
it.unimi.dsi.fastutil.bytes.Byte2ReferenceLinkedOpenHashMap Maven / Gradle / Ivy
Show all versions of fastutil Show documentation
/* Generic definitions */
/* Assertions (useful to generate conditional code) */
/* Current type and class (and size, if applicable) */
/* Value methods */
/* Interfaces (keys) */
/* Interfaces (values) */
/* Abstract implementations (keys) */
/* Abstract implementations (values) */
/* Static containers (keys) */
/* Static containers (values) */
/* Implementations */
/* Synchronized wrappers */
/* Unmodifiable wrappers */
/* Other wrappers */
/* Methods (keys) */
/* Methods (values) */
/* Methods (keys/values) */
/* Methods that have special names depending on keys (but the special names depend on values) */
/* Equality */
/* Object/Reference-only definitions (keys) */
/* Primitive-type-only definitions (keys) */
/* Object/Reference-only definitions (values) */
/*
* Copyright (C) 2002-2016 Sebastiano Vigna
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package it.unimi.dsi.fastutil.bytes;
import it.unimi.dsi.fastutil.Hash;
import it.unimi.dsi.fastutil.HashCommon;
import static it.unimi.dsi.fastutil.HashCommon.arraySize;
import static it.unimi.dsi.fastutil.HashCommon.maxFill;
import java.util.Map;
import java.util.Arrays;
import java.util.NoSuchElementException;
import it.unimi.dsi.fastutil.objects.ReferenceCollection;
import it.unimi.dsi.fastutil.objects.AbstractReferenceCollection;
import java.util.Comparator;
import it.unimi.dsi.fastutil.objects.ObjectIterator;
import it.unimi.dsi.fastutil.objects.AbstractObjectSortedSet;
import it.unimi.dsi.fastutil.objects.ObjectListIterator;
import it.unimi.dsi.fastutil.objects.ObjectBidirectionalIterator;
import it.unimi.dsi.fastutil.objects.ObjectSortedSet;
/**
* A type-specific linked hash map with with a fast, small-footprint
* implementation.
*
*
* Instances of this class use a hash table to represent a map. The table is
* filled up to a specified load factor, and then doubled in size to
* accommodate new entries. If the table is emptied below one fourth of
* the load factor, it is halved in size. However, halving is not performed when
* deleting entries from an iterator, as it would interfere with the iteration
* process.
*
*
* Note that {@link #clear()} does not modify the hash table size. Rather, a
* family of {@linkplain #trim() trimming methods} lets you control the size of
* the table; this is particularly useful if you reuse instances of this class.
*
*
* Iterators generated by this map will enumerate pairs in the same order in
* which they have been added to the map (addition of pairs whose key is already
* present in the set does not change the iteration order). Note that this order
* has nothing in common with the natural order of the keys. The order is kept
* by means of a doubly linked list, represented via an array of longs
* parallel to the table.
*
*
* This class implements the interface of a sorted map, so to allow easy access
* of the iteration order: for instance, you can get the first key in iteration
* order with {@code firstKey()} without having to create an iterator; however,
* this class partially violates the {@link java.util.SortedMap} contract
* because all submap methods throw an exception and {@link #comparator()}
* returns always null
.
*
*
* Additional methods, such as getAndMoveToFirst()
, make it easy to
* use instances of this class as a cache (e.g., with LRU policy).
*
*
* The iterators provided by the views of this class using are type-specific
* {@linkplain java.util.ListIterator list iterators}, and can be started at any
* element which is a key of the map, or a
* {@link NoSuchElementException} exception will be thrown. If, however, the
* provided element is not the first or last key in the set, the first access to
* the list index will require linear time, as in the worst case the entire key
* set must be scanned in iteration order to retrieve the positional index of
* the starting key. If you use just the methods of a type-specific
* {@link it.unimi.dsi.fastutil.BidirectionalIterator}, however, all operations
* will be performed in constant time.
*
* @see Hash
* @see HashCommon
*/
public class Byte2ReferenceLinkedOpenHashMap
extends
AbstractByte2ReferenceSortedMap
implements
java.io.Serializable,
Cloneable,
Hash {
private static final long serialVersionUID = 0L;
private static final boolean ASSERTS = false;
/** The array of keys. */
protected transient byte[] key;
/** The array of values. */
protected transient V[] value;
/** The mask for wrapping a position counter. */
protected transient int mask;
/** Whether this set contains the key zero. */
protected transient boolean containsNullKey;
/**
* The index of the first entry in iteration order. It is valid iff
* {@link #size} is nonzero; otherwise, it contains -1.
*/
protected transient int first = -1;
/**
* The index of the last entry in iteration order. It is valid iff
* {@link #size} is nonzero; otherwise, it contains -1.
*/
protected transient int last = -1;
/**
* For each entry, the next and the previous entry in iteration order,
* stored as
* ((prev & 0xFFFFFFFFL) << 32) | (next & 0xFFFFFFFFL)
. The
* first entry contains predecessor -1, and the last entry contains
* successor -1.
*/
protected transient long[] link;
/** The current table size. */
protected transient int n;
/**
* Threshold after which we rehash. It must be the table size times
* {@link #f}.
*/
protected transient int maxFill;
/** Number of entries in the set (including the key zero, if present). */
protected int size;
/** The acceptable load factor. */
protected final float f;
/** Cached set of entries. */
protected transient FastSortedEntrySet entries;
/** Cached set of keys. */
protected transient ByteSortedSet keys;
/** Cached collection of values. */
protected transient ReferenceCollection values;
/**
* Creates a new hash map.
*
*
* The actual table size will be the least power of two greater than
* expected
/f
.
*
* @param expected
* the expected number of elements in the hash set.
* @param f
* the load factor.
*/
@SuppressWarnings("unchecked")
public Byte2ReferenceLinkedOpenHashMap(final int expected, final float f) {
if (f <= 0 || f > 1)
throw new IllegalArgumentException(
"Load factor must be greater than 0 and smaller than or equal to 1");
if (expected < 0)
throw new IllegalArgumentException(
"The expected number of elements must be nonnegative");
this.f = f;
n = arraySize(expected, f);
mask = n - 1;
maxFill = maxFill(n, f);
key = new byte[n + 1];
value = (V[]) new Object[n + 1];
link = new long[n + 1];
}
/**
* Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load
* factor.
*
* @param expected
* the expected number of elements in the hash map.
*/
public Byte2ReferenceLinkedOpenHashMap(final int expected) {
this(expected, DEFAULT_LOAD_FACTOR);
}
/**
* Creates a new hash map with initial expected
* {@link Hash#DEFAULT_INITIAL_SIZE} entries and
* {@link Hash#DEFAULT_LOAD_FACTOR} as load factor.
*/
public Byte2ReferenceLinkedOpenHashMap() {
this(DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR);
}
/**
* Creates a new hash map copying a given one.
*
* @param m
* a {@link Map} to be copied into the new hash map.
* @param f
* the load factor.
*/
public Byte2ReferenceLinkedOpenHashMap(
final Map extends Byte, ? extends V> m, final float f) {
this(m.size(), f);
putAll(m);
}
/**
* Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load
* factor copying a given one.
*
* @param m
* a {@link Map} to be copied into the new hash map.
*/
public Byte2ReferenceLinkedOpenHashMap(
final Map extends Byte, ? extends V> m) {
this(m, DEFAULT_LOAD_FACTOR);
}
/**
* Creates a new hash map copying a given type-specific one.
*
* @param m
* a type-specific map to be copied into the new hash map.
* @param f
* the load factor.
*/
public Byte2ReferenceLinkedOpenHashMap(final Byte2ReferenceMap m,
final float f) {
this(m.size(), f);
putAll(m);
}
/**
* Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load
* factor copying a given type-specific one.
*
* @param m
* a type-specific map to be copied into the new hash map.
*/
public Byte2ReferenceLinkedOpenHashMap(final Byte2ReferenceMap m) {
this(m, DEFAULT_LOAD_FACTOR);
}
/**
* Creates a new hash map using the elements of two parallel arrays.
*
* @param k
* the array of keys of the new hash map.
* @param v
* the array of corresponding values in the new hash map.
* @param f
* the load factor.
* @throws IllegalArgumentException
* if k
and v
have different lengths.
*/
public Byte2ReferenceLinkedOpenHashMap(final byte[] k, final V[] v,
final float f) {
this(k.length, f);
if (k.length != v.length)
throw new IllegalArgumentException(
"The key array and the value array have different lengths ("
+ k.length + " and " + v.length + ")");
for (int i = 0; i < k.length; i++)
this.put(k[i], v[i]);
}
/**
* Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load
* factor using the elements of two parallel arrays.
*
* @param k
* the array of keys of the new hash map.
* @param v
* the array of corresponding values in the new hash map.
* @throws IllegalArgumentException
* if k
and v
have different lengths.
*/
public Byte2ReferenceLinkedOpenHashMap(final byte[] k, final V[] v) {
this(k, v, DEFAULT_LOAD_FACTOR);
}
private int realSize() {
return containsNullKey ? size - 1 : size;
}
private void ensureCapacity(final int capacity) {
final int needed = arraySize(capacity, f);
if (needed > n)
rehash(needed);
}
private void tryCapacity(final long capacity) {
final int needed = (int) Math.min(
1 << 30,
Math.max(2, HashCommon.nextPowerOfTwo((long) Math.ceil(capacity
/ f))));
if (needed > n)
rehash(needed);
}
private V removeEntry(final int pos) {
final V oldValue = value[pos];
value[pos] = null;
size--;
fixPointers(pos);
shiftKeys(pos);
if (size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE)
rehash(n / 2);
return oldValue;
}
private V removeNullEntry() {
containsNullKey = false;
final V oldValue = value[n];
value[n] = null;
size--;
fixPointers(n);
if (size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE)
rehash(n / 2);
return oldValue;
}
/** {@inheritDoc} */
public void putAll(Map extends Byte, ? extends V> m) {
if (f <= .5)
ensureCapacity(m.size()); // The resulting map will be sized for
// m.size() elements
else
tryCapacity(size() + m.size()); // The resulting map will be
// tentatively sized for size() +
// m.size() elements
super.putAll(m);
}
private int insert(final byte k, final V v) {
int pos;
if (((k) == ((byte) 0))) {
if (containsNullKey)
return n;
containsNullKey = true;
pos = n;
} else {
byte curr;
final byte[] key = this.key;
// The starting point.
if (!((curr = key[pos = (it.unimi.dsi.fastutil.HashCommon.mix((k)))
& mask]) == ((byte) 0))) {
if (((curr) == (k)))
return pos;
while (!((curr = key[pos = (pos + 1) & mask]) == ((byte) 0)))
if (((curr) == (k)))
return pos;
}
}
key[pos] = k;
value[pos] = v;
if (size == 0) {
first = last = pos;
// Special case of SET_UPPER_LOWER( link[ pos ], -1, -1 );
link[pos] = -1L;
} else {
link[last] ^= ((link[last] ^ (pos & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
link[pos] = ((last & 0xFFFFFFFFL) << 32) | (-1 & 0xFFFFFFFFL);
last = pos;
}
if (size++ >= maxFill)
rehash(arraySize(size + 1, f));
if (ASSERTS)
checkTable();
return -1;
}
public V put(final byte k, final V v) {
final int pos = insert(k, v);
if (pos < 0)
return defRetValue;
final V oldValue = value[pos];
value[pos] = v;
return oldValue;
}
/**
* {@inheritDoc}
*
* @deprecated Please use the corresponding type-specific method instead.
*/
@Deprecated
@Override
public V put(final Byte ok, final V ov) {
final V v = (ov);
final int pos = insert(((ok).byteValue()), v);
if (pos < 0)
return (this.defRetValue);
final V oldValue = value[pos];
value[pos] = v;
return (oldValue);
}
/**
* Shifts left entries with the specified hash code, starting at the
* specified position, and empties the resulting free entry.
*
* @param pos
* a starting position.
*/
protected final void shiftKeys(int pos) {
// Shift entries with the same hash.
int last, slot;
byte curr;
final byte[] key = this.key;
for (;;) {
pos = ((last = pos) + 1) & mask;
for (;;) {
if (((curr = key[pos]) == ((byte) 0))) {
key[last] = ((byte) 0);
value[last] = null;
return;
}
slot = (it.unimi.dsi.fastutil.HashCommon.mix((curr))) & mask;
if (last <= pos ? last >= slot || slot > pos : last >= slot
&& slot > pos)
break;
pos = (pos + 1) & mask;
}
key[last] = curr;
value[last] = value[pos];
fixPointers(pos, last);
}
}
public V remove(final byte k) {
if (((k) == ((byte) 0))) {
if (containsNullKey)
return removeNullEntry();
return defRetValue;
}
byte curr;
final byte[] key = this.key;
int pos;
// The starting point.
if (((curr = key[pos = (it.unimi.dsi.fastutil.HashCommon.mix((k)))
& mask]) == ((byte) 0)))
return defRetValue;
if (((k) == (curr)))
return removeEntry(pos);
while (true) {
if (((curr = key[pos = (pos + 1) & mask]) == ((byte) 0)))
return defRetValue;
if (((k) == (curr)))
return removeEntry(pos);
}
}
/**
* {@inheritDoc}
*
* @deprecated Please use the corresponding type-specific method instead.
*/
@Deprecated
@Override
public V remove(final Object ok) {
final byte k = ((((Byte) (ok)).byteValue()));
if (((k) == ((byte) 0))) {
if (containsNullKey)
return (removeNullEntry());
return (this.defRetValue);
}
byte curr;
final byte[] key = this.key;
int pos;
// The starting point.
if (((curr = key[pos = (it.unimi.dsi.fastutil.HashCommon.mix((k)))
& mask]) == ((byte) 0)))
return (this.defRetValue);
if (((curr) == (k)))
return (removeEntry(pos));
while (true) {
if (((curr = key[pos = (pos + 1) & mask]) == ((byte) 0)))
return (this.defRetValue);
if (((curr) == (k)))
return (removeEntry(pos));
}
}
private V setValue(final int pos, final V v) {
final V oldValue = value[pos];
value[pos] = v;
return oldValue;
}
/**
* Removes the mapping associated with the first key in iteration order.
*
* @return the value previously associated with the first key in iteration
* order.
* @throws NoSuchElementException
* is this map is empty.
*/
public V removeFirst() {
if (size == 0)
throw new NoSuchElementException();
final int pos = first;
// Abbreviated version of fixPointers(pos)
first = (int) link[pos];
if (0 <= first) {
// Special case of SET_PREV( link[ first ], -1 )
link[first] |= (-1 & 0xFFFFFFFFL) << 32;
}
size--;
final V v = value[pos];
if (pos == n) {
containsNullKey = false;
value[n] = null;
} else
shiftKeys(pos);
if (size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE)
rehash(n / 2);
return v;
}
/**
* Removes the mapping associated with the last key in iteration order.
*
* @return the value previously associated with the last key in iteration
* order.
* @throws NoSuchElementException
* is this map is empty.
*/
public V removeLast() {
if (size == 0)
throw new NoSuchElementException();
final int pos = last;
// Abbreviated version of fixPointers(pos)
last = (int) (link[pos] >>> 32);
if (0 <= last) {
// Special case of SET_NEXT( link[ last ], -1 )
link[last] |= -1 & 0xFFFFFFFFL;
}
size--;
final V v = value[pos];
if (pos == n) {
containsNullKey = false;
value[n] = null;
} else
shiftKeys(pos);
if (size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE)
rehash(n / 2);
return v;
}
private void moveIndexToFirst(final int i) {
if (size == 1 || first == i)
return;
if (last == i) {
last = (int) (link[i] >>> 32);
// Special case of SET_NEXT( link[ last ], -1 );
link[last] |= -1 & 0xFFFFFFFFL;
} else {
final long linki = link[i];
final int prev = (int) (linki >>> 32);
final int next = (int) linki;
link[prev] ^= ((link[prev] ^ (linki & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
link[next] ^= ((link[next] ^ (linki & 0xFFFFFFFF00000000L)) & 0xFFFFFFFF00000000L);
}
link[first] ^= ((link[first] ^ ((i & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L);
link[i] = ((-1 & 0xFFFFFFFFL) << 32) | (first & 0xFFFFFFFFL);
first = i;
}
private void moveIndexToLast(final int i) {
if (size == 1 || last == i)
return;
if (first == i) {
first = (int) link[i];
// Special case of SET_PREV( link[ first ], -1 );
link[first] |= (-1 & 0xFFFFFFFFL) << 32;
} else {
final long linki = link[i];
final int prev = (int) (linki >>> 32);
final int next = (int) linki;
link[prev] ^= ((link[prev] ^ (linki & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
link[next] ^= ((link[next] ^ (linki & 0xFFFFFFFF00000000L)) & 0xFFFFFFFF00000000L);
}
link[last] ^= ((link[last] ^ (i & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
link[i] = ((last & 0xFFFFFFFFL) << 32) | (-1 & 0xFFFFFFFFL);
last = i;
}
/**
* Returns the value to which the given key is mapped; if the key is
* present, it is moved to the first position of the iteration order.
*
* @param k
* the key.
* @return the corresponding value, or the
* {@linkplain #defaultReturnValue() default return value} if no
* value was present for the given key.
*/
public V getAndMoveToFirst(final byte k) {
if (((k) == ((byte) 0))) {
if (containsNullKey) {
moveIndexToFirst(n);
return value[n];
}
return defRetValue;
}
byte curr;
final byte[] key = this.key;
int pos;
// The starting point.
if (((curr = key[pos = (it.unimi.dsi.fastutil.HashCommon.mix((k)))
& mask]) == ((byte) 0)))
return defRetValue;
if (((k) == (curr))) {
moveIndexToFirst(pos);
return value[pos];
}
// There's always an unused entry.
while (true) {
if (((curr = key[pos = (pos + 1) & mask]) == ((byte) 0)))
return defRetValue;
if (((k) == (curr))) {
moveIndexToFirst(pos);
return value[pos];
}
}
}
/**
* Returns the value to which the given key is mapped; if the key is
* present, it is moved to the last position of the iteration order.
*
* @param k
* the key.
* @return the corresponding value, or the
* {@linkplain #defaultReturnValue() default return value} if no
* value was present for the given key.
*/
public V getAndMoveToLast(final byte k) {
if (((k) == ((byte) 0))) {
if (containsNullKey) {
moveIndexToLast(n);
return value[n];
}
return defRetValue;
}
byte curr;
final byte[] key = this.key;
int pos;
// The starting point.
if (((curr = key[pos = (it.unimi.dsi.fastutil.HashCommon.mix((k)))
& mask]) == ((byte) 0)))
return defRetValue;
if (((k) == (curr))) {
moveIndexToLast(pos);
return value[pos];
}
// There's always an unused entry.
while (true) {
if (((curr = key[pos = (pos + 1) & mask]) == ((byte) 0)))
return defRetValue;
if (((k) == (curr))) {
moveIndexToLast(pos);
return value[pos];
}
}
}
/**
* Adds a pair to the map; if the key is already present, it is moved to the
* first position of the iteration order.
*
* @param k
* the key.
* @param v
* the value.
* @return the old value, or the {@linkplain #defaultReturnValue() default
* return value} if no value was present for the given key.
*/
public V putAndMoveToFirst(final byte k, final V v) {
int pos;
if (((k) == ((byte) 0))) {
if (containsNullKey) {
moveIndexToFirst(n);
return setValue(n, v);
}
containsNullKey = true;
pos = n;
} else {
byte curr;
final byte[] key = this.key;
// The starting point.
if (!((curr = key[pos = (it.unimi.dsi.fastutil.HashCommon.mix((k)))
& mask]) == ((byte) 0))) {
if (((curr) == (k))) {
moveIndexToFirst(pos);
return setValue(pos, v);
}
while (!((curr = key[pos = (pos + 1) & mask]) == ((byte) 0)))
if (((curr) == (k))) {
moveIndexToFirst(pos);
return setValue(pos, v);
}
}
}
key[pos] = k;
value[pos] = v;
if (size == 0) {
first = last = pos;
// Special case of SET_UPPER_LOWER( link[ pos ], -1, -1 );
link[pos] = -1L;
} else {
link[first] ^= ((link[first] ^ ((pos & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L);
link[pos] = ((-1 & 0xFFFFFFFFL) << 32) | (first & 0xFFFFFFFFL);
first = pos;
}
if (size++ >= maxFill)
rehash(arraySize(size, f));
if (ASSERTS)
checkTable();
return defRetValue;
}
/**
* Adds a pair to the map; if the key is already present, it is moved to the
* last position of the iteration order.
*
* @param k
* the key.
* @param v
* the value.
* @return the old value, or the {@linkplain #defaultReturnValue() default
* return value} if no value was present for the given key.
*/
public V putAndMoveToLast(final byte k, final V v) {
int pos;
if (((k) == ((byte) 0))) {
if (containsNullKey) {
moveIndexToLast(n);
return setValue(n, v);
}
containsNullKey = true;
pos = n;
} else {
byte curr;
final byte[] key = this.key;
// The starting point.
if (!((curr = key[pos = (it.unimi.dsi.fastutil.HashCommon.mix((k)))
& mask]) == ((byte) 0))) {
if (((curr) == (k))) {
moveIndexToLast(pos);
return setValue(pos, v);
}
while (!((curr = key[pos = (pos + 1) & mask]) == ((byte) 0)))
if (((curr) == (k))) {
moveIndexToLast(pos);
return setValue(pos, v);
}
}
}
key[pos] = k;
value[pos] = v;
if (size == 0) {
first = last = pos;
// Special case of SET_UPPER_LOWER( link[ pos ], -1, -1 );
link[pos] = -1L;
} else {
link[last] ^= ((link[last] ^ (pos & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
link[pos] = ((last & 0xFFFFFFFFL) << 32) | (-1 & 0xFFFFFFFFL);
last = pos;
}
if (size++ >= maxFill)
rehash(arraySize(size, f));
if (ASSERTS)
checkTable();
return defRetValue;
}
/** @deprecated Please use the corresponding type-specific method instead. */
@Deprecated
public V get(final Byte ok) {
if (ok == null)
return null;
final byte k = ((ok).byteValue());
if (((k) == ((byte) 0)))
return containsNullKey ? (value[n]) : (this.defRetValue);
byte curr;
final byte[] key = this.key;
int pos;
// The starting point.
if (((curr = key[pos = (it.unimi.dsi.fastutil.HashCommon.mix((k)))
& mask]) == ((byte) 0)))
return (this.defRetValue);
if (((k) == (curr)))
return (value[pos]);
// There's always an unused entry.
while (true) {
if (((curr = key[pos = (pos + 1) & mask]) == ((byte) 0)))
return (this.defRetValue);
if (((k) == (curr)))
return (value[pos]);
}
}
public V get(final byte k) {
if (((k) == ((byte) 0)))
return containsNullKey ? value[n] : defRetValue;
byte curr;
final byte[] key = this.key;
int pos;
// The starting point.
if (((curr = key[pos = (it.unimi.dsi.fastutil.HashCommon.mix((k)))
& mask]) == ((byte) 0)))
return defRetValue;
if (((k) == (curr)))
return value[pos];
// There's always an unused entry.
while (true) {
if (((curr = key[pos = (pos + 1) & mask]) == ((byte) 0)))
return defRetValue;
if (((k) == (curr)))
return value[pos];
}
}
public boolean containsKey(final byte k) {
if (((k) == ((byte) 0)))
return containsNullKey;
byte curr;
final byte[] key = this.key;
int pos;
// The starting point.
if (((curr = key[pos = (it.unimi.dsi.fastutil.HashCommon.mix((k)))
& mask]) == ((byte) 0)))
return false;
if (((k) == (curr)))
return true;
// There's always an unused entry.
while (true) {
if (((curr = key[pos = (pos + 1) & mask]) == ((byte) 0)))
return false;
if (((k) == (curr)))
return true;
}
}
public boolean containsValue(final Object v) {
final V value[] = this.value;
final byte key[] = this.key;
if (containsNullKey && ((value[n]) == (v)))
return true;
for (int i = n; i-- != 0;)
if (!((key[i]) == ((byte) 0)) && ((value[i]) == (v)))
return true;
return false;
}
/*
* Removes all elements from this map.
*
* To increase object reuse, this method does not change the table size.
* If you want to reduce the table size, you must use {@link #trim()}.
*/
public void clear() {
if (size == 0)
return;
size = 0;
containsNullKey = false;
Arrays.fill(key, ((byte) 0));
Arrays.fill(value, null);
first = last = -1;
}
public int size() {
return size;
}
public boolean isEmpty() {
return size == 0;
}
/**
* A no-op for backward compatibility.
*
* @param growthFactor
* unused.
* @deprecated Since fastutil
6.1.0, hash tables are doubled
* when they are too full.
*/
@Deprecated
public void growthFactor(int growthFactor) {
}
/**
* Gets the growth factor (2).
*
* @return the growth factor of this set, which is fixed (2).
* @see #growthFactor(int)
* @deprecated Since fastutil
6.1.0, hash tables are doubled
* when they are too full.
*/
@Deprecated
public int growthFactor() {
return 16;
}
/**
* The entry class for a hash map does not record key and value, but rather
* the position in the hash table of the corresponding entry. This is
* necessary so that calls to {@link java.util.Map.Entry#setValue(Object)}
* are reflected in the map
*/
final class MapEntry
implements
Byte2ReferenceMap.Entry,
Map.Entry {
// The table index this entry refers to, or -1 if this entry has been
// deleted.
int index;
MapEntry(final int index) {
this.index = index;
}
MapEntry() {
}
/**
* {@inheritDoc}
*
* @deprecated Please use the corresponding type-specific method
* instead.
*/
@Deprecated
public Byte getKey() {
return (Byte.valueOf(key[index]));
}
public byte getByteKey() {
return key[index];
}
public V getValue() {
return (value[index]);
}
public V setValue(final V v) {
final V oldValue = value[index];
value[index] = v;
return oldValue;
}
@SuppressWarnings("unchecked")
public boolean equals(final Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry e = (Map.Entry) o;
return ((key[index]) == (((e.getKey()).byteValue())))
&& ((value[index]) == ((e.getValue())));
}
public int hashCode() {
return (key[index])
^ ((value[index]) == null ? 0 : System
.identityHashCode(value[index]));
}
public String toString() {
return key[index] + "=>" + value[index];
}
}
/**
* Modifies the {@link #link} vector so that the given entry is removed.
* This method will complete in constant time.
*
* @param i
* the index of an entry.
*/
protected void fixPointers(final int i) {
if (size == 0) {
first = last = -1;
return;
}
if (first == i) {
first = (int) link[i];
if (0 <= first) {
// Special case of SET_PREV( link[ first ], -1 )
link[first] |= (-1 & 0xFFFFFFFFL) << 32;
}
return;
}
if (last == i) {
last = (int) (link[i] >>> 32);
if (0 <= last) {
// Special case of SET_NEXT( link[ last ], -1 )
link[last] |= -1 & 0xFFFFFFFFL;
}
return;
}
final long linki = link[i];
final int prev = (int) (linki >>> 32);
final int next = (int) linki;
link[prev] ^= ((link[prev] ^ (linki & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
link[next] ^= ((link[next] ^ (linki & 0xFFFFFFFF00000000L)) & 0xFFFFFFFF00000000L);
}
/**
* Modifies the {@link #link} vector for a shift from s to d.
*
* This method will complete in constant time.
*
* @param s
* the source position.
* @param d
* the destination position.
*/
protected void fixPointers(int s, int d) {
if (size == 1) {
first = last = d;
// Special case of SET_UPPER_LOWER( link[ d ], -1, -1 )
link[d] = -1L;
return;
}
if (first == s) {
first = d;
link[(int) link[s]] ^= ((link[(int) link[s]] ^ ((d & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L);
link[d] = link[s];
return;
}
if (last == s) {
last = d;
link[(int) (link[s] >>> 32)] ^= ((link[(int) (link[s] >>> 32)] ^ (d & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
link[d] = link[s];
return;
}
final long links = link[s];
final int prev = (int) (links >>> 32);
final int next = (int) links;
link[prev] ^= ((link[prev] ^ (d & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
link[next] ^= ((link[next] ^ ((d & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L);
link[d] = links;
}
/**
* Returns the first key of this map in iteration order.
*
* @return the first key in iteration order.
*/
public byte firstByteKey() {
if (size == 0)
throw new NoSuchElementException();
return key[first];
}
/**
* Returns the last key of this map in iteration order.
*
* @return the last key in iteration order.
*/
public byte lastByteKey() {
if (size == 0)
throw new NoSuchElementException();
return key[last];
}
public ByteComparator comparator() {
return null;
}
public Byte2ReferenceSortedMap tailMap(byte from) {
throw new UnsupportedOperationException();
}
public Byte2ReferenceSortedMap headMap(byte to) {
throw new UnsupportedOperationException();
}
public Byte2ReferenceSortedMap subMap(byte from, byte to) {
throw new UnsupportedOperationException();
}
/**
* A list iterator over a linked map.
*
*
* This class provides a list iterator over a linked hash map. The
* constructor runs in constant time.
*/
private class MapIterator {
/**
* The entry that will be returned by the next call to
* {@link java.util.ListIterator#previous()} (or null
if no
* previous entry exists).
*/
int prev = -1;
/**
* The entry that will be returned by the next call to
* {@link java.util.ListIterator#next()} (or null
if no
* next entry exists).
*/
int next = -1;
/**
* The last entry that was returned (or -1 if we did not iterate or used
* {@link java.util.Iterator#remove()}).
*/
int curr = -1;
/**
* The current index (in the sense of a {@link java.util.ListIterator}).
* Note that this value is not meaningful when this iterator has been
* created using the nonempty constructor.
*/
int index = -1;
private MapIterator() {
next = first;
index = 0;
}
private MapIterator(final byte from) {
if (((from) == ((byte) 0))) {
if (Byte2ReferenceLinkedOpenHashMap.this.containsNullKey) {
next = (int) link[n];
prev = n;
return;
} else
throw new NoSuchElementException("The key " + from
+ " does not belong to this map.");
}
if (((key[last]) == (from))) {
prev = last;
index = size;
return;
}
// The starting point.
int pos = (it.unimi.dsi.fastutil.HashCommon.mix((from))) & mask;
// There's always an unused entry.
while (!((key[pos]) == ((byte) 0))) {
if (((key[pos]) == (from))) {
// Note: no valid index known.
next = (int) link[pos];
prev = pos;
return;
}
pos = (pos + 1) & mask;
}
throw new NoSuchElementException("The key " + from
+ " does not belong to this map.");
}
public boolean hasNext() {
return next != -1;
}
public boolean hasPrevious() {
return prev != -1;
}
private final void ensureIndexKnown() {
if (index >= 0)
return;
if (prev == -1) {
index = 0;
return;
}
if (next == -1) {
index = size;
return;
}
int pos = first;
index = 1;
while (pos != prev) {
pos = (int) link[pos];
index++;
}
}
public int nextIndex() {
ensureIndexKnown();
return index;
}
public int previousIndex() {
ensureIndexKnown();
return index - 1;
}
public int nextEntry() {
if (!hasNext())
throw new NoSuchElementException();
curr = next;
next = (int) link[curr];
prev = curr;
if (index >= 0)
index++;
return curr;
}
public int previousEntry() {
if (!hasPrevious())
throw new NoSuchElementException();
curr = prev;
prev = (int) (link[curr] >>> 32);
next = curr;
if (index >= 0)
index--;
return curr;
}
public void remove() {
ensureIndexKnown();
if (curr == -1)
throw new IllegalStateException();
if (curr == prev) {
/*
* If the last operation was a next(), we are removing an entry
* that preceeds the current index, and thus we must decrement
* it.
*/
index--;
prev = (int) (link[curr] >>> 32);
} else
next = (int) link[curr];
size--;
/*
* Now we manually fix the pointers. Because of our knowledge of
* next and prev, this is going to be faster than calling
* fixPointers().
*/
if (prev == -1)
first = next;
else
link[prev] ^= ((link[prev] ^ (next & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
if (next == -1)
last = prev;
else
link[next] ^= ((link[next] ^ ((prev & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L);
int last, slot, pos = curr;
curr = -1;
if (pos == n) {
Byte2ReferenceLinkedOpenHashMap.this.containsNullKey = false;
value[n] = null;
} else {
byte curr;
final byte[] key = Byte2ReferenceLinkedOpenHashMap.this.key;
// We have to horribly duplicate the shiftKeys() code because we
// need to update next/prev.
for (;;) {
pos = ((last = pos) + 1) & mask;
for (;;) {
if (((curr = key[pos]) == ((byte) 0))) {
key[last] = ((byte) 0);
value[last] = null;
return;
}
slot = (it.unimi.dsi.fastutil.HashCommon.mix((curr)))
& mask;
if (last <= pos
? last >= slot || slot > pos
: last >= slot && slot > pos)
break;
pos = (pos + 1) & mask;
}
key[last] = curr;
value[last] = value[pos];
if (next == pos)
next = last;
if (prev == pos)
prev = last;
fixPointers(pos, last);
}
}
}
public int skip(final int n) {
int i = n;
while (i-- != 0 && hasNext())
nextEntry();
return n - i - 1;
}
public int back(final int n) {
int i = n;
while (i-- != 0 && hasPrevious())
previousEntry();
return n - i - 1;
}
}
private class EntryIterator extends MapIterator
implements
ObjectListIterator> {
private MapEntry entry;
public EntryIterator() {
}
public EntryIterator(byte from) {
super(from);
}
public MapEntry next() {
return entry = new MapEntry(nextEntry());
}
public MapEntry previous() {
return entry = new MapEntry(previousEntry());
}
@Override
public void remove() {
super.remove();
entry.index = -1; // You cannot use a deleted entry.
}
public void set(Byte2ReferenceMap.Entry ok) {
throw new UnsupportedOperationException();
}
public void add(Byte2ReferenceMap.Entry ok) {
throw new UnsupportedOperationException();
}
}
private class FastEntryIterator extends MapIterator
implements
ObjectListIterator> {
final MapEntry entry = new MapEntry();
public FastEntryIterator() {
}
public FastEntryIterator(byte from) {
super(from);
}
public MapEntry next() {
entry.index = nextEntry();
return entry;
}
public MapEntry previous() {
entry.index = previousEntry();
return entry;
}
public void set(Byte2ReferenceMap.Entry ok) {
throw new UnsupportedOperationException();
}
public void add(Byte2ReferenceMap.Entry ok) {
throw new UnsupportedOperationException();
}
}
private final class MapEntrySet
extends
AbstractObjectSortedSet>
implements
FastSortedEntrySet {
public ObjectBidirectionalIterator> iterator() {
return new EntryIterator();
}
public Comparator super Byte2ReferenceMap.Entry> comparator() {
return null;
}
public ObjectSortedSet> subSet(
Byte2ReferenceMap.Entry fromElement,
Byte2ReferenceMap.Entry toElement) {
throw new UnsupportedOperationException();
}
public ObjectSortedSet> headSet(
Byte2ReferenceMap.Entry toElement) {
throw new UnsupportedOperationException();
}
public ObjectSortedSet> tailSet(
Byte2ReferenceMap.Entry fromElement) {
throw new UnsupportedOperationException();
}
public Byte2ReferenceMap.Entry first() {
if (size == 0)
throw new NoSuchElementException();
return new MapEntry(Byte2ReferenceLinkedOpenHashMap.this.first);
}
public Byte2ReferenceMap.Entry last() {
if (size == 0)
throw new NoSuchElementException();
return new MapEntry(Byte2ReferenceLinkedOpenHashMap.this.last);
}
@SuppressWarnings("unchecked")
public boolean contains(final Object o) {
if (!(o instanceof Map.Entry))
return false;
final Map.Entry, ?> e = (Map.Entry, ?>) o;
if (e.getKey() == null || !(e.getKey() instanceof Byte))
return false;
final byte k = ((((Byte) (e.getKey())).byteValue()));
final V v = ((V) e.getValue());
if (((k) == ((byte) 0)))
return Byte2ReferenceLinkedOpenHashMap.this.containsNullKey
&& ((value[n]) == (v));
byte curr;
final byte[] key = Byte2ReferenceLinkedOpenHashMap.this.key;
int pos;
// The starting point.
if (((curr = key[pos = (it.unimi.dsi.fastutil.HashCommon.mix((k)))
& mask]) == ((byte) 0)))
return false;
if (((k) == (curr)))
return ((value[pos]) == (v));
// There's always an unused entry.
while (true) {
if (((curr = key[pos = (pos + 1) & mask]) == ((byte) 0)))
return false;
if (((k) == (curr)))
return ((value[pos]) == (v));
}
}
@SuppressWarnings("unchecked")
public boolean remove(final Object o) {
if (!(o instanceof Map.Entry))
return false;
final Map.Entry, ?> e = (Map.Entry, ?>) o;
if (e.getKey() == null || !(e.getKey() instanceof Byte))
return false;
final byte k = ((((Byte) (e.getKey())).byteValue()));
final V v = ((V) e.getValue());
if (((k) == ((byte) 0))) {
if (containsNullKey && ((value[n]) == (v))) {
removeNullEntry();
return true;
}
return false;
}
byte curr;
final byte[] key = Byte2ReferenceLinkedOpenHashMap.this.key;
int pos;
// The starting point.
if (((curr = key[pos = (it.unimi.dsi.fastutil.HashCommon.mix((k)))
& mask]) == ((byte) 0)))
return false;
if (((curr) == (k))) {
if (((value[pos]) == (v))) {
removeEntry(pos);
return true;
}
return false;
}
while (true) {
if (((curr = key[pos = (pos + 1) & mask]) == ((byte) 0)))
return false;
if (((curr) == (k))) {
if (((value[pos]) == (v))) {
removeEntry(pos);
return true;
}
}
}
}
public int size() {
return size;
}
public void clear() {
Byte2ReferenceLinkedOpenHashMap.this.clear();
}
public ObjectBidirectionalIterator> iterator(
final Byte2ReferenceMap.Entry from) {
return new EntryIterator(from.getByteKey());
}
public ObjectBidirectionalIterator> fastIterator() {
return new FastEntryIterator();
}
public ObjectBidirectionalIterator> fastIterator(
final Byte2ReferenceMap.Entry from) {
return new FastEntryIterator(from.getByteKey());
}
}
public FastSortedEntrySet byte2ReferenceEntrySet() {
if (entries == null)
entries = new MapEntrySet();
return entries;
}
/**
* An iterator on keys.
*
*
* We simply override the {@link java.util.ListIterator#next()}/
* {@link java.util.ListIterator#previous()} methods (and possibly their
* type-specific counterparts) so that they return keys instead of entries.
*/
private final class KeyIterator extends MapIterator
implements
ByteListIterator {
public KeyIterator(final byte k) {
super(k);
}
public byte previousByte() {
return key[previousEntry()];
}
public void set(byte k) {
throw new UnsupportedOperationException();
}
public void add(byte k) {
throw new UnsupportedOperationException();
}
public Byte previous() {
return (Byte.valueOf(key[previousEntry()]));
}
public void set(Byte ok) {
throw new UnsupportedOperationException();
}
public void add(Byte ok) {
throw new UnsupportedOperationException();
}
public KeyIterator() {
super();
}
public byte nextByte() {
return key[nextEntry()];
}
public Byte next() {
return (Byte.valueOf(key[nextEntry()]));
}
}
private final class KeySet extends AbstractByteSortedSet {
public ByteListIterator iterator(final byte from) {
return new KeyIterator(from);
}
public ByteListIterator iterator() {
return new KeyIterator();
}
public int size() {
return size;
}
public boolean contains(byte k) {
return containsKey(k);
}
public boolean remove(byte k) {
final int oldSize = size;
Byte2ReferenceLinkedOpenHashMap.this.remove(k);
return size != oldSize;
}
public void clear() {
Byte2ReferenceLinkedOpenHashMap.this.clear();
}
public byte firstByte() {
if (size == 0)
throw new NoSuchElementException();
return key[first];
}
public byte lastByte() {
if (size == 0)
throw new NoSuchElementException();
return key[last];
}
public ByteComparator comparator() {
return null;
}
final public ByteSortedSet tailSet(byte from) {
throw new UnsupportedOperationException();
}
final public ByteSortedSet headSet(byte to) {
throw new UnsupportedOperationException();
}
final public ByteSortedSet subSet(byte from, byte to) {
throw new UnsupportedOperationException();
}
}
public ByteSortedSet keySet() {
if (keys == null)
keys = new KeySet();
return keys;
}
/**
* An iterator on values.
*
*
* We simply override the {@link java.util.ListIterator#next()}/
* {@link java.util.ListIterator#previous()} methods (and possibly their
* type-specific counterparts) so that they return values instead of
* entries.
*/
private final class ValueIterator extends MapIterator
implements
ObjectListIterator {
public V previous() {
return value[previousEntry()];
}
public void set(V v) {
throw new UnsupportedOperationException();
}
public void add(V v) {
throw new UnsupportedOperationException();
}
public ValueIterator() {
super();
}
public V next() {
return value[nextEntry()];
}
}
public ReferenceCollection values() {
if (values == null)
values = new AbstractReferenceCollection() {
public ObjectIterator iterator() {
return new ValueIterator();
}
public int size() {
return size;
}
public boolean contains(Object v) {
return containsValue(v);
}
public void clear() {
Byte2ReferenceLinkedOpenHashMap.this.clear();
}
};
return values;
}
/**
* A no-op for backward compatibility. The kind of tables implemented by
* this class never need rehashing.
*
*
* If you need to reduce the table size to fit exactly this set, use
* {@link #trim()}.
*
* @return true.
* @see #trim()
* @deprecated A no-op.
*/
@Deprecated
public boolean rehash() {
return true;
}
/**
* Rehashes the map, making the table as small as possible.
*
*
* This method rehashes the table to the smallest size satisfying the load
* factor. It can be used when the set will not be changed anymore, so to
* optimize access speed and size.
*
*
* If the table size is already the minimum possible, this method does
* nothing.
*
* @return true if there was enough memory to trim the map.
* @see #trim(int)
*/
public boolean trim() {
final int l = arraySize(size, f);
if (l >= n || size > maxFill(l, f))
return true;
try {
rehash(l);
} catch (OutOfMemoryError cantDoIt) {
return false;
}
return true;
}
/**
* Rehashes this map if the table is too large.
*
*
* Let N be the smallest table size that can hold
* max(n,{@link #size()})
entries, still satisfying the load
* factor. If the current table size is smaller than or equal to
* N, this method does nothing. Otherwise, it rehashes this map
* in a table of size N.
*
*
* This method is useful when reusing maps. {@linkplain #clear() Clearing a
* map} leaves the table size untouched. If you are reusing a map many times,
* you can call this method with a typical size to avoid keeping around a
* very large table just because of a few large transient maps.
*
* @param n
* the threshold for the trimming.
* @return true if there was enough memory to trim the map.
* @see #trim()
*/
public boolean trim(final int n) {
final int l = HashCommon.nextPowerOfTwo((int) Math.ceil(n / f));
if (l >= n || size > maxFill(l, f))
return true;
try {
rehash(l);
} catch (OutOfMemoryError cantDoIt) {
return false;
}
return true;
}
/**
* Rehashes the map.
*
*
* This method implements the basic rehashing strategy, and may be overriden
* by subclasses implementing different rehashing strategies (e.g.,
* disk-based rehashing). However, you should not override this method
* unless you understand the internal workings of this class.
*
* @param newN
* the new size
*/
@SuppressWarnings("unchecked")
protected void rehash(final int newN) {
final byte key[] = this.key;
final V value[] = this.value;
final int mask = newN - 1; // Note that this is used by the hashing
// macro
final byte newKey[] = new byte[newN + 1];
final V newValue[] = (V[]) new Object[newN + 1];
int i = first, prev = -1, newPrev = -1, t, pos;
final long link[] = this.link;
final long newLink[] = new long[newN + 1];
first = -1;
for (int j = size; j-- != 0;) {
if (((key[i]) == ((byte) 0)))
pos = newN;
else {
pos = (it.unimi.dsi.fastutil.HashCommon.mix((key[i]))) & mask;
while (!((newKey[pos]) == ((byte) 0)))
pos = (pos + 1) & mask;
}
newKey[pos] = key[i];
newValue[pos] = value[i];
if (prev != -1) {
newLink[newPrev] ^= ((newLink[newPrev] ^ (pos & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
newLink[pos] ^= ((newLink[pos] ^ ((newPrev & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L);
newPrev = pos;
} else {
newPrev = first = pos;
// Special case of SET(newLink[ pos ], -1, -1);
newLink[pos] = -1L;
}
t = i;
i = (int) link[i];
prev = t;
}
this.link = newLink;
this.last = newPrev;
if (newPrev != -1)
// Special case of SET_NEXT( newLink[ newPrev ], -1 );
newLink[newPrev] |= -1 & 0xFFFFFFFFL;
n = newN;
this.mask = mask;
maxFill = maxFill(n, f);
this.key = newKey;
this.value = newValue;
}
/**
* Returns a deep copy of this map.
*
*
* This method performs a deep copy of this hash map; the data stored in the
* map, however, is not cloned. Note that this makes a difference only for
* object keys.
*
* @return a deep copy of this map.
*/
@SuppressWarnings("unchecked")
public Byte2ReferenceLinkedOpenHashMap clone() {
Byte2ReferenceLinkedOpenHashMap c;
try {
c = (Byte2ReferenceLinkedOpenHashMap) super.clone();
} catch (CloneNotSupportedException cantHappen) {
throw new InternalError();
}
c.keys = null;
c.values = null;
c.entries = null;
c.containsNullKey = containsNullKey;
c.key = key.clone();
c.value = value.clone();
c.link = link.clone();
return c;
}
/**
* Returns a hash code for this map.
*
* This method overrides the generic method provided by the superclass.
* Since equals()
is not overriden, it is important that the
* value returned by this method is the same value as the one returned by
* the overriden method.
*
* @return a hash code for this map.
*/
public int hashCode() {
int h = 0;
for (int j = realSize(), i = 0, t = 0; j-- != 0;) {
while (((key[i]) == ((byte) 0)))
i++;
t = (key[i]);
if (this != value[i])
t ^= ((value[i]) == null ? 0 : System
.identityHashCode(value[i]));
h += t;
i++;
}
// Zero / null keys have hash zero.
if (containsNullKey)
h += ((value[n]) == null ? 0 : System.identityHashCode(value[n]));
return h;
}
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
final byte key[] = this.key;
final V value[] = this.value;
final MapIterator i = new MapIterator();
s.defaultWriteObject();
for (int j = size, e; j-- != 0;) {
e = i.nextEntry();
s.writeByte(key[e]);
s.writeObject(value[e]);
}
}
@SuppressWarnings("unchecked")
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
n = arraySize(size, f);
maxFill = maxFill(n, f);
mask = n - 1;
final byte key[] = this.key = new byte[n + 1];
final V value[] = this.value = (V[]) new Object[n + 1];
final long link[] = this.link = new long[n + 1];
int prev = -1;
first = last = -1;
byte k;
V v;
for (int i = size, pos; i-- != 0;) {
k = s.readByte();
v = (V) s.readObject();
if (((k) == ((byte) 0))) {
pos = n;
containsNullKey = true;
} else {
pos = (it.unimi.dsi.fastutil.HashCommon.mix((k))) & mask;
while (!((key[pos]) == ((byte) 0)))
pos = (pos + 1) & mask;
}
key[pos] = k;
value[pos] = v;
if (first != -1) {
link[prev] ^= ((link[prev] ^ (pos & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
link[pos] ^= ((link[pos] ^ ((prev & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L);
prev = pos;
} else {
prev = first = pos;
// Special case of SET_PREV( newLink[ pos ], -1 );
link[pos] |= (-1L & 0xFFFFFFFFL) << 32;
}
}
last = prev;
if (prev != -1)
// Special case of SET_NEXT( link[ prev ], -1 );
link[prev] |= -1 & 0xFFFFFFFFL;
if (ASSERTS)
checkTable();
}
private void checkTable() {
}
}