2; int r, i; for(i = 0; i < s1 && i < s2; i++) { e1 = BigArrays.get(a1, i); e2 = BigArrays.get(a2, i); if ((r = KEY_CMP(e1, e2)) != 0) return r; } return i < s2 ? -1 : (i < s1 ? 1 : 0); } SUPPRESS_WARNINGS_KEY_UNCHECKED @Override public int compareTo(final BigList l) { if (l instanceof BIG_ARRAY_BIG_LIST) { return compareTo((BIG_ARRAY_BIG_LIST KEY_EXTENDS_GENERIC)l); } if (l instanceof BIG_ARRAY_BIG_LIST.SubList) { // Must negate because we are inverting the order of the comparison. return -((BIG_ARRAY_BIG_LIST KEY_GENERIC.SubList) l).compareTo(this); } return super.compareTo(l); } #endif private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { s.defaultWriteObject(); for(int i = 0; i < size; i++) s.WRITE_KEY(BigArrays.get(a, i)); } SUPPRESS_WARNINGS_KEY_UNCHECKED private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); a = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.newBigArray(size); for(int i = 0; i < size; i++) BigArrays.set(a, i, KEY_GENERIC_CAST s.READ_KEY()); } #ifdef TEST private static long seed = System.currentTimeMillis(); private static java.util.Random r = new java.util.Random(seed); private static KEY_TYPE genKey() { #if KEY_CLASS_Byte || KEY_CLASS_Short || KEY_CLASS_Character return (KEY_TYPE)(r.nextInt()); #elif KEYS_PRIMITIVE return r.NEXT_KEY(); #elif KEY_CLASS_Object return Integer.toBinaryString(r.nextInt()); #else return new java.io.Serializable() {}; #endif } private static java.text.NumberFormat format = new java.text.DecimalFormat("#,###.00"); private static java.text.FieldPosition p = new java.text.FieldPosition(0); private static String format(double d) { StringBuffer s = new StringBuffer(); return format.format(d, s, p).toString(); } private static void speedTest(int n, boolean comp) { System.out.println("There are presently no speed tests for this class."); } private static void fatal(String msg) { throw new AssertionError(msg); } private static void ensure(boolean cond, String msg) { if (cond) return; fatal(msg); } private static void ensure(boolean cond, java.util.function.Supplier msgSupplier) { if (cond) return; fatal(msgSupplier.get()); } private static Object[] k, v, nk; private static KEY_TYPE kt[]; private static KEY_TYPE nkt[]; private static BIG_ARRAY_BIG_LIST topList; protected static void testLists(BIG_LIST m, BIG_LIST t, int n, int level) throws Exception { long ms; Exception mThrowsIllegal, tThrowsIllegal, mThrowsOutOfBounds, tThrowsOutOfBounds; Object rt = null; KEY_TYPE rm = KEY_NULL; if (level > 4) return; /* Now we check that both sets agree on random keys. For m we use the polymorphic method. */ for(int i = 0; i < n; i++) { int p = r.nextInt() % (n * 2); KEY_TYPE T = genKey(); mThrowsOutOfBounds = tThrowsOutOfBounds = null; try { m.set(p, T); } catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; } try { t.set(p, KEY2OBJ(T)); } catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; } ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + level + ", " + seed + "): set() divergence at start in IndexOutOfBoundsException for index " + p + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")"); if (mThrowsOutOfBounds == null) ensure(t.get(p).equals(KEY2OBJ(m.GET_KEY(p))), "Error (" + level + ", " + seed + "): m and t differ after set() on position " + p + " (" + m.GET_KEY(p) + ", " + t.get(p) + ")"); p = r.nextInt() % (n * 2); mThrowsOutOfBounds = tThrowsOutOfBounds = null; try { m.GET_KEY(p); } catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; } try { t.get(p); } catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; } ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + level + ", " + seed + "): get() divergence at start in IndexOutOfBoundsException for index " + p + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")"); if (mThrowsOutOfBounds == null) ensure(t.get(p).equals(KEY2OBJ(m.GET_KEY(p))), "Error (" + level + ", " + seed + "): m and t differ aftre get() on position " + p + " (" + m.GET_KEY(p) + ", " + t.get(p) + ")"); } /* Now we check that both sets agree on random keys. For m we use the standard method. */ for(int i = 0; i < n; i++) { int p = r.nextInt() % (n * 2); mThrowsOutOfBounds = tThrowsOutOfBounds = null; try { m.get(p); } catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; } try { t.get(p); } catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; } ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + level + ", " + seed + "): get() divergence at start in IndexOutOfBoundsException for index " + p + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")"); if (mThrowsOutOfBounds == null) ensure(t.get(p).equals(m.get(p)), "Error (" + level + ", " + seed + "): m and t differ at start on position " + p + " (" + m.get(p) + ", " + t.get(p) + ")"); } /* Now we check that m and t are equal. */ if (!m.equals(t) || ! t.equals(m)) System.err.println("m: " + m + " t: " + t); ensure(m.equals(t), "Error (" + level + ", " + seed + "): ! m.equals(t) at start"); ensure(t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals(m) at start"); /* Now we check that m actually holds that data. */ for(Iterator i=t.iterator(); i.hasNext();) { ensure(m.contains(i.next()), "Error (" + level + ", " + seed + "): m and t differ on an entry after insertion (iterating on t)"); } /* Now we check that m actually holds that data, but iterating on m. */ for(Iterator i=m.listIterator(); i.hasNext();) { ensure(t.contains(i.next()), "Error (" + level + ", " + seed + "): m and t differ on an entry after insertion (iterating on m)"); } /* Now we check that inquiries about random data give the same answer in m and t. For m we use the polymorphic method. */ for(int i=0; i "Error (" + level + ", " + seed + m + t + "): ! m.equals(t) after addAll"); ensure(t.equals(m), () -> "Error (" + level + ", " + seed + m + t + "): ! t.equals(m) after addAll"); } if (m.size64() > n) { m.size(n); while(t.size64() != n) t.remove(t.size64() -1); } /* Now we add random data in m and t using addAll on a type-specific collection, checking that the result is the same. */ for(int i=0; i "Error (" + level + ", " + seed + m + t + "): ! m.equals(t) after polymorphic addAll"); ensure(t.equals(m), () -> "Error (" + level + ", " + seed + m + t + "): ! t.equals(m) after polymorphic addAll"); } if (m.size64() > n) { m.size(n); while(t.size64() != n) t.remove(t.size64() -1); } /* Now we add random data in m and t using addAll on a list, checking that the result is the same. */ for(int i=0; i i = m.parallelStream(); java.util.stream.Stream j = t.parallelStream(); #elif KEY_CLASS_Boolean java.util.stream.Stream i = m.parallelStream(); java.util.stream.Stream j = t.parallelStream(); #else JDK_PRIMITIVE_STREAM i = m.KEY_WIDENED_PARALLEL_STREAM_METHOD(); java.util.stream.Stream j = t.parallelStream(); #endif #if KEYS_REFERENCE || KEY_CLASS_Boolean Object[] iArray = i.toArray(); Object[] jArray = j.toArray(); #elif KEY_CLASS_Character KEY_TYPE_WIDENED[] iArray = i.toArray(); KEY_TYPE_WIDENED[] jArray = j.MAP_TO_KEY_WIDENED(c -> (int)c.charValue()).toArray(); #else KEY_TYPE_WIDENED[] iArray = i.toArray(); KEY_TYPE_WIDENED[] jArray = j.MAP_TO_KEY_WIDENED(Number::KEY_WIDENED_VALUE).toArray(); #endif ensure(java.util.Arrays.equals(iArray, jArray), "Error (" + level + ", " + seed + "): divergence in toArray() from streams (" + java.util.Arrays.toString(iArray) + " != " + java.util.Arrays.toString(jArray) + ")"); } { Object previous = null; Object I, J; long from = m.isEmpty() ? 0 : (r.nextLong() & 0x7FFFFFFFFFFFFFFFL) % m.size64(); KEY_BIG_LIST_ITERATOR i; KEY_BIG_LIST_ITERATOR j; i = m.listIterator(from); j = t.listIterator(from); for(int k = 0; k < 2*n; k++) { ensure(i.hasNext() == j.hasNext(), "Error (" + level + ", " + seed + "): divergence in hasNext() (iterator with starting point " + from + ")"); ensure(i.hasPrevious() == j.hasPrevious() , "Error (" + level + ", " + seed + "): divergence in hasPrevious() (iterator with starting point " + from + ")"); if (r.nextFloat() < .8 && i.hasNext()) { ensure((I = i.next()).equals(J = j.next()), "Error (" + level + ", " + seed + "): divergence in next() (" + I + ", " + J + ", iterator with starting point " + from + ")"); //System.err.println("Done next " + I + " " + J + " " + badPrevious); if (r.nextFloat() < 0.2) { //System.err.println("Removing in next"); i.remove(); j.remove(); } else if (r.nextFloat() < 0.2) { KEY_TYPE T = genKey(); i.set(T); j.set(KEY2OBJ(T)); } else if (r.nextFloat() < 0.2) { KEY_TYPE T = genKey(); i.add(T); j.add(KEY2OBJ(T)); } } else if (r.nextFloat() < .2 && i.hasPrevious()) { ensure((I = i.previous()).equals(J = j.previous()), "Error (" + level + ", " + seed + "): divergence in previous() (" + I + ", " + J + ", iterator with starting point " + from + ")"); if (r.nextFloat() < 0.2) { //System.err.println("Removing in prev"); i.remove(); j.remove(); } else if (r.nextFloat() < 0.2) { KEY_TYPE T = genKey(); i.set(T); j.set(KEY2OBJ(T)); } else if (r.nextFloat() < 0.2) { KEY_TYPE T = genKey(); i.add(T); j.add(KEY2OBJ(T)); } } } } /* Now we check that m actually holds that data. */ ensure(m.equals(t), "Error (" + level + ", " + seed + "): ! m.equals(t) after iteration"); ensure(t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals(m) after iteration"); /* Now we select a pair of keys and create a subset. */ if (! m.isEmpty()) { long start = (r.nextLong() & 0x7FFFFFFFFFFFFFFFL) % m.size64(); long end = start + (r.nextLong() & 0x7FFFFFFFFFFFFFFFL) % (m.size64() - start); //System.err.println("Checking subList from " + start + " to " + end + " (level=" + (level+1) + ")..."); testLists(m.subList(start, end), t.subList(start, end), n, level + 1); ensure(m.equals(t), () -> "Error (" + level + ", " + seed + m + t + "): ! m.equals(t) after subList"); ensure(t.equals(m), () -> "Error (" + level + ", " + seed + "): ! t.equals(m) after subList"); } m.clear(); t.clear(); ensure(m.isEmpty(), "Error (" + level + ", " + seed + "): m is not empty after clear()"); } protected static void runTest(int n) throws Exception { BIG_ARRAY_BIG_LIST m = new BIG_ARRAY_BIG_LIST(); BIG_LIST t = BIG_LISTS.asBigList(new ARRAY_LIST()); topList = m; k = new Object[n]; nk = new Object[n]; kt = new KEY_TYPE[n]; nkt = new KEY_TYPE[n]; for(int i = 0; i < n; i++) { #if KEYS_REFERENCE k[i] = kt[i] = genKey(); nk[i] = nkt[i] = genKey(); #else k[i] = new KEY_CLASS(kt[i] = genKey()); nk[i] = new KEY_CLASS(nkt[i] = genKey()); #endif } /* We add pairs to t. */ #if KEYS_PRIMITIVE for(int i = 0; i < n; i++) t.add((KEY_GENERIC_CLASS)k[i]); #else for(int i = 0; i < n; i++) t.add(k[i]); #endif /* We add to m the same data */ m.addAll(t); testLists(m, t, n, 0); System.out.println("Test OK"); return; } public static void main(String args[]) throws Exception { int n = Integer.parseInt(args[1]); if (args.length > 2) r = new java.util.Random(seed = Long.parseLong(args[2])); try { if ("speedTest".equals(args[0]) || "speedComp".equals(args[0])) speedTest(n, "speedComp".equals(args[0])); else if ("test".equals(args[0])) runTest(n); } catch(Throwable e) { e.printStackTrace(System.err); System.err.println("seed: " + seed); throw e; } } #endif }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy