drv.Collection.drv Maven / Gradle / Ivy
Show all versions of fastutil-core Show documentation
/*
* Copyright (C) 2002-2022 Sebastiano Vigna
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package PACKAGE;
import java.util.Collection;
import static it.unimi.dsi.fastutil.Size64.sizeOf;
#if KEYS_BYTE_CHAR_SHORT_FLOAT
import WIDENED_PACKAGE.KEY_WIDENED_ITERATOR;
import WIDENED_PACKAGE.KEY_WIDENED_SPLITERATOR;
#endif
#if KEYS_USE_REFERENCE_EQUALITY
/** A type-specific {@link Collection}; provides some additional methods
* that use polymorphism to avoid (un)boxing.
*
* Additionally, this class defines strengthens (again) {@link #iterator()}.
*
* @see Collection
*/
#else
/** A type-specific {@link Collection}; provides some additional methods
* that use polymorphism to avoid (un)boxing.
*
*
Additionally, this class defines strengthens (again) {@link #iterator()}.
*
*
This interface specifies reference equality semantics (members will be compared equal with
* {@code ==} instead of {@link Object#equals(Object) equals}), which may result in breaks in contract
* if attempted to be used with non reference-equality semantics based {@link Collection}s. For example, a
* {@code aReferenceCollection.equals(aObjectCollection)} may return different a different result then
* {@code aObjectCollection.equals(aReferenceCollection)}, in violation of {@link Object#equals equals}'s
* contract requiring it being symmetric.
*
* @see Collection
*/
#endif
public interface COLLECTION KEY_GENERIC extends Collection, KEY_ITERABLE KEY_GENERIC {
/** Returns a type-specific iterator on the elements of this collection.
*
* @apiNote This specification strengthens the one given in
* {@link java.lang.Iterable#iterator()}, which was already
* strengthened in the corresponding type-specific class,
* but was weakened by the fact that this interface extends {@link Collection}.
*
* @return a type-specific iterator on the elements of this collection.
*/
@Override
KEY_ITERATOR KEY_GENERIC iterator();
#if KEYS_PRIMITIVE && !KEY_CLASS_Boolean
#if KEYS_INT_LONG_DOUBLE
/** Returns a primitive iterator on the elements of this collection.
*
*
This method is identical to {@link #iterator()}, as the type-specific
* iterator is already compatible with the JDK's primitive iterators.
* It only exists for compatibility with the other primitive types' {@code Collection}s
* that have use for widened iterators.
*
* @return a primitive iterator on the elements of this collection.
* @since 8.5.0
*/
@Override
default KEY_WIDENED_ITERATOR KEY_WIDENED_ITERATOR_METHOD() { return iterator(); }
#else
#if KEY_CLASS_Character
/**
* Returns a widened primitive iterator on the elements of this collection.
*
*
This method is provided for the purpose of APIs that expect only the JDK's
* primitive iterators, of which there are only {@code int}, {@code long}, and {@code double}.
*
*
WARNING: This is not the same as converting the source to a sequence
* of code points. This returned instance literally performs {@code (int)(charValue)} casts.
* Surrogate pairs will be left as separate elements instead of combined into a single element
* with the code point it represents. See {@link Character} for more discussion on code points,
* char values, and surrogate pairs.
*
* @return a widened primitive iterator on the elements of this collection.
* @since 8.5.0
*/
#else
/**
* Returns a widened primitive iterator on the elements of this collection.
*
*
This method is provided for the purpose of APIs that expect only the JDK's
* primitive iterators, of which there are only {@code int}, {@code long}, and {@code double}.
*
* @return a widened primitive iterator on the elements of this collection.
* @since 8.5.0
*/
#endif
@Override
default KEY_WIDENED_ITERATOR KEY_WIDENED_ITERATOR_METHOD() {
return KEY_ITERABLE.super.KEY_WIDENED_ITERATOR_METHOD();
}
#endif
#endif
// If you change these default spliterator methods, you will likely need to update Iterable, List, Set, and SortedSet too
/** Returns a type-specific spliterator on the elements of this collection.
*
*
See {@link java.util.Collection#spliterator()} for more documentation on the requirements
* of the returned spliterator.
*
* @apiNote This specification strengthens the one given in
* {@link java.util.Collection#spliterator()}.
*
Also, this is generally the only {@code spliterator} method subclasses should override.
*
* @implSpec The default implementation returns a late-binding spliterator (see
* {@link java.util.Spliterator Spliterator} for documentation on what binding policies mean)
* that wraps this instance's type specific {@link #iterator}.
*
Additionally, it reports {@link java.util.Spliterator#SIZED Spliterator.SIZED}
*
* @implNote As this default implementation wraps the iterator, and {@link java.util.Iterator}
* is an inherently linear API, the returned spliterator will yield limited performance gains
* when run in parallel contexts, as the returned spliterator's
* {@link java.util.Spliterator#trySplit() trySplit()} will have linear runtime.
*
* @return a type-specific spliterator on the elements of this collection.
* @since 8.5.0
*/
@Override
#if SPLITERATOR_ASSURE_OVERRIDE
abstract KEY_SPLITERATOR KEY_GENERIC spliterator();
#else
default KEY_SPLITERATOR KEY_GENERIC spliterator() {
return SPLITERATORS.asSpliterator(
iterator(), sizeOf(this), SPLITERATORS.COLLECTION_SPLITERATOR_CHARACTERISTICS);
}
#endif
#if KEYS_PRIMITIVE && !KEY_CLASS_Boolean
#if KEYS_INT_LONG_DOUBLE
/** Returns a primitive spliterator on the elements of this collection.
*
*
This method is identical to {@link #spliterator()}, as the type-specific
* spliterator is already compatible with the JDK's primitive spliterators.
* It only exists for compatibility with the other primitive types' {@code Collection}s
* that have use for widened spliterators.
*
* @return a primitive spliterator on the elements of this collection.
* @since 8.5.0
*/
@Override
default KEY_WIDENED_SPLITERATOR KEY_WIDENED_SPLITERATOR_METHOD() { return spliterator(); }
#else
#if KEY_CLASS_Character
/** Returns widened primitive spliterator on the elements of this collection.
*
*
This method is provided for the purpose of APIs that expect only the JDK's
* primitive spliterators, of which there are only {@code int}, {@code long}, and {@code double}.
*
*
WARNING: This is not the same as converting the source to a sequence
* of code points. This returned instance literally performs {@code (int)(charValue)} casts.
* Surrogate pairs will be left as separate elements instead of combined into a single element
* with the code point it represents. See {@link Character} for more discussion on code points,
* char values, and surrogate pairs.
*
* @return a widened primitive spliterator on the elements of this collection.
* @since 8.5.0
*/
#else
/** Returns widened primitive spliterator on the elements of this collection.
*
*
This method is provided for the purpose of APIs that expect only the JDK's
* primitive spliterators, of which there are only {@code int}, {@code long}, and {@code double}.
*
* @return a widened primitive spliterator on the elements of this collection.
* @since 8.5.0
*/
#endif
@Override
default KEY_WIDENED_SPLITERATOR KEY_WIDENED_SPLITERATOR_METHOD() {
return KEY_ITERABLE.super.KEY_WIDENED_SPLITERATOR_METHOD();
}
#endif
#endif
#if KEYS_PRIMITIVE
/** Ensures that this collection contains the specified element (optional operation).
* @see Collection#add(Object)
*/
boolean add(KEY_TYPE key);
/** Returns {@code true} if this collection contains the specified element.
* @see Collection#contains(Object)
*/
boolean contains(KEY_TYPE key);
/** Removes a single instance of the specified element from this
* collection, if it is present (optional operation).
*
*
Note that this method should be called {@link java.util.Collection#remove(Object) remove()}, but the clash
* with the similarly named index-based method in the {@link java.util.List} interface
* forces us to use a distinguished name. For simplicity, the set interfaces reinstates
* {@code remove()}.
*
* @see Collection#remove(Object)
*/
boolean rem(KEY_TYPE key);
/** {@inheritDoc}
* @deprecated Please use the corresponding type-specific method instead.
*/
@Deprecated
@Override
default boolean add(final KEY_GENERIC_CLASS key) {
return add(KEY_CLASS2TYPE(key));
}
/** {@inheritDoc}
* @deprecated Please use the corresponding type-specific method instead.
*/
@Deprecated
@Override
default boolean contains(final Object key) {
if (key == null) return false;
return contains(KEY_OBJ2TYPE(key));
}
/** {@inheritDoc}
* @deprecated Please use (and implement) the {@code rem()} method instead.
*/
@Deprecated
@Override
default boolean remove(final Object key) {
if (key == null) return false;
return rem(KEY_OBJ2TYPE(key));
}
/** Returns a primitive type array containing the items of this collection.
* @return a primitive type array containing the items of this collection.
* @see Collection#toArray()
*/
KEY_TYPE[] TO_KEY_ARRAY();
/** Returns a primitive type array containing the items of this collection.
*
*
Note that, contrarily to {@link Collection#toArray(Object[])}, this
* methods just writes all elements of this collection: no special
* value will be added after the last one.
*
* @param a if this array is big enough, it will be used to store this collection.
* @return a primitive type array containing the items of this collection.
* @see Collection#toArray(Object[])
* @deprecated Please use {@code toArray()} instead—this method is redundant and will be removed in the future.
*/
@Deprecated
default KEY_TYPE[] TO_KEY_ARRAY(KEY_TYPE a[]) {
return toArray(a);
}
/** Returns an array containing all of the elements in this collection; the runtime type of the returned array is that of the specified array.
*
*
Note that, contrarily to {@link Collection#toArray(Object[])}, this
* methods just writes all elements of this collection: no special
* value will be added after the last one.
*
* @param a if this array is big enough, it will be used to store this collection.
* @return a primitive type array containing the items of this collection.
* @see Collection#toArray(Object[])
*/
KEY_TYPE[] toArray(KEY_TYPE a[]);
/** Adds all elements of the given type-specific collection to this collection.
*
* @param c a type-specific collection.
* @see Collection#addAll(Collection)
* @return {@code true} if this collection changed as a result of the call.
*/
boolean addAll(COLLECTION c);
/** Checks whether this collection contains all elements from the given type-specific collection.
*
* @param c a type-specific collection.
* @see Collection#containsAll(Collection)
* @return {@code true} if this collection contains all elements of the argument.
*/
boolean containsAll(COLLECTION c);
/** Remove from this collection all elements in the given type-specific collection.
*
* @param c a type-specific collection.
* @see Collection#removeAll(Collection)
* @return {@code true} if this collection changed as a result of the call.
*/
boolean removeAll(COLLECTION c);
/** {@inheritDoc}
* @deprecated Please use the corresponding type-specific method instead.
*/
@Deprecated
@Override
default boolean removeIf(final java.util.function.Predicate super KEY_GENERIC_CLASS> filter) {
return removeIf(
filter instanceof METHOD_ARG_PREDICATE ?
((METHOD_ARG_PREDICATE) filter) :
(METHOD_ARG_PREDICATE) key -> filter.test(KEY2OBJ(KEY_NARROWING(key))));
}
/** Remove from this collection all elements which satisfy the given predicate.
*
* @param filter a predicate which returns {@code true} for elements to be
* removed.
* @see Collection#removeIf(java.util.function.Predicate)
* @return {@code true} if any elements were removed.
* @apiNote Implementing classes should generally override this method, and take the default
* implementation of the other overloads which will delegate to this method (after proper
* conversions).
*/
default boolean removeIf(final METHOD_ARG_PREDICATE filter) {
java.util.Objects.requireNonNull(filter);
boolean removed = false;
final KEY_ITERATOR each = iterator();
while (each.hasNext()) {
if (filter.test(each.NEXT_KEY())) {
each.remove();
removed = true;
}
}
return removed;
}
#if KEYS_INT_LONG_DOUBLE
// Because our primitive Predicate interface extends both the JDK's primitive
// and object Predicate interfaces, calling this method with it would be ambiguous.
// This overload exists to pass it to the proper primitive overload.
/** Remove from this collection all elements which satisfy the given predicate.
*
*
WARNING: Overriding this method is almost always a mistake, as this
* overload only exists to disambiguate. Instead, override the {@code removeIf()} overload
* that uses the JDK's primitive predicate type (e.g. {@link java.util.function.IntPredicate}).
*
*
If Java supported final default methods, this would be one, but sadly it does not.
*
*
If you checked and are overriding the version with {@code java.util.function.XPredicate}, and
* still see this warning, then your IDE is incorrectly conflating this method with the proper
* method to override, and you can safely ignore this message.
*
* @param filter a predicate which returns {@code true} for elements to be
* removed.
* @see Collection#removeIf(java.util.function.Predicate)
* @return {@code true} if any elements were removed.
*/
default boolean removeIf(final KEY_PREDICATE filter) {
return removeIf((JDK_PRIMITIVE_PREDICATE) filter);
}
#elif KEYS_BYTE_CHAR_SHORT_FLOAT
/** Remove from this collection all elements which satisfy the given predicate.
*
* @param filter a predicate which returns {@code true} for elements to be
* removed.
* @see Collection#removeIf(java.util.function.Predicate)
* @return {@code true} if any elements were removed.
* @implNote Unless the argument is type-specific, this method will introduce an intermediary
* lambda to perform widening casts. Please use the type-specific overload to avoid this overhead.
*/
@SuppressWarnings("overloads")
default boolean removeIf(final JDK_PRIMITIVE_PREDICATE filter) {
return removeIf(filter instanceof KEY_PREDICATE ? (KEY_PREDICATE) filter : (KEY_PREDICATE) filter::test);
}
#endif
/** Retains in this collection only elements from the given type-specific collection.
*
* @param c a type-specific collection.
* @see Collection#retainAll(Collection)
* @return {@code true} if this collection changed as a result of the call.
*/
boolean retainAll(COLLECTION c);
#if !KEY_CLASS_Boolean
/** {@inheritDoc}
* @deprecated Please use the corresponding type-specific method instead.
*/
@Deprecated
@Override
default java.util.stream.Stream stream() { return Collection.super.stream(); }
#if KEY_CLASS_Character
/** Return a primitive stream over the elements, performing widening casts if needed.
*
* WARNING: This is not the same as converting the source to a sequence
* of code points. This returned instance literally performs {@code (int)(charValue)} casts.
* Surrogate pairs will be left as separate elements instead of combined into a single element
* with the code point it represents. See {@link Character} for more discussion on code points,
* char values, and surrogate pairs.
*
* @return a primitive stream over the elements.
* @see Collection#stream()
* @see java.util.stream.IntStream
*/
#else
/** Return a primitive stream over the elements, performing widening casts if needed.
* @return a primitive stream over the elements.
* @see Collection#stream()
* @see java.util.stream.IntStream
*/
#endif
default JDK_PRIMITIVE_STREAM KEY_WIDENED_STREAM_METHOD() {
return java.util.stream.StreamSupport.KEY_WIDENED_STREAM_METHOD(KEY_WIDENED_SPLITERATOR_METHOD(), false);
}
/** {@inheritDoc}
* @deprecated Please use the corresponding type-specific method instead.
*/
@Deprecated
@Override
default java.util.stream.Stream parallelStream() { return Collection.super.parallelStream(); }
#if KEY_CLASS_Character
/** Return a parallel primitive stream over the elements, performing widening casts if needed.
*
* WARNING: This is not the same as converting the source to a sequence
* of code points. This returned instance literally performs {@code (int)(charValue)} casts.
* Surrogate pairs will be left as separate elements instead of combined into a single element
* with the code point it represents. See {@link Character} for more discussion on code points,
* char values, and surrogate pairs.
*
* @return a parallel primitive stream over the elements.
* @see Collection#parallelStream()
* @see java.util.stream.IntStream
*/
#else
/** Return a parallel primitive stream over the elements, performing widening casts if needed.
* @return a parallel primitive stream over the elements.
* @see Collection#parallelStream()
* @see java.util.stream.IntStream
*/
#endif
default JDK_PRIMITIVE_STREAM KEY_WIDENED_PARALLEL_STREAM_METHOD() {
return java.util.stream.StreamSupport.KEY_WIDENED_STREAM_METHOD(KEY_WIDENED_SPLITERATOR_METHOD(), true);
}
#endif
#endif
}