All Downloads are FREE. Search and download functionalities are using the official Maven repository.

drv.ArrayList.drv Maven / Gradle / Ivy

Go to download

fastutil extends the Java Collections Framework by providing type-specific maps, sets, lists and priority queues with a small memory footprint and fast access and insertion; provides also big (64-bit) arrays, sets and lists, and fast, practical I/O classes for binary and text files.

There is a newer version: 8.5.15
Show newest version
/*		 
 * Copyright (C) 2002-2016 Sebastiano Vigna
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. 
 */


package PACKAGE;

import java.util.Arrays;
import java.util.Collection;
import java.util.Iterator;
import java.util.RandomAccess;
import java.util.NoSuchElementException;

#if KEYS_PRIMITIVE

/** A type-specific array-based list; provides some additional methods that use polymorphism to avoid (un)boxing. 
 *
 * 

This class implements a lightweight, fast, open, optimized, * reuse-oriented version of array-based lists. Instances of this class * represent a list with an array that is enlarged as needed when new entries * are created (by doubling its current length), but is * never made smaller (even on a {@link #clear()}). A family of * {@linkplain #trim() trimming methods} lets you control the size of the * backing array; this is particularly useful if you reuse instances of this class. * Range checks are equivalent to those of {@link java.util}'s classes, but * they are delayed as much as possible. The backing array is exposed by the * {@link #elements()} method. * *

This class implements the bulk methods removeElements(), * addElements() and getElements() using * high-performance system calls (e.g., {@link * System#arraycopy(Object,int,Object,int,int) System.arraycopy()} instead of * expensive loops. * * @see java.util.ArrayList */ public class ARRAY_LIST KEY_GENERIC extends ABSTRACT_LIST KEY_GENERIC implements RandomAccess, Cloneable, java.io.Serializable { private static final long serialVersionUID = -7046029254386353130L; #else /** A type-specific array-based list; provides some additional methods that use polymorphism to avoid (un)boxing. * *

This class implements a lightweight, fast, open, optimized, * reuse-oriented version of array-based lists. Instances of this class * represent a list with an array that is enlarged as needed when new entries * are created (by doubling the current length), but is * never made smaller (even on a {@link #clear()}). A family of * {@linkplain #trim() trimming methods} lets you control the size of the * backing array; this is particularly useful if you reuse instances of this class. * Range checks are equivalent to those of {@link java.util}'s classes, but * they are delayed as much as possible. * *

The backing array is exposed by the {@link #elements()} method. If an instance * of this class was created {@linkplain #wrap(Object[],int) by wrapping}, * backing-array reallocations will be performed using reflection, so that * {@link #elements()} can return an array of the same type of the original array: the comments * about efficiency made in {@link it.unimi.dsi.fastutil.objects.ObjectArrays} apply here. * Moreover, you must take into consideration that assignment to an array * not of type {@code Object[]} is slower due to type checking. * *

This class implements the bulk methods removeElements(), * addElements() and getElements() using * high-performance system calls (e.g., {@link * System#arraycopy(Object,int,Object,int,int) System.arraycopy()} instead of * expensive loops. * * @see java.util.ArrayList */ public class ARRAY_LIST KEY_GENERIC extends ABSTRACT_LIST KEY_GENERIC implements RandomAccess, Cloneable, java.io.Serializable { private static final long serialVersionUID = -7046029254386353131L; #endif /** The initial default capacity of an array list. */ public final static int DEFAULT_INITIAL_CAPACITY = 16; #if ! KEYS_PRIMITIVE /** Whether the backing array was passed to wrap(). In * this case, we must reallocate with the same type of array. */ protected final boolean wrapped; #endif /** The backing array. */ protected transient KEY_GENERIC_TYPE a[]; /** The current actual size of the list (never greater than the backing-array length). */ protected int size; private static final boolean ASSERTS = ASSERTS_VALUE; /** Creates a new array list using a given array. * *

This constructor is only meant to be used by the wrapping methods. * * @param a the array that will be used to back this array list. */ @SuppressWarnings("unused") protected ARRAY_LIST( final KEY_GENERIC_TYPE a[], boolean dummy ) { this.a = a; #if ! KEYS_PRIMITIVE this.wrapped = true; #endif } /** Creates a new array list with given capacity. * * @param capacity the initial capacity of the array list (may be 0). */ SUPPRESS_WARNINGS_KEY_UNCHECKED public ARRAY_LIST( final int capacity ) { if ( capacity < 0 ) throw new IllegalArgumentException( "Initial capacity (" + capacity + ") is negative" ); a = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[ capacity ]; #if ! KEYS_PRIMITIVE wrapped = false; #endif } /** Creates a new array list with {@link #DEFAULT_INITIAL_CAPACITY} capacity. */ public ARRAY_LIST() { this( DEFAULT_INITIAL_CAPACITY ); } /** Creates a new array list and fills it with a given collection. * * @param c a collection that will be used to fill the array list. */ public ARRAY_LIST( final Collection c ) { this( c.size() ); #if KEYS_PRIMITIVE size = ITERATORS.unwrap( ITERATORS.AS_KEY_ITERATOR( c.iterator() ), a ); #else size = ITERATORS.unwrap( c.iterator(), a ); #endif } /** Creates a new array list and fills it with a given type-specific collection. * * @param c a type-specific collection that will be used to fill the array list. */ public ARRAY_LIST( final COLLECTION KEY_EXTENDS_GENERIC c ) { this( c.size() ); size = ITERATORS.unwrap( c.iterator(), a ); } /** Creates a new array list and fills it with a given type-specific list. * * @param l a type-specific list that will be used to fill the array list. */ public ARRAY_LIST( final LIST KEY_EXTENDS_GENERIC l ) { this( l.size() ); l.getElements( 0, a, 0, size = l.size() ); } /** Creates a new array list and fills it with the elements of a given array. * * @param a an array whose elements will be used to fill the array list. */ public ARRAY_LIST( final KEY_GENERIC_TYPE a[] ) { this( a, 0, a.length ); } /** Creates a new array list and fills it with the elements of a given array. * * @param a an array whose elements will be used to fill the array list. * @param offset the first element to use. * @param length the number of elements to use. */ public ARRAY_LIST( final KEY_GENERIC_TYPE a[], final int offset, final int length ) { this( length ); System.arraycopy( a, offset, this.a, 0, length ); size = length; } /** Creates a new array list and fills it with the elements returned by an iterator.. * * @param i an iterator whose returned elements will fill the array list. */ public ARRAY_LIST( final Iterator i ) { this(); while( i.hasNext() ) this.add( i.next() ); } /** Creates a new array list and fills it with the elements returned by a type-specific iterator.. * * @param i a type-specific iterator whose returned elements will fill the array list. */ public ARRAY_LIST( final KEY_ITERATOR KEY_EXTENDS_GENERIC i ) { this(); while( i.hasNext() ) this.add( i.NEXT_KEY() ); } #if KEYS_PRIMITIVE /** Returns the backing array of this list. * * @return the backing array. */ public KEY_GENERIC_TYPE[] elements() { return a; } #else /** Returns the backing array of this list. * *

If this array list was created by wrapping a given array, it is guaranteed * that the type of the returned array will be the same. Otherwise, the returned * array will be of type {@link Object Object[]} (in spite of the declared return type). * *

Warning: This behaviour may cause (unfathomable) * run-time errors if a method expects an array * actually of type K[], but this methods returns an array * of type {@link Object Object[]}. * * @return the backing array. */ public K[] elements() { return a; } #endif /** Wraps a given array into an array list of given size. * *

Note it is guaranteed * that the type of the array returned by {@link #elements()} will be the same * (see the comments in the class documentation). * * @param a an array to wrap. * @param length the length of the resulting array list. * @return a new array list of the given size, wrapping the given array. */ public static KEY_GENERIC ARRAY_LIST KEY_GENERIC wrap( final KEY_GENERIC_TYPE a[], final int length ) { if ( length > a.length ) throw new IllegalArgumentException( "The specified length (" + length + ") is greater than the array size (" + a.length + ")" ); final ARRAY_LIST KEY_GENERIC l = new ARRAY_LIST KEY_GENERIC( a, false ); l.size = length; return l; } /** Wraps a given array into an array list. * *

Note it is guaranteed * that the type of the array returned by {@link #elements()} will be the same * (see the comments in the class documentation). * * @param a an array to wrap. * @return a new array list wrapping the given array. */ public static KEY_GENERIC ARRAY_LIST KEY_GENERIC wrap( final KEY_GENERIC_TYPE a[] ) { return wrap( a, a.length ); } /** Ensures that this array list can contain the given number of entries without resizing. * * @param capacity the new minimum capacity for this array list. */ SUPPRESS_WARNINGS_KEY_UNCHECKED public void ensureCapacity( final int capacity ) { #if KEYS_PRIMITIVE a = ARRAYS.ensureCapacity( a, capacity, size ); #else if ( wrapped ) a = ARRAYS.ensureCapacity( a, capacity, size ); else { if ( capacity > a.length ) { final Object t[] = new Object[ capacity ]; System.arraycopy( a, 0, t, 0, size ); a = (KEY_GENERIC_TYPE[])t; } } #endif if ( ASSERTS ) assert size <= a.length; } /** Grows this array list, ensuring that it can contain the given number of entries without resizing, * and in case enlarging it at least by a factor of two. * * @param capacity the new minimum capacity for this array list. */ SUPPRESS_WARNINGS_KEY_UNCHECKED private void grow( final int capacity ) { #if KEYS_PRIMITIVE a = ARRAYS.grow( a, capacity, size ); #else if ( wrapped ) a = ARRAYS.grow( a, capacity, size ); else { if ( capacity > a.length ) { final int newLength = (int)Math.max( Math.min( 2L * a.length, it.unimi.dsi.fastutil.Arrays.MAX_ARRAY_SIZE ), capacity ); final Object t[] = new Object[ newLength ]; System.arraycopy( a, 0, t, 0, size ); a = (KEY_GENERIC_TYPE[])t; } } #endif if ( ASSERTS ) assert size <= a.length; } public void add( final int index, final KEY_GENERIC_TYPE k ) { ensureIndex( index ); grow( size + 1 ); if ( index != size ) System.arraycopy( a, index, a, index + 1, size - index ); a[ index ] = k; size++; if ( ASSERTS ) assert size <= a.length; } public boolean add( final KEY_GENERIC_TYPE k ) { grow( size + 1 ); a[ size++ ] = k; if ( ASSERTS ) assert size <= a.length; return true; } public KEY_GENERIC_TYPE GET_KEY( final int index ) { if ( index >= size ) throw new IndexOutOfBoundsException( "Index (" + index + ") is greater than or equal to list size (" + size + ")" ); return a[ index ]; } public int indexOf( final KEY_TYPE k ) { for( int i = 0; i < size; i++ ) if ( KEY_EQUALS( k, a[ i ] ) ) return i; return -1; } public int lastIndexOf( final KEY_TYPE k ) { for( int i = size; i-- != 0; ) if ( KEY_EQUALS( k, a[ i ] ) ) return i; return -1; } public KEY_GENERIC_TYPE REMOVE_KEY( final int index ) { if ( index >= size ) throw new IndexOutOfBoundsException( "Index (" + index + ") is greater than or equal to list size (" + size + ")" ); final KEY_GENERIC_TYPE old = a[ index ]; size--; if ( index != size ) System.arraycopy( a, index + 1, a, index, size - index ); #if KEYS_REFERENCE a[ size ] = null; #endif if ( ASSERTS ) assert size <= a.length; return old; } public boolean rem( final KEY_TYPE k ) { int index = indexOf( k ); if ( index == -1 ) return false; REMOVE_KEY( index ); if ( ASSERTS ) assert size <= a.length; return true; } #if KEYS_REFERENCE public boolean remove( final Object o ) { return rem( o ); } #endif public KEY_GENERIC_TYPE set( final int index, final KEY_GENERIC_TYPE k ) { if ( index >= size ) throw new IndexOutOfBoundsException( "Index (" + index + ") is greater than or equal to list size (" + size + ")" ); KEY_GENERIC_TYPE old = a[ index ]; a[ index ] = k; return old; } public void clear() { #if KEYS_REFERENCE Arrays.fill( a, 0, size, null ); #endif size = 0; if ( ASSERTS ) assert size <= a.length; } public int size() { return size; } public void size( final int size ) { if ( size > a.length ) ensureCapacity( size ); if ( size > this.size ) Arrays.fill( a, this.size, size, KEY_NULL ); #if KEYS_REFERENCE else Arrays.fill( a, size, this.size, KEY_NULL ); #endif this.size = size; } public boolean isEmpty() { return size == 0; } /** Trims this array list so that the capacity is equal to the size. * * @see java.util.ArrayList#trimToSize() */ public void trim() { trim( 0 ); } /** Trims the backing array if it is too large. * * If the current array length is smaller than or equal to * n, this method does nothing. Otherwise, it trims the * array length to the maximum between n and {@link #size()}. * *

This method is useful when reusing lists. {@linkplain #clear() Clearing a * list} leaves the array length untouched. If you are reusing a list * many times, you can call this method with a typical * size to avoid keeping around a very large array just * because of a few large transient lists. * * @param n the threshold for the trimming. */ SUPPRESS_WARNINGS_KEY_UNCHECKED public void trim( final int n ) { // TODO: use Arrays.trim() and preserve type only if necessary if ( n >= a.length || size == a.length ) return; final KEY_GENERIC_TYPE t[] = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[ Math.max( n, size ) ]; System.arraycopy( a, 0, t, 0, size ); a = t; if ( ASSERTS ) assert size <= a.length; } /** Copies element of this type-specific list into the given array using optimized system calls. * * @param from the start index (inclusive). * @param a the destination array. * @param offset the offset into the destination array where to store the first element copied. * @param length the number of elements to be copied. */ public void getElements( final int from, final KEY_TYPE[] a, final int offset, final int length ) { ARRAYS.ensureOffsetLength( a, offset, length ); System.arraycopy( this.a, from, a, offset, length ); } /** Removes elements of this type-specific list using optimized system calls. * * @param from the start index (inclusive). * @param to the end index (exclusive). */ public void removeElements( final int from, final int to ) { it.unimi.dsi.fastutil.Arrays.ensureFromTo( size, from, to ); System.arraycopy( a, to, a, from, size - to ); size -= ( to - from ); #if KEYS_REFERENCE int i = to - from; while( i-- != 0 ) a[ size + i ] = null; #endif } /** Adds elements to this type-specific list using optimized system calls. * * @param index the index at which to add elements. * @param a the array containing the elements. * @param offset the offset of the first element to add. * @param length the number of elements to add. */ public void addElements( final int index, final KEY_GENERIC_TYPE a[], final int offset, final int length ) { ensureIndex( index ); ARRAYS.ensureOffsetLength( a, offset, length ); grow( size + length ); System.arraycopy( this.a, index, this.a, index + length, size - index ); System.arraycopy( a, offset, this.a, index, length ); size += length; } #if KEYS_PRIMITIVE public KEY_TYPE[] TO_KEY_ARRAY( KEY_TYPE a[] ) { if ( a == null || a.length < size ) a = new KEY_TYPE[ size ]; System.arraycopy( this.a, 0, a, 0, size ); return a; } public boolean addAll( int index, final COLLECTION c ) { ensureIndex( index ); int n = c.size(); if ( n == 0 ) return false; grow( size + n ); if ( index != size ) System.arraycopy( a, index, a, index + n, size - index ); final KEY_ITERATOR i = c.iterator(); size += n; while( n-- != 0 ) a[ index++ ] = i.NEXT_KEY(); if ( ASSERTS ) assert size <= a.length; return true; } public boolean addAll( final int index, final LIST l ) { ensureIndex( index ); final int n = l.size(); if ( n == 0 ) return false; grow( size + n ); if ( index != size ) System.arraycopy( a, index, a, index + n, size - index ); l.getElements( 0, a, index, n ); size += n; if ( ASSERTS ) assert size <= a.length; return true; } @Override public boolean removeAll( final COLLECTION c ) { final KEY_TYPE[] a = this.a; int j = 0; for( int i = 0; i < size; i++ ) if ( ! c.contains( a[ i ] ) ) a[ j++ ] = a[ i ]; final boolean modified = size != j; size = j; return modified; } @Override public boolean removeAll( final Collection c ) { final KEY_TYPE[] a = this.a; int j = 0; for( int i = 0; i < size; i++ ) if ( ! c.contains( KEY2OBJ( a[ i ] ) ) ) a[ j++ ] = a[ i ]; final boolean modified = size != j; size = j; return modified; } #else @Override public boolean removeAll( final Collection c ) { final KEY_TYPE[] a = this.a; int j = 0; for( int i = 0; i < size; i++ ) if ( ! c.contains( a[ i ] ) ) a[ j++ ] = a[ i ]; Arrays.fill( a, j, size, null ); final boolean modified = size != j; size = j; return modified; } #endif public KEY_LIST_ITERATOR KEY_GENERIC listIterator( final int index ) { ensureIndex( index ); return new KEY_ABSTRACT_LIST_ITERATOR KEY_GENERIC() { int pos = index, last = -1; public boolean hasNext() { return pos < size; } public boolean hasPrevious() { return pos > 0; } public KEY_GENERIC_TYPE NEXT_KEY() { if ( ! hasNext() ) throw new NoSuchElementException(); return a[ last = pos++ ]; } public KEY_GENERIC_TYPE PREV_KEY() { if ( ! hasPrevious() ) throw new NoSuchElementException(); return a[ last = --pos ]; } public int nextIndex() { return pos; } public int previousIndex() { return pos - 1; } public void add( KEY_GENERIC_TYPE k ) { ARRAY_LIST.this.add( pos++, k ); last = -1; } public void set( KEY_GENERIC_TYPE k ) { if ( last == -1 ) throw new IllegalStateException(); ARRAY_LIST.this.set( last, k ); } public void remove() { if ( last == -1 ) throw new IllegalStateException(); ARRAY_LIST.this.REMOVE_KEY( last ); /* If the last operation was a next(), we are removing an element *before* us, and we must decrease pos correspondingly. */ if ( last < pos ) pos--; last = -1; } }; } public ARRAY_LIST KEY_GENERIC clone() { ARRAY_LIST KEY_GENERIC c = new ARRAY_LIST KEY_GENERIC( size ); System.arraycopy( a, 0, c.a, 0, size ); c.size = size; return c; } #if KEY_CLASS_Object private boolean valEquals( final K a, final K b ) { return a == null ? b == null : a.equals( b ); } #endif /** Compares this type-specific array list to another one. * *

This method exists only for sake of efficiency. The implementation * inherited from the abstract implementation would already work. * * @param l a type-specific array list. * @return true if the argument contains the same elements of this type-specific array list. */ public boolean equals( final ARRAY_LIST KEY_GENERIC l ) { if ( l == this ) return true; int s = size(); if ( s != l.size() ) return false; final KEY_GENERIC_TYPE[] a1 = a; final KEY_GENERIC_TYPE[] a2 = l.a; #if KEY_CLASS_Object while( s-- != 0 ) if ( ! valEquals( a1[ s ], a2[ s ] ) ) return false; #else while( s-- != 0 ) if ( a1[ s ] != a2[ s ] ) return false; #endif return true; } #if ! KEY_CLASS_Reference /** Compares this array list to another array list. * *

This method exists only for sake of efficiency. The implementation * inherited from the abstract implementation would already work. * * @param l an array list. * @return a negative integer, * zero, or a positive integer as this list is lexicographically less than, equal * to, or greater than the argument. */ SUPPRESS_WARNINGS_KEY_UNCHECKED public int compareTo( final ARRAY_LIST KEY_EXTENDS_GENERIC l ) { final int s1 = size(), s2 = l.size(); final KEY_GENERIC_TYPE a1[] = a, a2[] = l.a; KEY_GENERIC_TYPE e1, e2; int r, i; for( i = 0; i < s1 && i < s2; i++ ) { e1 = a1[ i ]; e2 = a2[ i ]; if ( ( r = KEY_CMP( e1, e2 ) ) != 0 ) return r; } return i < s2 ? -1 : ( i < s1 ? 1 : 0 ); } #endif private void writeObject( java.io.ObjectOutputStream s ) throws java.io.IOException { s.defaultWriteObject(); for( int i = 0; i < size; i++ ) s.WRITE_KEY( a[ i ] ); } SUPPRESS_WARNINGS_KEY_UNCHECKED private void readObject( java.io.ObjectInputStream s ) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); a = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[ size ]; for( int i = 0; i < size; i++ ) a[ i ] = KEY_GENERIC_CAST s.READ_KEY(); } #ifdef TEST private static long seed = System.currentTimeMillis(); private static java.util.Random r = new java.util.Random( seed ); private static KEY_TYPE genKey() { #if KEY_CLASS_Byte || KEY_CLASS_Short || KEY_CLASS_Character return (KEY_TYPE)(r.nextInt()); #elif KEYS_PRIMITIVE return r.NEXT_KEY(); #elif KEY_CLASS_Object return Integer.toBinaryString( r.nextInt() ); #else return new java.io.Serializable() {}; #endif } private static java.text.NumberFormat format = new java.text.DecimalFormat( "#,###.00" ); private static java.text.FieldPosition p = new java.text.FieldPosition( 0 ); private static String format( double d ) { StringBuffer s = new StringBuffer(); return format.format( d, s, p ).toString(); } private static void speedTest( int n, boolean comp ) { System.out.println( "There are presently no speed tests for this class." ); } private static void fatal( String msg ) { System.out.println( msg ); System.exit( 1 ); } private static void ensure( boolean cond, String msg ) { if ( cond ) return; fatal( msg ); } private static Object[] k, v, nk; private static KEY_TYPE kt[]; private static KEY_TYPE nkt[]; private static ARRAY_LIST topList; protected static void testLists( LIST m, java.util.List t, int n, int level ) { long ms; Exception mThrowsIllegal, tThrowsIllegal, mThrowsOutOfBounds, tThrowsOutOfBounds; Object rt = null; KEY_TYPE rm = KEY_NULL; if ( level > 4 ) return; /* Now we check that both sets agree on random keys. For m we use the polymorphic method. */ for( int i = 0; i < n; i++ ) { int p = r.nextInt() % ( n * 2 ); KEY_TYPE T = genKey(); mThrowsOutOfBounds = tThrowsOutOfBounds = null; try { m.set( p, T ); } catch ( IndexOutOfBoundsException e ) { mThrowsOutOfBounds = e; } try { t.set( p, KEY2OBJ( T ) ); } catch ( IndexOutOfBoundsException e ) { tThrowsOutOfBounds = e; } ensure( ( mThrowsOutOfBounds == null ) == ( tThrowsOutOfBounds == null ), "Error (" + level + ", " + seed + "): set() divergence at start in IndexOutOfBoundsException for index " + p + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")" ); if ( mThrowsOutOfBounds == null ) ensure( t.get( p ).equals( KEY2OBJ( m.GET_KEY( p ) ) ), "Error (" + level + ", " + seed + "): m and t differ after set() on position " + p + " (" + m.GET_KEY( p ) + ", " + t.get( p ) + ")" ); p = r.nextInt() % ( n * 2 ); mThrowsOutOfBounds = tThrowsOutOfBounds = null; try { m.GET_KEY( p ); } catch ( IndexOutOfBoundsException e ) { mThrowsOutOfBounds = e; } try { t.get( p ); } catch ( IndexOutOfBoundsException e ) { tThrowsOutOfBounds = e; } ensure( ( mThrowsOutOfBounds == null ) == ( tThrowsOutOfBounds == null ), "Error (" + level + ", " + seed + "): get() divergence at start in IndexOutOfBoundsException for index " + p + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")" ); if ( mThrowsOutOfBounds == null ) ensure( t.get( p ).equals( KEY2OBJ( m.GET_KEY( p ) ) ), "Error (" + level + ", " + seed + "): m and t differ aftre get() on position " + p + " (" + m.GET_KEY( p ) + ", " + t.get( p ) + ")" ); } /* Now we check that both sets agree on random keys. For m we use the standard method. */ for( int i = 0; i < n; i++ ) { int p = r.nextInt() % ( n * 2 ); mThrowsOutOfBounds = tThrowsOutOfBounds = null; try { m.get( p ); } catch ( IndexOutOfBoundsException e ) { mThrowsOutOfBounds = e; } try { t.get( p ); } catch ( IndexOutOfBoundsException e ) { tThrowsOutOfBounds = e; } ensure( ( mThrowsOutOfBounds == null ) == ( tThrowsOutOfBounds == null ), "Error (" + level + ", " + seed + "): get() divergence at start in IndexOutOfBoundsException for index " + p + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")" ); if ( mThrowsOutOfBounds == null ) ensure( t.get( p ).equals( m.get( p ) ), "Error (" + level + ", " + seed + "): m and t differ at start on position " + p + " (" + m.get( p ) + ", " + t.get( p ) + ")" ); } /* Now we check that m and t are equal. */ if ( !m.equals( t ) || ! t.equals( m ) ) System.err.println("m: " + m + " t: " + t); ensure( m.equals( t ), "Error (" + level + ", " + seed + "): ! m.equals( t ) at start" ); ensure( t.equals( m ), "Error (" + level + ", " + seed + "): ! t.equals( m ) at start" ); /* Now we check that m actually holds that data. */ for(Iterator i=t.iterator(); i.hasNext(); ) { ensure( m.contains( i.next() ), "Error (" + level + ", " + seed + "): m and t differ on an entry after insertion (iterating on t)" ); } /* Now we check that m actually holds that data, but iterating on m. */ for(Iterator i=m.listIterator(); i.hasNext(); ) { ensure( t.contains( i.next() ), "Error (" + level + ", " + seed + "): m and t differ on an entry after insertion (iterating on m)" ); } /* Now we check that inquiries about random data give the same answer in m and t. For m we use the polymorphic method. */ for(int i=0; i n ) { m.size( n ); while( t.size() != n ) t.remove( t.size() -1 ); } /* Now we add random data in m and t using addAll on a type-specific collection, checking that the result is the same. */ for(int i=0; i n ) { m.size( n ); while( t.size() != n ) t.remove( t.size() -1 ); } /* Now we add random data in m and t using addAll on a list, checking that the result is the same. */ for(int i=0; i n ) { m.size( n ); while( t.size() != n ) t.remove( t.size() -1 ); } /* Now we check that m actually holds the same data. */ for(Iterator i=t.iterator(); i.hasNext(); ) { ensure( m.contains( i.next() ), "Error (" + level + ", " + seed + "): m and t differ on an entry after removal (iterating on t)"); } /* Now we check that m actually holds that data, but iterating on m. */ for(Iterator i=m.listIterator(); i.hasNext(); ) { ensure( t.contains( i.next() ), "Error (" + level + ", " + seed + "): m and t differ on an entry after removal (iterating on m)" ); } /* Now we check that both sets agree on random keys. For m we use the standard method. */ for( int i = 0; i < n; i++ ) { int p = r.nextInt() % ( n * 2 ); mThrowsOutOfBounds = tThrowsOutOfBounds = null; try { m.get( p ); } catch ( IndexOutOfBoundsException e ) { mThrowsOutOfBounds = e; } try { t.get( p ); } catch ( IndexOutOfBoundsException e ) { tThrowsOutOfBounds = e; } ensure( ( mThrowsOutOfBounds == null ) == ( tThrowsOutOfBounds == null ), "Error (" + level + ", " + seed + "): get() divergence in IndexOutOfBoundsException for index " + p + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")" ); if ( mThrowsOutOfBounds == null ) ensure( t.get( p ).equals( m.get( p ) ), "Error (" + level + ", " + seed + "): m and t differ on position " + p + " (" + m.get( p ) + ", " + t.get( p ) +")" ); } /* Now we inquiry about the content with indexOf()/lastIndexOf(). */ for(int i=0; i<10*n; i++ ) { KEY_TYPE T = genKey(); ensure( m.indexOf( KEY2OBJ( T ) ) == t.indexOf( KEY2OBJ( T ) ), "Error (" + level + ", " + seed + "): indexOf() divergence for " + T + " (" + m.indexOf( KEY2OBJ( T ) ) + ", " + t.indexOf( KEY2OBJ( T ) ) + ")" ); ensure( m.lastIndexOf( KEY2OBJ( T ) ) == t.lastIndexOf( KEY2OBJ( T ) ), "Error (" + level + ", " + seed + "): lastIndexOf() divergence for " + T + " (" + m.lastIndexOf( KEY2OBJ( T ) ) + ", " + t.lastIndexOf( KEY2OBJ( T ) ) + ")" ); ensure( m.indexOf( T ) == t.indexOf( KEY2OBJ( T ) ), "Error (" + level + ", " + seed + "): polymorphic indexOf() divergence for " + T + " (" + m.indexOf( T ) + ", " + t.indexOf( KEY2OBJ( T ) ) + ")" ); ensure( m.lastIndexOf( T ) == t.lastIndexOf( KEY2OBJ( T ) ), "Error (" + level + ", " + seed + "): polymorphic lastIndexOf() divergence for " + T + " (" + m.lastIndexOf( T ) + ", " + t.lastIndexOf( KEY2OBJ( T ) ) + ")" ); } /* Now we check cloning. */ if ( level == 0 ) { ensure( m.equals( ((ARRAY_LIST)m).clone() ), "Error (" + level + ", " + seed + "): m does not equal m.clone()" ); ensure( ((ARRAY_LIST)m).clone().equals( m ), "Error (" + level + ", " + seed + "): m.clone() does not equal m" ); } /* Now we play with constructors. */ ensure( m.equals( new ARRAY_LIST( (Collection)m ) ), "Error (" + level + ", " + seed + "): m does not equal new ( Collection m )" ); ensure( ( new ARRAY_LIST( (Collection)m ) ).equals( m ), "Error (" + level + ", " + seed + "): new ( Collection m )does not equal m" ); ensure( m.equals( new ARRAY_LIST( (COLLECTION)m ) ), "Error (" + level + ", " + seed + "): m does not equal new ( type-specific Collection m )" ); ensure( ( new ARRAY_LIST( (COLLECTION)m ) ).equals( m ), "Error (" + level + ", " + seed + "): new ( type-specific Collection m ) does not equal m" ); ensure( m.equals( new ARRAY_LIST( (LIST)m ) ), "Error (" + level + ", " + seed + "): m does not equal new ( type-specific List m )" ); ensure( ( new ARRAY_LIST( (LIST)m ) ).equals( m ), "Error (" + level + ", " + seed + "): new ( type-specific List m ) does not equal m" ); ensure( m.equals( new ARRAY_LIST( m.listIterator() ) ), "Error (" + level + ", " + seed + "): m does not equal new ( m.listIterator() )" ); ensure( ( new ARRAY_LIST( m.listIterator() ) ).equals( m ), "Error (" + level + ", " + seed + "): new ( m.listIterator() ) does not equal m" ); ensure( m.equals( new ARRAY_LIST( m.iterator() ) ), "Error (" + level + ", " + seed + "): m does not equal new ( m.type_specific_iterator() )" ); ensure( ( new ARRAY_LIST( m.iterator() ) ).equals( m ), "Error (" + level + ", " + seed + "): new ( m.type_specific_iterator() ) does not equal m" ); /* Now we play with conversion to array, wrapping and copying. */ ensure( m.equals( new ARRAY_LIST( m.TO_KEY_ARRAY() ) ), "Error (" + level + ", " + seed + "): m does not equal new ( toArray( m ) )" ); ensure( ( new ARRAY_LIST( m.TO_KEY_ARRAY() ) ).equals( m ), "Error (" + level + ", " + seed + "): new ( toArray( m ) ) does not equal m" ); ensure( m.equals( wrap( m.TO_KEY_ARRAY() ) ), "Error (" + level + ", " + seed + "): m does not equal wrap ( toArray( m ) )" ); ensure( ( wrap( m.TO_KEY_ARRAY() ) ).equals( m ), "Error (" + level + ", " + seed + "): wrap ( toArray( m ) ) does not equal m" ); int h = m.hashCode(); /* Now we save and read m. */ LIST m2 = null; try { java.io.File ff = new java.io.File("it.unimi.dsi.fastutil.test"); java.io.OutputStream os = new java.io.FileOutputStream(ff); java.io.ObjectOutputStream oos = new java.io.ObjectOutputStream(os); oos.writeObject(m); oos.close(); java.io.InputStream is = new java.io.FileInputStream(ff); java.io.ObjectInputStream ois = new java.io.ObjectInputStream(is); m2 = (LIST)ois.readObject(); ois.close(); ff.delete(); } catch(Exception e) { e.printStackTrace(); System.exit( 1 ); } #if ! KEY_CLASS_Reference ensure( m2.hashCode() == h, "Error (" + level + ", " + seed + "): hashCode() changed after save/read" ); /* Now we check that m2 actually holds that data. */ ensure( m2.equals(t), "Error (" + level + ", " + seed + "): ! m2.equals( t ) after save/read" ); ensure( t.equals(m2), "Error (" + level + ", " + seed + "): ! t.equals( m2 ) after save/read" ); /* Now we take out of m everything, and check that it is empty. */ for(Iterator i=t.iterator(); i.hasNext(); ) m2.remove(i.next()); ensure( m2.isEmpty(), "Error (" + level + ", " + seed + "): m2 is not empty (as it should be)" ); #endif /* Now we play with iterators. */ { KEY_LIST_ITERATOR i; java.util.ListIterator j; Object J; i = m.listIterator(); j = t.listIterator(); for( int k = 0; k < 2*n; k++ ) { ensure( i.hasNext() == j.hasNext(), "Error (" + level + ", " + seed + "): divergence in hasNext()" ); ensure( i.hasPrevious() == j.hasPrevious(), "Error (" + level + ", " + seed + "): divergence in hasPrevious()" ); if ( r.nextFloat() < .8 && i.hasNext() ) { ensure( i.next().equals( J = j.next() ), "Error (" + level + ", " + seed + "): divergence in next()" ); if ( r.nextFloat() < 0.2 ) { i.remove(); j.remove(); } else if ( r.nextFloat() < 0.2 ) { KEY_TYPE T = genKey(); i.set( T ); j.set( KEY2OBJ( T ) ); } else if ( r.nextFloat() < 0.2 ) { KEY_TYPE T = genKey(); i.add( T ); j.add( KEY2OBJ( T ) ); } } else if ( r.nextFloat() < .2 && i.hasPrevious() ) { ensure( i.previous().equals( J = j.previous() ), "Error (" + level + ", " + seed + "): divergence in previous()" ); if ( r.nextFloat() < 0.2 ) { i.remove(); j.remove(); } else if ( r.nextFloat() < 0.2 ) { KEY_TYPE T = genKey(); i.set( T ); j.set( KEY2OBJ( T ) ); } else if ( r.nextFloat() < 0.2 ) { KEY_TYPE T = genKey(); i.add( T ); j.add( KEY2OBJ( T ) ); } } ensure( i.nextIndex() == j.nextIndex(), "Error (" + level + ", " + seed + "): divergence in nextIndex()" ); ensure( i.previousIndex() == j.previousIndex(), "Error (" + level + ", " + seed + "): divergence in previousIndex()" ); } } { Object previous = null; Object I, J; int from = r.nextInt( m.size() +1 ); KEY_LIST_ITERATOR i; java.util.ListIterator j; i = m.listIterator( from ); j = t.listIterator( from ); for( int k = 0; k < 2*n; k++ ) { ensure( i.hasNext() == j.hasNext(), "Error (" + level + ", " + seed + "): divergence in hasNext() (iterator with starting point " + from + ")" ); ensure( i.hasPrevious() == j.hasPrevious() , "Error (" + level + ", " + seed + "): divergence in hasPrevious() (iterator with starting point " + from + ")" ); if ( r.nextFloat() < .8 && i.hasNext() ) { ensure( ( I = i.next() ).equals( J = j.next() ), "Error (" + level + ", " + seed + "): divergence in next() (" + I + ", " + J + ", iterator with starting point " + from + ")" ); //System.err.println("Done next " + I + " " + J + " " + badPrevious); if ( r.nextFloat() < 0.2 ) { //System.err.println("Removing in next"); i.remove(); j.remove(); } else if ( r.nextFloat() < 0.2 ) { KEY_TYPE T = genKey(); i.set( T ); j.set( KEY2OBJ( T ) ); } else if ( r.nextFloat() < 0.2 ) { KEY_TYPE T = genKey(); i.add( T ); j.add( KEY2OBJ( T ) ); } } else if ( r.nextFloat() < .2 && i.hasPrevious() ) { ensure( ( I = i.previous() ).equals( J = j.previous() ), "Error (" + level + ", " + seed + "): divergence in previous() (" + I + ", " + J + ", iterator with starting point " + from + ")" ); if ( r.nextFloat() < 0.2 ) { //System.err.println("Removing in prev"); i.remove(); j.remove(); } else if ( r.nextFloat() < 0.2 ) { KEY_TYPE T = genKey(); i.set( T ); j.set( KEY2OBJ( T ) ); } else if ( r.nextFloat() < 0.2 ) { KEY_TYPE T = genKey(); i.add( T ); j.add( KEY2OBJ( T ) ); } } } } /* Now we check that m actually holds that data. */ ensure( m.equals(t), "Error (" + level + ", " + seed + "): ! m.equals( t ) after iteration" ); ensure( t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals( m ) after iteration" ); /* Now we select a pair of keys and create a subset. */ if ( ! m.isEmpty() ) { int start = r.nextInt( m.size() ); int end = start + r.nextInt( m.size() - start ); //System.err.println("Checking subList from " + start + " to " + end + " (level=" + (level+1) + ")..." ); testLists( m.subList( start, end ), t.subList( start, end ), n, level + 1 ); ensure( m.equals(t), "Error (" + level + ", " + seed + m + t + "): ! m.equals( t ) after subList" ); ensure( t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals( m ) after subList" ); } m.clear(); t.clear(); ensure( m.isEmpty(), "Error (" + level + ", " + seed + "): m is not empty after clear()" ); } protected static void test( int n ) { ARRAY_LIST m = new ARRAY_LIST(); java.util.ArrayList t = new java.util.ArrayList(); topList = m; k = new Object[n]; nk = new Object[n]; kt = new KEY_TYPE[n]; nkt = new KEY_TYPE[n]; for( int i = 0; i < n; i++ ) { #if KEYS_REFERENCE k[i] = kt[i] = genKey(); nk[i] = nkt[i] = genKey(); #else k[i] = new KEY_CLASS( kt[i] = genKey() ); nk[i] = new KEY_CLASS( nkt[i] = genKey() ); #endif } /* We add pairs to t. */ for( int i = 0; i < n; i++ ) t.add( k[i] ); /* We add to m the same data */ m.addAll(t); testLists( m, t, n, 0 ); System.out.println("Test OK"); return; } public static void main( String args[] ) { int n = Integer.parseInt(args[1]); if ( args.length > 2 ) r = new java.util.Random( seed = Long.parseLong( args[ 2 ] ) ); try { if ("speedTest".equals(args[0]) || "speedComp".equals(args[0])) speedTest( n, "speedComp".equals(args[0]) ); else if ( "test".equals( args[0] ) ) test(n); } catch( Throwable e ) { e.printStackTrace( System.err ); System.err.println( "seed: " + seed ); } } #endif }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy