All Downloads are FREE. Search and download functionalities are using the official Maven repository.

it.unimi.dsi.fastutil.floats.Float2IntLinkedOpenHashMap Maven / Gradle / Ivy

Go to download

fastutil extends the Java Collections Framework by providing type-specific maps, sets, lists, and queues with a small memory footprint and fast access and insertion; it provides also big (64-bit) arrays, sets and lists, sorting algorithms, fast, practical I/O classes for binary and text files, and facilities for memory mapping large files. Note that if you have both this jar and fastutil-core.jar in your dependencies, fastutil-core.jar should be excluded.

There is a newer version: 8.5.15
Show newest version
/* Generic definitions */
/* Assertions (useful to generate conditional code) */
/* Current type and class (and size, if applicable) */
/* Value methods */
/* Interfaces (keys) */
/* Interfaces (values) */
/* Abstract implementations (keys) */
/* Abstract implementations (values) */
/* Static containers (keys) */
/* Static containers (values) */
/* Implementations */
/* Synchronized wrappers */
/* Unmodifiable wrappers */
/* Other wrappers */
/* Methods (keys) */
/* Methods (values) */
/* Methods (keys/values) */
/* Methods that have special names depending on keys (but the special names depend on values) */
/* Equality */
/* Object/Reference-only definitions (keys) */
/* Primitive-type-only definitions (keys) */
/* Object/Reference-only definitions (values) */
/* Primitive-type-only definitions (values) */
/*		 
 * Copyright (C) 2002-2016 Sebastiano Vigna
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. 
 */
package it.unimi.dsi.fastutil.floats;
import it.unimi.dsi.fastutil.Hash;
import it.unimi.dsi.fastutil.HashCommon;
import static it.unimi.dsi.fastutil.HashCommon.arraySize;
import static it.unimi.dsi.fastutil.HashCommon.maxFill;
import java.util.Map;
import java.util.Arrays;
import java.util.NoSuchElementException;
import it.unimi.dsi.fastutil.ints.IntCollection;
import it.unimi.dsi.fastutil.ints.AbstractIntCollection;
import it.unimi.dsi.fastutil.ints.IntIterator;
import java.util.Comparator;
import it.unimi.dsi.fastutil.ints.IntListIterator;
import it.unimi.dsi.fastutil.objects.AbstractObjectSortedSet;
import it.unimi.dsi.fastutil.objects.ObjectListIterator;
import it.unimi.dsi.fastutil.objects.ObjectBidirectionalIterator;
import it.unimi.dsi.fastutil.objects.ObjectSortedSet;
/**
 * A type-specific linked hash map with with a fast, small-footprint
 * implementation.
 *
 * 

* Instances of this class use a hash table to represent a map. The table is * filled up to a specified load factor, and then doubled in size to * accommodate new entries. If the table is emptied below one fourth of * the load factor, it is halved in size. However, halving is not performed when * deleting entries from an iterator, as it would interfere with the iteration * process. * *

* Note that {@link #clear()} does not modify the hash table size. Rather, a * family of {@linkplain #trim() trimming methods} lets you control the size of * the table; this is particularly useful if you reuse instances of this class. * *

* Iterators generated by this map will enumerate pairs in the same order in * which they have been added to the map (addition of pairs whose key is already * present in the set does not change the iteration order). Note that this order * has nothing in common with the natural order of the keys. The order is kept * by means of a doubly linked list, represented via an array of longs * parallel to the table. * *

* This class implements the interface of a sorted map, so to allow easy access * of the iteration order: for instance, you can get the first key in iteration * order with {@code firstKey()} without having to create an iterator; however, * this class partially violates the {@link java.util.SortedMap} contract * because all submap methods throw an exception and {@link #comparator()} * returns always null. * *

* Additional methods, such as getAndMoveToFirst(), make it easy to * use instances of this class as a cache (e.g., with LRU policy). * *

* The iterators provided by the views of this class using are type-specific * {@linkplain java.util.ListIterator list iterators}, and can be started at any * element which is a key of the map, or a * {@link NoSuchElementException} exception will be thrown. If, however, the * provided element is not the first or last key in the set, the first access to * the list index will require linear time, as in the worst case the entire key * set must be scanned in iteration order to retrieve the positional index of * the starting key. If you use just the methods of a type-specific * {@link it.unimi.dsi.fastutil.BidirectionalIterator}, however, all operations * will be performed in constant time. * * @see Hash * @see HashCommon */ public class Float2IntLinkedOpenHashMap extends AbstractFloat2IntSortedMap implements java.io.Serializable, Cloneable, Hash { private static final long serialVersionUID = 0L; private static final boolean ASSERTS = false; /** The array of keys. */ protected transient float[] key; /** The array of values. */ protected transient int[] value; /** The mask for wrapping a position counter. */ protected transient int mask; /** Whether this set contains the key zero. */ protected transient boolean containsNullKey; /** * The index of the first entry in iteration order. It is valid iff * {@link #size} is nonzero; otherwise, it contains -1. */ protected transient int first = -1; /** * The index of the last entry in iteration order. It is valid iff * {@link #size} is nonzero; otherwise, it contains -1. */ protected transient int last = -1; /** * For each entry, the next and the previous entry in iteration order, * stored as * ((prev & 0xFFFFFFFFL) << 32) | (next & 0xFFFFFFFFL). The * first entry contains predecessor -1, and the last entry contains * successor -1. */ protected transient long[] link; /** The current table size. */ protected transient int n; /** * Threshold after which we rehash. It must be the table size times * {@link #f}. */ protected transient int maxFill; /** Number of entries in the set (including the key zero, if present). */ protected int size; /** The acceptable load factor. */ protected final float f; /** Cached set of entries. */ protected transient FastSortedEntrySet entries; /** Cached set of keys. */ protected transient FloatSortedSet keys; /** Cached collection of values. */ protected transient IntCollection values; /** * Creates a new hash map. * *

* The actual table size will be the least power of two greater than * expected/f. * * @param expected * the expected number of elements in the hash set. * @param f * the load factor. */ public Float2IntLinkedOpenHashMap(final int expected, final float f) { if (f <= 0 || f > 1) throw new IllegalArgumentException( "Load factor must be greater than 0 and smaller than or equal to 1"); if (expected < 0) throw new IllegalArgumentException( "The expected number of elements must be nonnegative"); this.f = f; n = arraySize(expected, f); mask = n - 1; maxFill = maxFill(n, f); key = new float[n + 1]; value = new int[n + 1]; link = new long[n + 1]; } /** * Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load * factor. * * @param expected * the expected number of elements in the hash map. */ public Float2IntLinkedOpenHashMap(final int expected) { this(expected, DEFAULT_LOAD_FACTOR); } /** * Creates a new hash map with initial expected * {@link Hash#DEFAULT_INITIAL_SIZE} entries and * {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. */ public Float2IntLinkedOpenHashMap() { this(DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR); } /** * Creates a new hash map copying a given one. * * @param m * a {@link Map} to be copied into the new hash map. * @param f * the load factor. */ public Float2IntLinkedOpenHashMap( final Map m, final float f) { this(m.size(), f); putAll(m); } /** * Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load * factor copying a given one. * * @param m * a {@link Map} to be copied into the new hash map. */ public Float2IntLinkedOpenHashMap( final Map m) { this(m, DEFAULT_LOAD_FACTOR); } /** * Creates a new hash map copying a given type-specific one. * * @param m * a type-specific map to be copied into the new hash map. * @param f * the load factor. */ public Float2IntLinkedOpenHashMap(final Float2IntMap m, final float f) { this(m.size(), f); putAll(m); } /** * Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load * factor copying a given type-specific one. * * @param m * a type-specific map to be copied into the new hash map. */ public Float2IntLinkedOpenHashMap(final Float2IntMap m) { this(m, DEFAULT_LOAD_FACTOR); } /** * Creates a new hash map using the elements of two parallel arrays. * * @param k * the array of keys of the new hash map. * @param v * the array of corresponding values in the new hash map. * @param f * the load factor. * @throws IllegalArgumentException * if k and v have different lengths. */ public Float2IntLinkedOpenHashMap(final float[] k, final int[] v, final float f) { this(k.length, f); if (k.length != v.length) throw new IllegalArgumentException( "The key array and the value array have different lengths (" + k.length + " and " + v.length + ")"); for (int i = 0; i < k.length; i++) this.put(k[i], v[i]); } /** * Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load * factor using the elements of two parallel arrays. * * @param k * the array of keys of the new hash map. * @param v * the array of corresponding values in the new hash map. * @throws IllegalArgumentException * if k and v have different lengths. */ public Float2IntLinkedOpenHashMap(final float[] k, final int[] v) { this(k, v, DEFAULT_LOAD_FACTOR); } private int realSize() { return containsNullKey ? size - 1 : size; } private void ensureCapacity(final int capacity) { final int needed = arraySize(capacity, f); if (needed > n) rehash(needed); } private void tryCapacity(final long capacity) { final int needed = (int) Math.min( 1 << 30, Math.max(2, HashCommon.nextPowerOfTwo((long) Math.ceil(capacity / f)))); if (needed > n) rehash(needed); } private int removeEntry(final int pos) { final int oldValue = value[pos]; size--; fixPointers(pos); shiftKeys(pos); if (size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2); return oldValue; } private int removeNullEntry() { containsNullKey = false; final int oldValue = value[n]; size--; fixPointers(n); if (size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2); return oldValue; } /** {@inheritDoc} */ public void putAll(Map m) { if (f <= .5) ensureCapacity(m.size()); // The resulting map will be sized for // m.size() elements else tryCapacity(size() + m.size()); // The resulting map will be // tentatively sized for size() + // m.size() elements super.putAll(m); } private int insert(final float k, final int v) { int pos; if ((Float.floatToIntBits(k) == 0)) { if (containsNullKey) return n; containsNullKey = true; pos = n; } else { float curr; final float[] key = this.key; // The starting point. if (!(Float .floatToIntBits(curr = key[pos = it.unimi.dsi.fastutil.HashCommon .mix(it.unimi.dsi.fastutil.HashCommon.float2int(k)) & mask]) == 0)) { if ((Float.floatToIntBits(curr) == Float.floatToIntBits(k))) return pos; while (!(Float .floatToIntBits(curr = key[pos = (pos + 1) & mask]) == 0)) if ((Float.floatToIntBits(curr) == Float.floatToIntBits(k))) return pos; } } key[pos] = k; value[pos] = v; if (size == 0) { first = last = pos; // Special case of SET_UPPER_LOWER( link[ pos ], -1, -1 ); link[pos] = -1L; } else { link[last] ^= ((link[last] ^ (pos & 0xFFFFFFFFL)) & 0xFFFFFFFFL); link[pos] = ((last & 0xFFFFFFFFL) << 32) | (-1 & 0xFFFFFFFFL); last = pos; } if (size++ >= maxFill) rehash(arraySize(size + 1, f)); if (ASSERTS) checkTable(); return -1; } public int put(final float k, final int v) { final int pos = insert(k, v); if (pos < 0) return defRetValue; final int oldValue = value[pos]; value[pos] = v; return oldValue; } /** * {@inheritDoc} * * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override public Integer put(final Float ok, final Integer ov) { final int v = ((ov).intValue()); final int pos = insert(((ok).floatValue()), v); if (pos < 0) return (null); final int oldValue = value[pos]; value[pos] = v; return (Integer.valueOf(oldValue)); } private int addToValue(final int pos, final int incr) { final int oldValue = value[pos]; value[pos] = oldValue + incr; return oldValue; } /** * Adds an increment to value currently associated with a key. * *

* Note that this method respects the {@linkplain #defaultReturnValue() * default return value} semantics: when called with a key that does not * currently appears in the map, the key will be associated with the default * return value plus the given increment. * * @param k * the key. * @param incr * the increment. * @return the old value, or the {@linkplain #defaultReturnValue() default * return value} if no value was present for the given key. */ public int addTo(final float k, final int incr) { int pos; if ((Float.floatToIntBits(k) == 0)) { if (containsNullKey) return addToValue(n, incr); pos = n; containsNullKey = true; } else { float curr; final float[] key = this.key; // The starting point. if (!(Float .floatToIntBits(curr = key[pos = it.unimi.dsi.fastutil.HashCommon .mix(it.unimi.dsi.fastutil.HashCommon.float2int(k)) & mask]) == 0)) { if ((Float.floatToIntBits(curr) == Float.floatToIntBits(k))) return addToValue(pos, incr); while (!(Float .floatToIntBits(curr = key[pos = (pos + 1) & mask]) == 0)) if ((Float.floatToIntBits(curr) == Float.floatToIntBits(k))) return addToValue(pos, incr); } } key[pos] = k; value[pos] = defRetValue + incr; if (size == 0) { first = last = pos; // Special case of SET_UPPER_LOWER( link[ pos ], -1, -1 ); link[pos] = -1L; } else { link[last] ^= ((link[last] ^ (pos & 0xFFFFFFFFL)) & 0xFFFFFFFFL); link[pos] = ((last & 0xFFFFFFFFL) << 32) | (-1 & 0xFFFFFFFFL); last = pos; } if (size++ >= maxFill) rehash(arraySize(size + 1, f)); if (ASSERTS) checkTable(); return defRetValue; } /** * Shifts left entries with the specified hash code, starting at the * specified position, and empties the resulting free entry. * * @param pos * a starting position. */ protected final void shiftKeys(int pos) { // Shift entries with the same hash. int last, slot; float curr; final float[] key = this.key; for (;;) { pos = ((last = pos) + 1) & mask; for (;;) { if ((Float.floatToIntBits(curr = key[pos]) == 0)) { key[last] = (0); return; } slot = it.unimi.dsi.fastutil.HashCommon .mix(it.unimi.dsi.fastutil.HashCommon.float2int(curr)) & mask; if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break; pos = (pos + 1) & mask; } key[last] = curr; value[last] = value[pos]; fixPointers(pos, last); } } public int remove(final float k) { if ((Float.floatToIntBits(k) == 0)) { if (containsNullKey) return removeNullEntry(); return defRetValue; } float curr; final float[] key = this.key; int pos; // The starting point. if ((Float .floatToIntBits(curr = key[pos = it.unimi.dsi.fastutil.HashCommon .mix(it.unimi.dsi.fastutil.HashCommon.float2int(k)) & mask]) == 0)) return defRetValue; if ((Float.floatToIntBits(k) == Float.floatToIntBits(curr))) return removeEntry(pos); while (true) { if ((Float.floatToIntBits(curr = key[pos = (pos + 1) & mask]) == 0)) return defRetValue; if ((Float.floatToIntBits(k) == Float.floatToIntBits(curr))) return removeEntry(pos); } } /** * {@inheritDoc} * * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override public Integer remove(final Object ok) { final float k = ((((Float) (ok)).floatValue())); if ((Float.floatToIntBits(k) == 0)) { if (containsNullKey) return (Integer.valueOf(removeNullEntry())); return (null); } float curr; final float[] key = this.key; int pos; // The starting point. if ((Float .floatToIntBits(curr = key[pos = it.unimi.dsi.fastutil.HashCommon .mix(it.unimi.dsi.fastutil.HashCommon.float2int(k)) & mask]) == 0)) return (null); if ((Float.floatToIntBits(curr) == Float.floatToIntBits(k))) return (Integer.valueOf(removeEntry(pos))); while (true) { if ((Float.floatToIntBits(curr = key[pos = (pos + 1) & mask]) == 0)) return (null); if ((Float.floatToIntBits(curr) == Float.floatToIntBits(k))) return (Integer.valueOf(removeEntry(pos))); } } private int setValue(final int pos, final int v) { final int oldValue = value[pos]; value[pos] = v; return oldValue; } /** * Removes the mapping associated with the first key in iteration order. * * @return the value previously associated with the first key in iteration * order. * @throws NoSuchElementException * is this map is empty. */ public int removeFirstInt() { if (size == 0) throw new NoSuchElementException(); final int pos = first; // Abbreviated version of fixPointers(pos) first = (int) link[pos]; if (0 <= first) { // Special case of SET_PREV( link[ first ], -1 ) link[first] |= (-1 & 0xFFFFFFFFL) << 32; } size--; final int v = value[pos]; if (pos == n) { containsNullKey = false; } else shiftKeys(pos); if (size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2); return v; } /** * Removes the mapping associated with the last key in iteration order. * * @return the value previously associated with the last key in iteration * order. * @throws NoSuchElementException * is this map is empty. */ public int removeLastInt() { if (size == 0) throw new NoSuchElementException(); final int pos = last; // Abbreviated version of fixPointers(pos) last = (int) (link[pos] >>> 32); if (0 <= last) { // Special case of SET_NEXT( link[ last ], -1 ) link[last] |= -1 & 0xFFFFFFFFL; } size--; final int v = value[pos]; if (pos == n) { containsNullKey = false; } else shiftKeys(pos); if (size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2); return v; } private void moveIndexToFirst(final int i) { if (size == 1 || first == i) return; if (last == i) { last = (int) (link[i] >>> 32); // Special case of SET_NEXT( link[ last ], -1 ); link[last] |= -1 & 0xFFFFFFFFL; } else { final long linki = link[i]; final int prev = (int) (linki >>> 32); final int next = (int) linki; link[prev] ^= ((link[prev] ^ (linki & 0xFFFFFFFFL)) & 0xFFFFFFFFL); link[next] ^= ((link[next] ^ (linki & 0xFFFFFFFF00000000L)) & 0xFFFFFFFF00000000L); } link[first] ^= ((link[first] ^ ((i & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L); link[i] = ((-1 & 0xFFFFFFFFL) << 32) | (first & 0xFFFFFFFFL); first = i; } private void moveIndexToLast(final int i) { if (size == 1 || last == i) return; if (first == i) { first = (int) link[i]; // Special case of SET_PREV( link[ first ], -1 ); link[first] |= (-1 & 0xFFFFFFFFL) << 32; } else { final long linki = link[i]; final int prev = (int) (linki >>> 32); final int next = (int) linki; link[prev] ^= ((link[prev] ^ (linki & 0xFFFFFFFFL)) & 0xFFFFFFFFL); link[next] ^= ((link[next] ^ (linki & 0xFFFFFFFF00000000L)) & 0xFFFFFFFF00000000L); } link[last] ^= ((link[last] ^ (i & 0xFFFFFFFFL)) & 0xFFFFFFFFL); link[i] = ((last & 0xFFFFFFFFL) << 32) | (-1 & 0xFFFFFFFFL); last = i; } /** * Returns the value to which the given key is mapped; if the key is * present, it is moved to the first position of the iteration order. * * @param k * the key. * @return the corresponding value, or the * {@linkplain #defaultReturnValue() default return value} if no * value was present for the given key. */ public int getAndMoveToFirst(final float k) { if ((Float.floatToIntBits(k) == 0)) { if (containsNullKey) { moveIndexToFirst(n); return value[n]; } return defRetValue; } float curr; final float[] key = this.key; int pos; // The starting point. if ((Float .floatToIntBits(curr = key[pos = it.unimi.dsi.fastutil.HashCommon .mix(it.unimi.dsi.fastutil.HashCommon.float2int(k)) & mask]) == 0)) return defRetValue; if ((Float.floatToIntBits(k) == Float.floatToIntBits(curr))) { moveIndexToFirst(pos); return value[pos]; } // There's always an unused entry. while (true) { if ((Float.floatToIntBits(curr = key[pos = (pos + 1) & mask]) == 0)) return defRetValue; if ((Float.floatToIntBits(k) == Float.floatToIntBits(curr))) { moveIndexToFirst(pos); return value[pos]; } } } /** * Returns the value to which the given key is mapped; if the key is * present, it is moved to the last position of the iteration order. * * @param k * the key. * @return the corresponding value, or the * {@linkplain #defaultReturnValue() default return value} if no * value was present for the given key. */ public int getAndMoveToLast(final float k) { if ((Float.floatToIntBits(k) == 0)) { if (containsNullKey) { moveIndexToLast(n); return value[n]; } return defRetValue; } float curr; final float[] key = this.key; int pos; // The starting point. if ((Float .floatToIntBits(curr = key[pos = it.unimi.dsi.fastutil.HashCommon .mix(it.unimi.dsi.fastutil.HashCommon.float2int(k)) & mask]) == 0)) return defRetValue; if ((Float.floatToIntBits(k) == Float.floatToIntBits(curr))) { moveIndexToLast(pos); return value[pos]; } // There's always an unused entry. while (true) { if ((Float.floatToIntBits(curr = key[pos = (pos + 1) & mask]) == 0)) return defRetValue; if ((Float.floatToIntBits(k) == Float.floatToIntBits(curr))) { moveIndexToLast(pos); return value[pos]; } } } /** * Adds a pair to the map; if the key is already present, it is moved to the * first position of the iteration order. * * @param k * the key. * @param v * the value. * @return the old value, or the {@linkplain #defaultReturnValue() default * return value} if no value was present for the given key. */ public int putAndMoveToFirst(final float k, final int v) { int pos; if ((Float.floatToIntBits(k) == 0)) { if (containsNullKey) { moveIndexToFirst(n); return setValue(n, v); } containsNullKey = true; pos = n; } else { float curr; final float[] key = this.key; // The starting point. if (!(Float .floatToIntBits(curr = key[pos = it.unimi.dsi.fastutil.HashCommon .mix(it.unimi.dsi.fastutil.HashCommon.float2int(k)) & mask]) == 0)) { if ((Float.floatToIntBits(curr) == Float.floatToIntBits(k))) { moveIndexToFirst(pos); return setValue(pos, v); } while (!(Float .floatToIntBits(curr = key[pos = (pos + 1) & mask]) == 0)) if ((Float.floatToIntBits(curr) == Float.floatToIntBits(k))) { moveIndexToFirst(pos); return setValue(pos, v); } } } key[pos] = k; value[pos] = v; if (size == 0) { first = last = pos; // Special case of SET_UPPER_LOWER( link[ pos ], -1, -1 ); link[pos] = -1L; } else { link[first] ^= ((link[first] ^ ((pos & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L); link[pos] = ((-1 & 0xFFFFFFFFL) << 32) | (first & 0xFFFFFFFFL); first = pos; } if (size++ >= maxFill) rehash(arraySize(size, f)); if (ASSERTS) checkTable(); return defRetValue; } /** * Adds a pair to the map; if the key is already present, it is moved to the * last position of the iteration order. * * @param k * the key. * @param v * the value. * @return the old value, or the {@linkplain #defaultReturnValue() default * return value} if no value was present for the given key. */ public int putAndMoveToLast(final float k, final int v) { int pos; if ((Float.floatToIntBits(k) == 0)) { if (containsNullKey) { moveIndexToLast(n); return setValue(n, v); } containsNullKey = true; pos = n; } else { float curr; final float[] key = this.key; // The starting point. if (!(Float .floatToIntBits(curr = key[pos = it.unimi.dsi.fastutil.HashCommon .mix(it.unimi.dsi.fastutil.HashCommon.float2int(k)) & mask]) == 0)) { if ((Float.floatToIntBits(curr) == Float.floatToIntBits(k))) { moveIndexToLast(pos); return setValue(pos, v); } while (!(Float .floatToIntBits(curr = key[pos = (pos + 1) & mask]) == 0)) if ((Float.floatToIntBits(curr) == Float.floatToIntBits(k))) { moveIndexToLast(pos); return setValue(pos, v); } } } key[pos] = k; value[pos] = v; if (size == 0) { first = last = pos; // Special case of SET_UPPER_LOWER( link[ pos ], -1, -1 ); link[pos] = -1L; } else { link[last] ^= ((link[last] ^ (pos & 0xFFFFFFFFL)) & 0xFFFFFFFFL); link[pos] = ((last & 0xFFFFFFFFL) << 32) | (-1 & 0xFFFFFFFFL); last = pos; } if (size++ >= maxFill) rehash(arraySize(size, f)); if (ASSERTS) checkTable(); return defRetValue; } /** @deprecated Please use the corresponding type-specific method instead. */ @Deprecated public Integer get(final Float ok) { if (ok == null) return null; final float k = ((ok).floatValue()); if ((Float.floatToIntBits(k) == 0)) return containsNullKey ? (Integer.valueOf(value[n])) : (null); float curr; final float[] key = this.key; int pos; // The starting point. if ((Float .floatToIntBits(curr = key[pos = it.unimi.dsi.fastutil.HashCommon .mix(it.unimi.dsi.fastutil.HashCommon.float2int(k)) & mask]) == 0)) return (null); if ((Float.floatToIntBits(k) == Float.floatToIntBits(curr))) return (Integer.valueOf(value[pos])); // There's always an unused entry. while (true) { if ((Float.floatToIntBits(curr = key[pos = (pos + 1) & mask]) == 0)) return (null); if ((Float.floatToIntBits(k) == Float.floatToIntBits(curr))) return (Integer.valueOf(value[pos])); } } public int get(final float k) { if ((Float.floatToIntBits(k) == 0)) return containsNullKey ? value[n] : defRetValue; float curr; final float[] key = this.key; int pos; // The starting point. if ((Float .floatToIntBits(curr = key[pos = it.unimi.dsi.fastutil.HashCommon .mix(it.unimi.dsi.fastutil.HashCommon.float2int(k)) & mask]) == 0)) return defRetValue; if ((Float.floatToIntBits(k) == Float.floatToIntBits(curr))) return value[pos]; // There's always an unused entry. while (true) { if ((Float.floatToIntBits(curr = key[pos = (pos + 1) & mask]) == 0)) return defRetValue; if ((Float.floatToIntBits(k) == Float.floatToIntBits(curr))) return value[pos]; } } public boolean containsKey(final float k) { if ((Float.floatToIntBits(k) == 0)) return containsNullKey; float curr; final float[] key = this.key; int pos; // The starting point. if ((Float .floatToIntBits(curr = key[pos = it.unimi.dsi.fastutil.HashCommon .mix(it.unimi.dsi.fastutil.HashCommon.float2int(k)) & mask]) == 0)) return false; if ((Float.floatToIntBits(k) == Float.floatToIntBits(curr))) return true; // There's always an unused entry. while (true) { if ((Float.floatToIntBits(curr = key[pos = (pos + 1) & mask]) == 0)) return false; if ((Float.floatToIntBits(k) == Float.floatToIntBits(curr))) return true; } } public boolean containsValue(final int v) { final int value[] = this.value; final float key[] = this.key; if (containsNullKey && ((value[n]) == (v))) return true; for (int i = n; i-- != 0;) if (!(Float.floatToIntBits(key[i]) == 0) && ((value[i]) == (v))) return true; return false; } /* * Removes all elements from this map. * *

To increase object reuse, this method does not change the table size. * If you want to reduce the table size, you must use {@link #trim()}. */ public void clear() { if (size == 0) return; size = 0; containsNullKey = false; Arrays.fill(key, (0)); first = last = -1; } public int size() { return size; } public boolean isEmpty() { return size == 0; } /** * A no-op for backward compatibility. * * @param growthFactor * unused. * @deprecated Since fastutil 6.1.0, hash tables are doubled * when they are too full. */ @Deprecated public void growthFactor(int growthFactor) { } /** * Gets the growth factor (2). * * @return the growth factor of this set, which is fixed (2). * @see #growthFactor(int) * @deprecated Since fastutil 6.1.0, hash tables are doubled * when they are too full. */ @Deprecated public int growthFactor() { return 16; } /** * The entry class for a hash map does not record key and value, but rather * the position in the hash table of the corresponding entry. This is * necessary so that calls to {@link java.util.Map.Entry#setValue(Object)} * are reflected in the map */ final class MapEntry implements Float2IntMap.Entry, Map.Entry { // The table index this entry refers to, or -1 if this entry has been // deleted. int index; MapEntry(final int index) { this.index = index; } MapEntry() { } /** * {@inheritDoc} * * @deprecated Please use the corresponding type-specific method * instead. */ @Deprecated public Float getKey() { return (Float.valueOf(key[index])); } public float getFloatKey() { return key[index]; } /** * {@inheritDoc} * * @deprecated Please use the corresponding type-specific method * instead. */ @Deprecated public Integer getValue() { return (Integer.valueOf(value[index])); } public int getIntValue() { return value[index]; } public int setValue(final int v) { final int oldValue = value[index]; value[index] = v; return oldValue; } public Integer setValue(final Integer v) { return (Integer.valueOf(setValue(((v).intValue())))); } @SuppressWarnings("unchecked") public boolean equals(final Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry) o; return (Float.floatToIntBits(key[index]) == Float .floatToIntBits(((e.getKey()).floatValue()))) && ((value[index]) == (((e.getValue()).intValue()))); } public int hashCode() { return it.unimi.dsi.fastutil.HashCommon.float2int(key[index]) ^ (value[index]); } public String toString() { return key[index] + "=>" + value[index]; } } /** * Modifies the {@link #link} vector so that the given entry is removed. * This method will complete in constant time. * * @param i * the index of an entry. */ protected void fixPointers(final int i) { if (size == 0) { first = last = -1; return; } if (first == i) { first = (int) link[i]; if (0 <= first) { // Special case of SET_PREV( link[ first ], -1 ) link[first] |= (-1 & 0xFFFFFFFFL) << 32; } return; } if (last == i) { last = (int) (link[i] >>> 32); if (0 <= last) { // Special case of SET_NEXT( link[ last ], -1 ) link[last] |= -1 & 0xFFFFFFFFL; } return; } final long linki = link[i]; final int prev = (int) (linki >>> 32); final int next = (int) linki; link[prev] ^= ((link[prev] ^ (linki & 0xFFFFFFFFL)) & 0xFFFFFFFFL); link[next] ^= ((link[next] ^ (linki & 0xFFFFFFFF00000000L)) & 0xFFFFFFFF00000000L); } /** * Modifies the {@link #link} vector for a shift from s to d. *

* This method will complete in constant time. * * @param s * the source position. * @param d * the destination position. */ protected void fixPointers(int s, int d) { if (size == 1) { first = last = d; // Special case of SET_UPPER_LOWER( link[ d ], -1, -1 ) link[d] = -1L; return; } if (first == s) { first = d; link[(int) link[s]] ^= ((link[(int) link[s]] ^ ((d & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L); link[d] = link[s]; return; } if (last == s) { last = d; link[(int) (link[s] >>> 32)] ^= ((link[(int) (link[s] >>> 32)] ^ (d & 0xFFFFFFFFL)) & 0xFFFFFFFFL); link[d] = link[s]; return; } final long links = link[s]; final int prev = (int) (links >>> 32); final int next = (int) links; link[prev] ^= ((link[prev] ^ (d & 0xFFFFFFFFL)) & 0xFFFFFFFFL); link[next] ^= ((link[next] ^ ((d & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L); link[d] = links; } /** * Returns the first key of this map in iteration order. * * @return the first key in iteration order. */ public float firstFloatKey() { if (size == 0) throw new NoSuchElementException(); return key[first]; } /** * Returns the last key of this map in iteration order. * * @return the last key in iteration order. */ public float lastFloatKey() { if (size == 0) throw new NoSuchElementException(); return key[last]; } public FloatComparator comparator() { return null; } public Float2IntSortedMap tailMap(float from) { throw new UnsupportedOperationException(); } public Float2IntSortedMap headMap(float to) { throw new UnsupportedOperationException(); } public Float2IntSortedMap subMap(float from, float to) { throw new UnsupportedOperationException(); } /** * A list iterator over a linked map. * *

* This class provides a list iterator over a linked hash map. The * constructor runs in constant time. */ private class MapIterator { /** * The entry that will be returned by the next call to * {@link java.util.ListIterator#previous()} (or null if no * previous entry exists). */ int prev = -1; /** * The entry that will be returned by the next call to * {@link java.util.ListIterator#next()} (or null if no * next entry exists). */ int next = -1; /** * The last entry that was returned (or -1 if we did not iterate or used * {@link java.util.Iterator#remove()}). */ int curr = -1; /** * The current index (in the sense of a {@link java.util.ListIterator}). * Note that this value is not meaningful when this iterator has been * created using the nonempty constructor. */ int index = -1; private MapIterator() { next = first; index = 0; } private MapIterator(final float from) { if ((Float.floatToIntBits(from) == 0)) { if (Float2IntLinkedOpenHashMap.this.containsNullKey) { next = (int) link[n]; prev = n; return; } else throw new NoSuchElementException("The key " + from + " does not belong to this map."); } if ((Float.floatToIntBits(key[last]) == Float.floatToIntBits(from))) { prev = last; index = size; return; } // The starting point. int pos = it.unimi.dsi.fastutil.HashCommon .mix(it.unimi.dsi.fastutil.HashCommon.float2int(from)) & mask; // There's always an unused entry. while (!(Float.floatToIntBits(key[pos]) == 0)) { if ((Float.floatToIntBits(key[pos]) == Float .floatToIntBits(from))) { // Note: no valid index known. next = (int) link[pos]; prev = pos; return; } pos = (pos + 1) & mask; } throw new NoSuchElementException("The key " + from + " does not belong to this map."); } public boolean hasNext() { return next != -1; } public boolean hasPrevious() { return prev != -1; } private final void ensureIndexKnown() { if (index >= 0) return; if (prev == -1) { index = 0; return; } if (next == -1) { index = size; return; } int pos = first; index = 1; while (pos != prev) { pos = (int) link[pos]; index++; } } public int nextIndex() { ensureIndexKnown(); return index; } public int previousIndex() { ensureIndexKnown(); return index - 1; } public int nextEntry() { if (!hasNext()) throw new NoSuchElementException(); curr = next; next = (int) link[curr]; prev = curr; if (index >= 0) index++; return curr; } public int previousEntry() { if (!hasPrevious()) throw new NoSuchElementException(); curr = prev; prev = (int) (link[curr] >>> 32); next = curr; if (index >= 0) index--; return curr; } public void remove() { ensureIndexKnown(); if (curr == -1) throw new IllegalStateException(); if (curr == prev) { /* * If the last operation was a next(), we are removing an entry * that preceeds the current index, and thus we must decrement * it. */ index--; prev = (int) (link[curr] >>> 32); } else next = (int) link[curr]; size--; /* * Now we manually fix the pointers. Because of our knowledge of * next and prev, this is going to be faster than calling * fixPointers(). */ if (prev == -1) first = next; else link[prev] ^= ((link[prev] ^ (next & 0xFFFFFFFFL)) & 0xFFFFFFFFL); if (next == -1) last = prev; else link[next] ^= ((link[next] ^ ((prev & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L); int last, slot, pos = curr; curr = -1; if (pos == n) { Float2IntLinkedOpenHashMap.this.containsNullKey = false; } else { float curr; final float[] key = Float2IntLinkedOpenHashMap.this.key; // We have to horribly duplicate the shiftKeys() code because we // need to update next/prev. for (;;) { pos = ((last = pos) + 1) & mask; for (;;) { if ((Float.floatToIntBits(curr = key[pos]) == 0)) { key[last] = (0); return; } slot = it.unimi.dsi.fastutil.HashCommon .mix(it.unimi.dsi.fastutil.HashCommon .float2int(curr)) & mask; if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break; pos = (pos + 1) & mask; } key[last] = curr; value[last] = value[pos]; if (next == pos) next = last; if (prev == pos) prev = last; fixPointers(pos, last); } } } public int skip(final int n) { int i = n; while (i-- != 0 && hasNext()) nextEntry(); return n - i - 1; } public int back(final int n) { int i = n; while (i-- != 0 && hasPrevious()) previousEntry(); return n - i - 1; } } private class EntryIterator extends MapIterator implements ObjectListIterator { private MapEntry entry; public EntryIterator() { } public EntryIterator(float from) { super(from); } public MapEntry next() { return entry = new MapEntry(nextEntry()); } public MapEntry previous() { return entry = new MapEntry(previousEntry()); } @Override public void remove() { super.remove(); entry.index = -1; // You cannot use a deleted entry. } public void set(Float2IntMap.Entry ok) { throw new UnsupportedOperationException(); } public void add(Float2IntMap.Entry ok) { throw new UnsupportedOperationException(); } } private class FastEntryIterator extends MapIterator implements ObjectListIterator { final MapEntry entry = new MapEntry(); public FastEntryIterator() { } public FastEntryIterator(float from) { super(from); } public MapEntry next() { entry.index = nextEntry(); return entry; } public MapEntry previous() { entry.index = previousEntry(); return entry; } public void set(Float2IntMap.Entry ok) { throw new UnsupportedOperationException(); } public void add(Float2IntMap.Entry ok) { throw new UnsupportedOperationException(); } } private final class MapEntrySet extends AbstractObjectSortedSet implements FastSortedEntrySet { public ObjectBidirectionalIterator iterator() { return new EntryIterator(); } public Comparator comparator() { return null; } public ObjectSortedSet subSet( Float2IntMap.Entry fromElement, Float2IntMap.Entry toElement) { throw new UnsupportedOperationException(); } public ObjectSortedSet headSet( Float2IntMap.Entry toElement) { throw new UnsupportedOperationException(); } public ObjectSortedSet tailSet( Float2IntMap.Entry fromElement) { throw new UnsupportedOperationException(); } public Float2IntMap.Entry first() { if (size == 0) throw new NoSuchElementException(); return new MapEntry(Float2IntLinkedOpenHashMap.this.first); } public Float2IntMap.Entry last() { if (size == 0) throw new NoSuchElementException(); return new MapEntry(Float2IntLinkedOpenHashMap.this.last); } public boolean contains(final Object o) { if (!(o instanceof Map.Entry)) return false; final Map.Entry e = (Map.Entry) o; if (e.getKey() == null || !(e.getKey() instanceof Float)) return false; if (e.getValue() == null || !(e.getValue() instanceof Integer)) return false; final float k = ((((Float) (e.getKey())).floatValue())); final int v = ((((Integer) (e.getValue())).intValue())); if ((Float.floatToIntBits(k) == 0)) return Float2IntLinkedOpenHashMap.this.containsNullKey && ((value[n]) == (v)); float curr; final float[] key = Float2IntLinkedOpenHashMap.this.key; int pos; // The starting point. if ((Float .floatToIntBits(curr = key[pos = it.unimi.dsi.fastutil.HashCommon .mix(it.unimi.dsi.fastutil.HashCommon.float2int(k)) & mask]) == 0)) return false; if ((Float.floatToIntBits(k) == Float.floatToIntBits(curr))) return ((value[pos]) == (v)); // There's always an unused entry. while (true) { if ((Float.floatToIntBits(curr = key[pos = (pos + 1) & mask]) == 0)) return false; if ((Float.floatToIntBits(k) == Float.floatToIntBits(curr))) return ((value[pos]) == (v)); } } public boolean remove(final Object o) { if (!(o instanceof Map.Entry)) return false; final Map.Entry e = (Map.Entry) o; if (e.getKey() == null || !(e.getKey() instanceof Float)) return false; if (e.getValue() == null || !(e.getValue() instanceof Integer)) return false; final float k = ((((Float) (e.getKey())).floatValue())); final int v = ((((Integer) (e.getValue())).intValue())); if ((Float.floatToIntBits(k) == 0)) { if (containsNullKey && ((value[n]) == (v))) { removeNullEntry(); return true; } return false; } float curr; final float[] key = Float2IntLinkedOpenHashMap.this.key; int pos; // The starting point. if ((Float .floatToIntBits(curr = key[pos = it.unimi.dsi.fastutil.HashCommon .mix(it.unimi.dsi.fastutil.HashCommon.float2int(k)) & mask]) == 0)) return false; if ((Float.floatToIntBits(curr) == Float.floatToIntBits(k))) { if (((value[pos]) == (v))) { removeEntry(pos); return true; } return false; } while (true) { if ((Float.floatToIntBits(curr = key[pos = (pos + 1) & mask]) == 0)) return false; if ((Float.floatToIntBits(curr) == Float.floatToIntBits(k))) { if (((value[pos]) == (v))) { removeEntry(pos); return true; } } } } public int size() { return size; } public void clear() { Float2IntLinkedOpenHashMap.this.clear(); } public ObjectBidirectionalIterator iterator( final Float2IntMap.Entry from) { return new EntryIterator(from.getFloatKey()); } public ObjectBidirectionalIterator fastIterator() { return new FastEntryIterator(); } public ObjectBidirectionalIterator fastIterator( final Float2IntMap.Entry from) { return new FastEntryIterator(from.getFloatKey()); } } public FastSortedEntrySet float2IntEntrySet() { if (entries == null) entries = new MapEntrySet(); return entries; } /** * An iterator on keys. * *

* We simply override the {@link java.util.ListIterator#next()}/ * {@link java.util.ListIterator#previous()} methods (and possibly their * type-specific counterparts) so that they return keys instead of entries. */ private final class KeyIterator extends MapIterator implements FloatListIterator { public KeyIterator(final float k) { super(k); } public float previousFloat() { return key[previousEntry()]; } public void set(float k) { throw new UnsupportedOperationException(); } public void add(float k) { throw new UnsupportedOperationException(); } public Float previous() { return (Float.valueOf(key[previousEntry()])); } public void set(Float ok) { throw new UnsupportedOperationException(); } public void add(Float ok) { throw new UnsupportedOperationException(); } public KeyIterator() { super(); } public float nextFloat() { return key[nextEntry()]; } public Float next() { return (Float.valueOf(key[nextEntry()])); } } private final class KeySet extends AbstractFloatSortedSet { public FloatListIterator iterator(final float from) { return new KeyIterator(from); } public FloatListIterator iterator() { return new KeyIterator(); } public int size() { return size; } public boolean contains(float k) { return containsKey(k); } public boolean remove(float k) { final int oldSize = size; Float2IntLinkedOpenHashMap.this.remove(k); return size != oldSize; } public void clear() { Float2IntLinkedOpenHashMap.this.clear(); } public float firstFloat() { if (size == 0) throw new NoSuchElementException(); return key[first]; } public float lastFloat() { if (size == 0) throw new NoSuchElementException(); return key[last]; } public FloatComparator comparator() { return null; } final public FloatSortedSet tailSet(float from) { throw new UnsupportedOperationException(); } final public FloatSortedSet headSet(float to) { throw new UnsupportedOperationException(); } final public FloatSortedSet subSet(float from, float to) { throw new UnsupportedOperationException(); } } public FloatSortedSet keySet() { if (keys == null) keys = new KeySet(); return keys; } /** * An iterator on values. * *

* We simply override the {@link java.util.ListIterator#next()}/ * {@link java.util.ListIterator#previous()} methods (and possibly their * type-specific counterparts) so that they return values instead of * entries. */ private final class ValueIterator extends MapIterator implements IntListIterator { public int previousInt() { return value[previousEntry()]; } public Integer previous() { return (Integer.valueOf(value[previousEntry()])); } public void set(Integer ok) { throw new UnsupportedOperationException(); } public void add(Integer ok) { throw new UnsupportedOperationException(); } public void set(int v) { throw new UnsupportedOperationException(); } public void add(int v) { throw new UnsupportedOperationException(); } public ValueIterator() { super(); } public int nextInt() { return value[nextEntry()]; } /** * {@inheritDoc} * * @deprecated Please use the corresponding type-specific method * instead. */ @Deprecated @Override public Integer next() { return (Integer.valueOf(value[nextEntry()])); } } public IntCollection values() { if (values == null) values = new AbstractIntCollection() { public IntIterator iterator() { return new ValueIterator(); } public int size() { return size; } public boolean contains(int v) { return containsValue(v); } public void clear() { Float2IntLinkedOpenHashMap.this.clear(); } }; return values; } /** * A no-op for backward compatibility. The kind of tables implemented by * this class never need rehashing. * *

* If you need to reduce the table size to fit exactly this set, use * {@link #trim()}. * * @return true. * @see #trim() * @deprecated A no-op. */ @Deprecated public boolean rehash() { return true; } /** * Rehashes the map, making the table as small as possible. * *

* This method rehashes the table to the smallest size satisfying the load * factor. It can be used when the set will not be changed anymore, so to * optimize access speed and size. * *

* If the table size is already the minimum possible, this method does * nothing. * * @return true if there was enough memory to trim the map. * @see #trim(int) */ public boolean trim() { final int l = arraySize(size, f); if (l >= n || size > maxFill(l, f)) return true; try { rehash(l); } catch (OutOfMemoryError cantDoIt) { return false; } return true; } /** * Rehashes this map if the table is too large. * *

* Let N be the smallest table size that can hold * max(n,{@link #size()}) entries, still satisfying the load * factor. If the current table size is smaller than or equal to * N, this method does nothing. Otherwise, it rehashes this map * in a table of size N. * *

* This method is useful when reusing maps. {@linkplain #clear() Clearing a * map} leaves the table size untouched. If you are reusing a map many times, * you can call this method with a typical size to avoid keeping around a * very large table just because of a few large transient maps. * * @param n * the threshold for the trimming. * @return true if there was enough memory to trim the map. * @see #trim() */ public boolean trim(final int n) { final int l = HashCommon.nextPowerOfTwo((int) Math.ceil(n / f)); if (l >= n || size > maxFill(l, f)) return true; try { rehash(l); } catch (OutOfMemoryError cantDoIt) { return false; } return true; } /** * Rehashes the map. * *

* This method implements the basic rehashing strategy, and may be overriden * by subclasses implementing different rehashing strategies (e.g., * disk-based rehashing). However, you should not override this method * unless you understand the internal workings of this class. * * @param newN * the new size */ protected void rehash(final int newN) { final float key[] = this.key; final int value[] = this.value; final int mask = newN - 1; // Note that this is used by the hashing // macro final float newKey[] = new float[newN + 1]; final int newValue[] = new int[newN + 1]; int i = first, prev = -1, newPrev = -1, t, pos; final long link[] = this.link; final long newLink[] = new long[newN + 1]; first = -1; for (int j = size; j-- != 0;) { if ((Float.floatToIntBits(key[i]) == 0)) pos = newN; else { pos = it.unimi.dsi.fastutil.HashCommon .mix(it.unimi.dsi.fastutil.HashCommon.float2int(key[i])) & mask; while (!(Float.floatToIntBits(newKey[pos]) == 0)) pos = (pos + 1) & mask; } newKey[pos] = key[i]; newValue[pos] = value[i]; if (prev != -1) { newLink[newPrev] ^= ((newLink[newPrev] ^ (pos & 0xFFFFFFFFL)) & 0xFFFFFFFFL); newLink[pos] ^= ((newLink[pos] ^ ((newPrev & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L); newPrev = pos; } else { newPrev = first = pos; // Special case of SET(newLink[ pos ], -1, -1); newLink[pos] = -1L; } t = i; i = (int) link[i]; prev = t; } this.link = newLink; this.last = newPrev; if (newPrev != -1) // Special case of SET_NEXT( newLink[ newPrev ], -1 ); newLink[newPrev] |= -1 & 0xFFFFFFFFL; n = newN; this.mask = mask; maxFill = maxFill(n, f); this.key = newKey; this.value = newValue; } /** * Returns a deep copy of this map. * *

* This method performs a deep copy of this hash map; the data stored in the * map, however, is not cloned. Note that this makes a difference only for * object keys. * * @return a deep copy of this map. */ public Float2IntLinkedOpenHashMap clone() { Float2IntLinkedOpenHashMap c; try { c = (Float2IntLinkedOpenHashMap) super.clone(); } catch (CloneNotSupportedException cantHappen) { throw new InternalError(); } c.keys = null; c.values = null; c.entries = null; c.containsNullKey = containsNullKey; c.key = key.clone(); c.value = value.clone(); c.link = link.clone(); return c; } /** * Returns a hash code for this map. * * This method overrides the generic method provided by the superclass. * Since equals() is not overriden, it is important that the * value returned by this method is the same value as the one returned by * the overriden method. * * @return a hash code for this map. */ public int hashCode() { int h = 0; for (int j = realSize(), i = 0, t = 0; j-- != 0;) { while ((Float.floatToIntBits(key[i]) == 0)) i++; t = it.unimi.dsi.fastutil.HashCommon.float2int(key[i]); t ^= (value[i]); h += t; i++; } // Zero / null keys have hash zero. if (containsNullKey) h += (value[n]); return h; } private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { final float key[] = this.key; final int value[] = this.value; final MapIterator i = new MapIterator(); s.defaultWriteObject(); for (int j = size, e; j-- != 0;) { e = i.nextEntry(); s.writeFloat(key[e]); s.writeInt(value[e]); } } private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); n = arraySize(size, f); maxFill = maxFill(n, f); mask = n - 1; final float key[] = this.key = new float[n + 1]; final int value[] = this.value = new int[n + 1]; final long link[] = this.link = new long[n + 1]; int prev = -1; first = last = -1; float k; int v; for (int i = size, pos; i-- != 0;) { k = s.readFloat(); v = s.readInt(); if ((Float.floatToIntBits(k) == 0)) { pos = n; containsNullKey = true; } else { pos = it.unimi.dsi.fastutil.HashCommon .mix(it.unimi.dsi.fastutil.HashCommon.float2int(k)) & mask; while (!(Float.floatToIntBits(key[pos]) == 0)) pos = (pos + 1) & mask; } key[pos] = k; value[pos] = v; if (first != -1) { link[prev] ^= ((link[prev] ^ (pos & 0xFFFFFFFFL)) & 0xFFFFFFFFL); link[pos] ^= ((link[pos] ^ ((prev & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L); prev = pos; } else { prev = first = pos; // Special case of SET_PREV( newLink[ pos ], -1 ); link[pos] |= (-1L & 0xFFFFFFFFL) << 32; } } last = prev; if (prev != -1) // Special case of SET_NEXT( link[ prev ], -1 ); link[prev] |= -1 & 0xFFFFFFFFL; if (ASSERTS) checkTable(); } private void checkTable() { } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy