All Downloads are FREE. Search and download functionalities are using the official Maven repository.

it.unimi.dsi.fastutil.objects.ObjectOpenHashBigSet Maven / Gradle / Ivy

Go to download

fastutil extends the Java Collections Framework by providing type-specific maps, sets, lists, and queues with a small memory footprint and fast operations; it provides also big (64-bit) arrays, sets, and lists, sorting algorithms, fast, practical I/O classes for binary and text files, and facilities for memory mapping large files. This jar (fastutil-core.jar) contains data structures based on integers, longs, doubles, and objects, only; fastutil.jar contains all classes. If you have both jars in your dependencies, this jar should be excluded.

There is a newer version: 8.5.15
Show newest version
/*
	* Copyright (C) 2002-2022 Sebastiano Vigna
	*
	* Licensed under the Apache License, Version 2.0 (the "License");
	* you may not use this file except in compliance with the License.
	* You may obtain a copy of the License at
	*
	*     http://www.apache.org/licenses/LICENSE-2.0
	*
	* Unless required by applicable law or agreed to in writing, software
	* distributed under the License is distributed on an "AS IS" BASIS,
	* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
	* See the License for the specific language governing permissions and
	* limitations under the License.
	*/
package it.unimi.dsi.fastutil.objects;

import static it.unimi.dsi.fastutil.BigArrays.copy;
import static it.unimi.dsi.fastutil.BigArrays.fill;
import static it.unimi.dsi.fastutil.BigArrays.set;
import it.unimi.dsi.fastutil.BigArrays;
import it.unimi.dsi.fastutil.Hash;
import it.unimi.dsi.fastutil.Size64;
import it.unimi.dsi.fastutil.HashCommon;
import static it.unimi.dsi.fastutil.HashCommon.bigArraySize;
import static it.unimi.dsi.fastutil.HashCommon.maxFill;
import java.util.function.Consumer;
import java.util.stream.Collector;
import java.util.Collection;
import java.util.Iterator;
import java.util.NoSuchElementException;

/**
 * A type-specific hash big set with with a fast, small-footprint implementation.
 *
 * 

* Instances of this class use a hash table to represent a big set: the number of elements in the * set is limited only by the amount of core memory. The table (backed by a * {@linkplain it.unimi.dsi.fastutil.BigArrays big array}) is filled up to a specified load * factor, and then doubled in size to accommodate new entries. If the table is emptied below * one fourth of the load factor, it is halved in size; however, the table is never reduced * to a size smaller than that at creation time: this approach makes it possible to create sets with * a large capacity in which insertions and deletions do not cause immediately rehashing. Moreover, * halving is not performed when deleting entries from an iterator, as it would interfere with the * iteration process. * *

* Note that {@link #clear()} does not modify the hash table size. Rather, a family of * {@linkplain #trim() trimming methods} lets you control the size of the table; this is * particularly useful if you reuse instances of this class. * *

* The methods of this class are about 30% slower than those of the corresponding non-big set. * * @see Hash * @see HashCommon */ public class ObjectOpenHashBigSet extends AbstractObjectSet implements java.io.Serializable, Cloneable, Hash, Size64 { private static final long serialVersionUID = 0L; private static final boolean ASSERTS = false; /** The big array of keys. */ protected transient K[][] key; /** The mask for wrapping a position counter. */ protected transient long mask; /** The mask for wrapping a segment counter. */ protected transient int segmentMask; /** The mask for wrapping a base counter. */ protected transient int baseMask; /** Whether this set contains the null key. */ protected transient boolean containsNull; /** The current table size (always a power of 2). */ protected transient long n; /** Threshold after which we rehash. It must be the table size times {@link #f}. */ protected transient long maxFill; /** We never resize below this threshold, which is the construction-time {#n}. */ protected final transient long minN; /** The acceptable load factor. */ protected final float f; /** Number of entries in the set. */ protected long size; /** Initialises the mask values. */ private void initMasks() { mask = n - 1; /* Note that either we have more than one segment, and in this case all segments * are BigArrays.SEGMENT_SIZE long, or we have exactly one segment whose length * is a power of two. */ segmentMask = key[0].length - 1; baseMask = key.length - 1; } /** * Creates a new hash big set. * *

* The actual table size will be the least power of two greater than {@code expected}/{@code f}. * * @param expected the expected number of elements in the set. * @param f the load factor. */ @SuppressWarnings("unchecked") public ObjectOpenHashBigSet(final long expected, final float f) { if (f <= 0 || f > 1) throw new IllegalArgumentException("Load factor must be greater than 0 and smaller than or equal to 1"); if (n < 0) throw new IllegalArgumentException("The expected number of elements must be nonnegative"); this.f = f; minN = n = bigArraySize(expected, f); maxFill = maxFill(n, f); key = (K[][])ObjectBigArrays.newBigArray(n); initMasks(); } /** * Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. * * @param expected the expected number of elements in the hash big set. */ public ObjectOpenHashBigSet(final long expected) { this(expected, DEFAULT_LOAD_FACTOR); } /** * Creates a new hash big set with initial expected {@link Hash#DEFAULT_INITIAL_SIZE} elements and * {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. */ public ObjectOpenHashBigSet() { this(DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR); } /** * Creates a new hash big set copying a given collection. * * @param c a {@link Collection} to be copied into the new hash big set. * @param f the load factor. */ public ObjectOpenHashBigSet(final Collection c, final float f) { this(Size64.sizeOf(c), f); addAll(c); } /** * Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor copying a given * collection. * * @param c a {@link Collection} to be copied into the new hash big set. */ public ObjectOpenHashBigSet(final Collection c) { this(c, DEFAULT_LOAD_FACTOR); } /** * Creates a new hash big set copying a given type-specific collection. * * @param c a type-specific collection to be copied into the new hash big set. * @param f the load factor. */ public ObjectOpenHashBigSet(final ObjectCollection c, final float f) { this(Size64.sizeOf(c), f); addAll(c); } /** * Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor copying a given * type-specific collection. * * @param c a type-specific collection to be copied into the new hash big set. */ public ObjectOpenHashBigSet(final ObjectCollection c) { this(c, DEFAULT_LOAD_FACTOR); } /** * Creates a new hash big set using elements provided by a type-specific iterator. * * @param i a type-specific iterator whose elements will fill the new hash big set. * @param f the load factor. */ public ObjectOpenHashBigSet(final Iterator i, final float f) { this(DEFAULT_INITIAL_SIZE, f); while (i.hasNext()) add(i.next()); } /** * Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using elements * provided by a type-specific iterator. * * @param i a type-specific iterator whose elements will fill the new hash big set. */ public ObjectOpenHashBigSet(final Iterator i) { this(i, DEFAULT_LOAD_FACTOR); } /** * Creates a new hash big set and fills it with the elements of a given array. * * @param a an array whose elements will be used to fill the new hash big set. * @param offset the first element to use. * @param length the number of elements to use. * @param f the load factor. */ public ObjectOpenHashBigSet(final K[] a, final int offset, final int length, final float f) { this(length < 0 ? 0 : length, f); ObjectArrays.ensureOffsetLength(a, offset, length); for (int i = 0; i < length; i++) add(a[offset + i]); } /** * Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor and fills it with * the elements of a given array. * * @param a an array whose elements will be used to fill the new hash big set. * @param offset the first element to use. * @param length the number of elements to use. */ public ObjectOpenHashBigSet(final K[] a, final int offset, final int length) { this(a, offset, length, DEFAULT_LOAD_FACTOR); } /** * Creates a new hash big set copying the elements of an array. * * @param a an array to be copied into the new hash big set. * @param f the load factor. */ public ObjectOpenHashBigSet(final K[] a, final float f) { this(a, 0, a.length, f); } /** * Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor copying the * elements of an array. * * @param a an array to be copied into the new hash big set. */ public ObjectOpenHashBigSet(final K[] a) { this(a, DEFAULT_LOAD_FACTOR); } // Collector wants a function that returns the collection being added to. private ObjectOpenHashBigSet combine(ObjectOpenHashBigSet toAddFrom) { addAll(toAddFrom); return this; } private static final Collector> TO_SET_COLLECTOR = Collector.of(ObjectOpenHashBigSet::new, ObjectOpenHashBigSet::add, ObjectOpenHashBigSet::combine); /** * Returns a {@link Collector} that collects a {@code Stream}'s elements into a new big hash set. */ @SuppressWarnings({ "unchecked", "rawtypes" }) public static Collector> toBigSet() { return (Collector)TO_SET_COLLECTOR; } /** * Returns a {@link Collector} that collects a {@code Stream}'s elements into a new big hash set. */ public static Collector> toBigSetWithExpectedSize(long expectedSize) { return Collector.of(() -> new ObjectOpenHashBigSet(expectedSize), ObjectOpenHashBigSet::add, ObjectOpenHashBigSet::combine); } private long realSize() { return containsNull ? size - 1 : size; } private void ensureCapacity(final long capacity) { final long needed = bigArraySize(capacity, f); if (needed > n) rehash(needed); } @Override public boolean addAll(Collection c) { final long size = Size64.sizeOf(c); // The resulting collection will be at least c.size() big if (f <= .5) ensureCapacity(size); // The resulting collection will be sized for c.size() elements else ensureCapacity(size64() + size); // The resulting collection will be sized for size() + c.size() elements return super.addAll(c); } @Override public boolean add(final K k) { int displ, base; if (((k) == null)) { if (containsNull) return false; containsNull = true; } else { K curr; final K[][] key = this.key; final long h = (it.unimi.dsi.fastutil.HashCommon.mix((long)((k).hashCode()))); // The starting point. if (!((curr = key[base = (int)((h & mask) >>> BigArrays.SEGMENT_SHIFT)][displ = (int)(h & segmentMask)]) == null)) { if (((curr).equals(k))) return false; while (!((curr = key[base = (base + ((displ = (displ + 1) & segmentMask) == 0 ? 1 : 0)) & baseMask][displ]) == null)) if (((curr).equals(k))) return false; } key[base][displ] = k; } if (size++ >= maxFill) rehash(2 * n); if (ASSERTS) checkTable(); return true; } /** * Add a random element if not present, get the existing value if already present. * * This is equivalent to (but faster than) doing a: * *

	 * K exist = set.get(k);
	 * if (exist == null) {
	 * 	set.add(k);
	 * 	exist = k;
	 * }
	 * 
*/ public K addOrGet(final K k) { int displ, base; if (((k) == null)) { if (containsNull) return null; containsNull = true; } else { K curr; final K[][] key = this.key; final long h = (it.unimi.dsi.fastutil.HashCommon.mix((long)((k).hashCode()))); // The starting point. if (!((curr = key[base = (int)((h & mask) >>> BigArrays.SEGMENT_SHIFT)][displ = (int)(h & segmentMask)]) == null)) { if (((curr).equals(k))) return curr; while (!((curr = key[base = (base + ((displ = (displ + 1) & segmentMask) == 0 ? 1 : 0)) & baseMask][displ]) == null)) if (((curr).equals(k))) return curr; } key[base][displ] = k; } if (size++ >= maxFill) rehash(2 * n); if (ASSERTS) checkTable(); return k; } /** * Shifts left entries with the specified hash code, starting at the specified position, and empties * the resulting free entry. * * @param pos a starting position. */ protected final void shiftKeys(long pos) { // Shift entries with the same hash. long last, slot; final K[][] key = this.key; for (;;) { pos = ((last = pos) + 1) & mask; for (;;) { if (((BigArrays.get(key, pos)) == null)) { set(key, last, (null)); return; } slot = (it.unimi.dsi.fastutil.HashCommon.mix((long)((BigArrays.get(key, pos)).hashCode()))) & mask; if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break; pos = (pos + 1) & mask; } set(key, last, BigArrays.get(key, pos)); } } private boolean removeEntry(final int base, final int displ) { size--; shiftKeys(base * (long)BigArrays.SEGMENT_SIZE + displ); if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2); return true; } private boolean removeNullEntry() { containsNull = false; size--; if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2); return true; } @Override public boolean remove(final Object k) { if (((k) == null)) { if (containsNull) return removeNullEntry(); return false; } K curr; final K[][] key = this.key; final long h = (it.unimi.dsi.fastutil.HashCommon.mix((long)((k).hashCode()))); int displ, base; // The starting point. if (((curr = key[base = (int)((h & mask) >>> BigArrays.SEGMENT_SHIFT)][displ = (int)(h & segmentMask)]) == null)) return false; if (((curr).equals(k))) return removeEntry(base, displ); while (true) { if (((curr = key[base = (base + ((displ = (displ + 1) & segmentMask) == 0 ? 1 : 0)) & baseMask][displ]) == null)) return false; if (((curr).equals(k))) return removeEntry(base, displ); } } @Override public boolean contains(final Object k) { if (((k) == null)) return containsNull; K curr; final K[][] key = this.key; final long h = (it.unimi.dsi.fastutil.HashCommon.mix((long)((k).hashCode()))); int displ, base; // The starting point. if (((curr = key[base = (int)((h & mask) >>> BigArrays.SEGMENT_SHIFT)][displ = (int)(h & segmentMask)]) == null)) return false; if (((curr).equals(k))) return true; while (true) { if (((curr = key[base = (base + ((displ = (displ + 1) & segmentMask) == 0 ? 1 : 0)) & baseMask][displ]) == null)) return false; if (((curr).equals(k))) return true; } } /** * Returns the element of this set that is equal to the given key, or {@code null}. * * @return the element of this set that is equal to the given key, or {@code null}. */ public K get(final Object k) { if (k == null) return null; // This is correct independently of the value of containsNull K curr; final K[][] key = this.key; final long h = (it.unimi.dsi.fastutil.HashCommon.mix((long)((k).hashCode()))); int displ, base; // The starting point. if (((curr = key[base = (int)((h & mask) >>> BigArrays.SEGMENT_SHIFT)][displ = (int)(h & segmentMask)]) == null)) return null; if (((curr).equals(k))) return curr; while (true) { if (((curr = key[base = (base + ((displ = (displ + 1) & segmentMask) == 0 ? 1 : 0)) & baseMask][displ]) == null)) return null; if (((curr).equals(k))) return curr; } } /* Removes all elements from this set. * */ /** * {@inheritDoc} * *

* To increase object reuse, this method does not change the table size. If you want to reduce the * table size, you must use {@link #trim(long)}. */ @Override public void clear() { if (size == 0) return; size = 0; containsNull = false; fill(key, (null)); } /** An iterator over a hash big set. */ private class SetIterator implements ObjectIterator { /** * The base of the last entry returned, if positive or zero; initially, the number of components of * the key array. If negative, the last element returned was that of index {@code - base - 1} from * the {@link #wrapped} list. */ int base = key.length; /** The displacement of the last entry returned; initially, zero. */ int displ; /** * The index of the last entry that has been returned (or {@link Long#MIN_VALUE} if {@link #base} is * negative). It is -1 if either we did not return an entry yet, or the last returned entry has been * removed. */ long last = -1; /** A downward counter measuring how many entries must still be returned. */ long c = size; /** A boolean telling us whether we should return the null key. */ boolean mustReturnNull = ObjectOpenHashBigSet.this.containsNull; /** * A lazily allocated list containing elements that have wrapped around the table because of * removals. */ ObjectArrayList wrapped; @Override public boolean hasNext() { return c != 0; } @Override public K next() { if (!hasNext()) throw new NoSuchElementException(); c--; if (mustReturnNull) { mustReturnNull = false; last = n; return (null); } final K[][] key = ObjectOpenHashBigSet.this.key; for (;;) { if (displ == 0 && base <= 0) { // We are just enumerating elements from the wrapped list. last = Long.MIN_VALUE; return wrapped.get(-(--base) - 1); } if (displ-- == 0) displ = key[--base].length - 1; final K k = key[base][displ]; if (!((k) == null)) { last = base * (long)BigArrays.SEGMENT_SIZE + displ; return k; } } } /** * Shifts left entries with the specified hash code, starting at the specified position, and empties * the resulting free entry. * * @param pos a starting position. */ private final void shiftKeys(long pos) { // Shift entries with the same hash. long last, slot; K curr; final K[][] key = ObjectOpenHashBigSet.this.key; for (;;) { pos = ((last = pos) + 1) & mask; for (;;) { if (((curr = BigArrays.get(key, pos)) == null)) { set(key, last, (null)); return; } slot = (it.unimi.dsi.fastutil.HashCommon.mix((long)((curr).hashCode()))) & mask; if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break; pos = (pos + 1) & mask; } if (pos < last) { // Wrapped entry. if (wrapped == null) wrapped = new ObjectArrayList<>(); wrapped.add(BigArrays.get(key, pos)); } set(key, last, curr); } } @Override public void remove() { if (last == -1) throw new IllegalStateException(); if (last == n) ObjectOpenHashBigSet.this.containsNull = false; else if (base >= 0) shiftKeys(last); else { // We're removing wrapped entries. ObjectOpenHashBigSet.this.remove(wrapped.set(-base - 1, null)); last = -1; // Note that we must not decrement size return; } size--; last = -1; // You can no longer remove this entry. if (ASSERTS) checkTable(); } } @Override public ObjectIterator iterator() { return new SetIterator(); } private class SetSpliterator implements ObjectSpliterator { /* For the sake of keeping things at least somewhat simple * (aka. my sanity), the spliterator will NOT handle the indexing * of the subarrays directly, like iterator does. Instead, it will * delegate to BigArrays and have only a single, unified index it * will fence on. This is probably less effecient, but it avoids having * to track what it means to split on two sets of indexes. * This may change in the future if the performance hit high. */ private static final int POST_SPLIT_CHARACTERISTICS = ObjectSpliterators.SET_SPLITERATOR_CHARACTERISTICS & ~java.util.Spliterator.SIZED; /** The index (which bucket) of the next item to give to the action. */ long pos = 0; /** The maximum bucket (exclusive) to iterate to */ long max = n; /** An upwards counter counting how many we have given */ long c = 0; /** A boolean telling us whether we should return the null key. */ boolean mustReturnNull = ObjectOpenHashBigSet.this.containsNull; boolean hasSplit = false; SetSpliterator() { } SetSpliterator(long pos, long max, boolean mustReturnNull, boolean hasSplit) { this.pos = pos; this.max = max; this.mustReturnNull = mustReturnNull; this.hasSplit = hasSplit; } @Override public boolean tryAdvance(final Consumer action) { if (mustReturnNull) { mustReturnNull = false; ++c; action.accept((null)); return true; } final K key[][] = ObjectOpenHashBigSet.this.key; while (pos < max) { K gotten = BigArrays.get(key, pos); if (!((gotten) == null)) { ++c; ++pos; action.accept(gotten); return true; } else { ++pos; } } return false; } @Override public void forEachRemaining(final Consumer action) { if (mustReturnNull) { mustReturnNull = false; action.accept((null)); ++c; } final K key[][] = ObjectOpenHashBigSet.this.key; while (pos < max) { K gotten = BigArrays.get(key, pos); if (!((gotten) == null)) { action.accept(gotten); ++c; } ++pos; } } @Override public int characteristics() { return hasSplit ? POST_SPLIT_CHARACTERISTICS : ObjectSpliterators.SET_SPLITERATOR_CHARACTERISTICS; } @Override public long estimateSize() { if (!hasSplit) { // Root spliterator; we know how many are remaining. return size - c; } else { // After we split, we can no longer know exactly how many we have (or at least not efficiently). // (size / n) * (max - pos) aka currentTableDensity * numberOfBucketsLeft seems like a good // estimate. return Math.min(size - c, (long)(((double)realSize() / n) * (max - pos)) + (mustReturnNull ? 1 : 0)); } } @Override public SetSpliterator trySplit() { if (pos >= max - 1) return null; long retLen = (max - pos) >> 1; if (retLen <= 1) return null; long myNewPos = pos + retLen; // Align to an outer array boundary if possible // We add/subtract one to the bounds to ensure the new pos will always shrink the range myNewPos = BigArrays.nearestSegmentStart(myNewPos, pos + 1, max - 1); long retPos = pos; long retMax = myNewPos; // Since null is returned first, and the convention is that the returned split is the prefix of // elements, // the split will take care of returning null (if needed), and we won't return it anymore. SetSpliterator split = new SetSpliterator(retPos, retMax, mustReturnNull, true); this.pos = myNewPos; this.mustReturnNull = false; this.hasSplit = true; return split; } @Override public long skip(long n) { if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n); if (n == 0) return 0; long skipped = 0; if (mustReturnNull) { mustReturnNull = false; ++skipped; --n; } final K key[][] = ObjectOpenHashBigSet.this.key; while (pos < max && n > 0) { if (!((BigArrays.get(key, pos++)) == null)) { ++skipped; --n; } } return skipped; } } @Override public ObjectSpliterator spliterator() { return new SetSpliterator(); } @Override public void forEach(final Consumer action) { if (containsNull) { action.accept((null)); } long pos = 0; final long max = n; final K key[][] = this.key; while (pos < max) { K gotten = BigArrays.get(key, pos++); if (!((gotten) == null)) { action.accept(gotten); } } } /** * Rehashes this set, making the table as small as possible. * *

* This method rehashes the table to the smallest size satisfying the load factor. It can be used * when the set will not be changed anymore, so to optimize access speed and size. * *

* If the table size is already the minimum possible, this method does nothing. * * @return true if there was enough memory to trim the set. * @see #trim(long) */ public boolean trim() { return trim(size); } /** * Rehashes this set if the table is too large. * *

* Let N be the smallest table size that can hold max(n,{@link #size64()}) * entries, still satisfying the load factor. If the current table size is smaller than or equal to * N, this method does nothing. Otherwise, it rehashes this set in a table of size * N. * *

* This method is useful when reusing sets. {@linkplain #clear() Clearing a set} leaves the table * size untouched. If you are reusing a set many times, you can call this method with a typical size * to avoid keeping around a very large table just because of a few large transient sets. * * @param n the threshold for the trimming. * @return true if there was enough memory to trim the set. * @see #trim() */ public boolean trim(final long n) { final long l = bigArraySize(n, f); if (l >= this.n || size > maxFill(l, f)) return true; try { rehash(l); } catch (OutOfMemoryError cantDoIt) { return false; } return true; } /** * Resizes the set. * *

* This method implements the basic rehashing strategy, and may be overriden by subclasses * implementing different rehashing strategies (e.g., disk-based rehashing). However, you should not * override this method unless you understand the internal workings of this class. * * @param newN the new size */ @SuppressWarnings("unchecked") protected void rehash(final long newN) { final K key[][] = this.key; final K newKey[][] = (K[][])ObjectBigArrays.newBigArray(newN); final long mask = newN - 1; // Note that this is used by the hashing macro final int newSegmentMask = newKey[0].length - 1; final int newBaseMask = newKey.length - 1; int base = 0, displ = 0, b, d; long h; K k; for (long i = realSize(); i-- != 0;) { while (((key[base][displ]) == null)) base = (base + ((displ = (displ + 1) & segmentMask) == 0 ? 1 : 0)); k = key[base][displ]; h = (it.unimi.dsi.fastutil.HashCommon.mix((long)((k).hashCode()))); // The starting point. if (!((newKey[b = (int)((h & mask) >>> BigArrays.SEGMENT_SHIFT)][d = (int)(h & newSegmentMask)]) == null)) while (!((newKey[b = (b + ((d = (d + 1) & newSegmentMask) == 0 ? 1 : 0)) & newBaseMask][d]) == null)); newKey[b][d] = k; base = (base + ((displ = (displ + 1) & segmentMask) == 0 ? 1 : 0)); } this.n = newN; this.key = newKey; initMasks(); maxFill = maxFill(n, f); } @Deprecated @Override public int size() { return (int)Math.min(Integer.MAX_VALUE, size); } @Override public long size64() { return size; } @Override public boolean isEmpty() { return size == 0; } /** * Returns a deep copy of this big set. * *

* This method performs a deep copy of this big hash set; the data stored in the set, however, is * not cloned. Note that this makes a difference only for object keys. * * @return a deep copy of this big set. */ @Override @SuppressWarnings("unchecked") public ObjectOpenHashBigSet clone() { ObjectOpenHashBigSet c; try { c = (ObjectOpenHashBigSet)super.clone(); } catch (CloneNotSupportedException cantHappen) { throw new InternalError(); } c.key = copy(key); c.containsNull = containsNull; return c; } /** * Returns a hash code for this set. * * This method overrides the generic method provided by the superclass. Since {@code equals()} is * not overriden, it is important that the value returned by this method is the same value as the * one returned by the overriden method. * * @return a hash code for this set. */ @Override public int hashCode() { final K key[][] = this.key; int h = 0, base = 0, displ = 0; for (long j = realSize(); j-- != 0;) { while (((key[base][displ]) == null)) base = (base + ((displ = (displ + 1) & segmentMask) == 0 ? 1 : 0)); if (this != key[base][displ]) h += ((key[base][displ]).hashCode()); base = (base + ((displ = (displ + 1) & segmentMask) == 0 ? 1 : 0)); } return h; } private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { final ObjectIterator i = iterator(); s.defaultWriteObject(); for (long j = size; j-- != 0;) s.writeObject(i.next()); } @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); n = bigArraySize(size, f); maxFill = maxFill(n, f); final K[][] key = this.key = (K[][])ObjectBigArrays.newBigArray(n); initMasks(); long h; K k; int base, displ; for (long i = size; i-- != 0;) { k = (K)s.readObject(); if (((k) == null)) containsNull = true; else { h = (it.unimi.dsi.fastutil.HashCommon.mix((long)((k).hashCode()))); if (!((key[base = (int)((h & mask) >>> BigArrays.SEGMENT_SHIFT)][displ = (int)(h & segmentMask)]) == null)) while (!((key[base = (base + ((displ = (displ + 1) & segmentMask) == 0 ? 1 : 0)) & baseMask][displ]) == null)); key[base][displ] = k; } } if (ASSERTS) checkTable(); } private void checkTable() { } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy