it.unimi.dsi.fastutil.doubles.DoublePredicate Maven / Gradle / Ivy
Show all versions of fastutil-core Show documentation
/*
* Copyright (C) 2020-2022 Sebastiano Vigna
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package it.unimi.dsi.fastutil.doubles;
import java.util.Objects;
import java.util.function.Predicate;
/**
* A type-specific {@link Predicate}; provides methods to test a primitive type both as object and
* as primitive.
*
*
* Except for the boolean case, this interface extends both a parameterized
* {@link java.util.function.Predicate} and a type-specific JDK predicate (e.g.,
* {@link java.util.function.IntPredicate}). For types missing a type-specific JDK predicate (e.g.,
* {@code short} or {@code float}), we extend the predicate associated with the smallest primitive
* type that can represent the current type (e.g., {@code int} or {@code double}, respectively).
*
* @see Predicate
* @since 8.5.0
*/
@FunctionalInterface
public interface DoublePredicate extends Predicate, java.util.function.DoublePredicate {
/**
* {@inheritDoc}
*
* @deprecated Please use the corresponding type-specific method instead.
*/
@Deprecated
@Override
default boolean test(final Double t) {
return test(t.doubleValue());
}
/**
* Returns a composed type-specific predicate that represents a short-circuiting logical AND of this
* type-specific predicate and another.
*
* @param other a predicate that will be logically-ANDed with this predicate.
* @return a composed predicate that represents the short-circuiting logical AND of this predicate
* and the {@code other} predicate.
* @see Predicate#and
* @apiNote Implementing classes should generally override this method and keep the default
* implementation of the other overloads, which will delegate to this method (after proper
* conversions).
*/
default DoublePredicate and(final java.util.function.DoublePredicate other) {
Objects.requireNonNull(other);
return t -> test(t) && other.test(t);
}
/**
* Returns a composed type-specific predicate that represents a short-circuiting logical AND of this
* type-specific predicate and another.
*
*
* WARNING: Overriding this method is almost always a mistake, as this overload only exists
* to disambiguate. Instead, override the {@code and()} overload that uses the JDK's primitive
* predicate type (e.g. {@link java.util.function.IntPredicate}).
*
*
* If Java supported final default methods, this would be one, but sadly it does not.
*
*
* If you checked and are overriding the version with {@code java.util.function.XPredicate}, and you
* still see this warning, then your IDE is incorrectly conflating this method with the proper
* method to override, and you can safely ignore this message.
*
* @param other a predicate that will be logically-ANDed with this predicate.
* @return a composed predicate that represents the short-circuiting logical AND of this predicate
* and the {@code other} predicate.
* @see Predicate#and
*/
default DoublePredicate and(final DoublePredicate other) {
return and((java.util.function.DoublePredicate)other);
}
/**
* {@inheritDoc}
*
* @deprecated Please use the corresponding type-specific method instead.
*/
@Deprecated
@Override
default Predicate and(final Predicate super Double> other) {
return Predicate.super.and(other);
}
@Override
/** {@inheritDoc} */
default DoublePredicate negate() {
return t -> !test(t);
}
/**
* Returns a composed type-specific predicate that represents a short-circuiting logical OR of this
* type-specific predicate and another.
*
* @param other a predicate that will be logically-ORed with this predicate.
* @return a composed predicate that represents the short-circuiting logical OR of this predicate
* and the {@code other} predicate.
* @see Predicate#or
* @apiNote Implementing classes should generally override this method and keep the default
* implementation of the other overloads, which will delegate to this method (after proper
* conversions).
*/
default DoublePredicate or(final java.util.function.DoublePredicate other) {
Objects.requireNonNull(other);
return t -> test(t) || other.test(t);
}
/**
* Returns a composed type-specific predicate that represents a short-circuiting logical OR of this
* type-specific predicate and another.
*
*
* WARNING: Overriding this method is almost always a mistake, as this overload only exists
* to disambiguate. Instead, override the {@code or()} overload that uses the JDK's primitive
* predicate type (e.g. {@link java.util.function.IntPredicate}).
*
*
* If Java supported final default methods, this would be one, but sadly it does not.
*
*
* If you checked and are overriding the version with {@code java.util.function.XPredicate}, and you
* still see this warning, then your IDE is incorrectly conflating this method with the proper
* method to override, and you can safely ignore this message.
*
* @param other a predicate that will be logically-ORed with this predicate.
* @return a composed predicate that represents the short-circuiting logical OR of this predicate
* and the {@code other} predicate.
* @see Predicate#or
*/
default DoublePredicate or(final DoublePredicate other) {
return or((java.util.function.DoublePredicate)other);
}
/**
* {@inheritDoc}
*
* @deprecated Please use the corresponding type-specific method instead.
*/
@Deprecated
@Override
default Predicate or(final Predicate super Double> other) {
return Predicate.super.or(other);
}
}