All Downloads are FREE. Search and download functionalities are using the official Maven repository.

drv.Arrays.drv Maven / Gradle / Ivy

Go to download

fastutil extends the Java Collections Framework by providing type-specific maps, sets, lists and priority queues with a small memory footprint and fast access and insertion; provides also big (64-bit) arrays, sets and lists, and fast, practical I/O classes for binary and text files.

There is a newer version: 8.5.15
Show newest version
/*		 
 * Copyright (C) 2002-2016 Sebastiano Vigna
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. 
 *
 *
 *
 * For the sorting and binary search code:
 *
 * Copyright (C) 1999 CERN - European Organization for Nuclear Research.
 *
 *   Permission to use, copy, modify, distribute and sell this software and
 *   its documentation for any purpose is hereby granted without fee,
 *   provided that the above copyright notice appear in all copies and that
 *   both that copyright notice and this permission notice appear in
 *   supporting documentation. CERN makes no representations about the
 *   suitability of this software for any purpose. It is provided "as is"
 *   without expressed or implied warranty. 
 */

package PACKAGE;

import it.unimi.dsi.fastutil.Arrays;
import it.unimi.dsi.fastutil.Hash;
import java.util.Random;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.RecursiveAction;

#if ! KEY_CLASS_Integer
import it.unimi.dsi.fastutil.ints.IntArrays;
#endif

#if KEYS_PRIMITIVE

#if ! KEY_CLASS_Boolean
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutorCompletionService;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.atomic.AtomicInteger;
#endif

/** A class providing static methods and objects that do useful things with type-specific arrays.
 *
 * 

In particular, the ensureCapacity(), grow(), * trim() and setLength() methods allow to handle * arrays much like array lists. This can be very useful when efficiency (or * syntactic simplicity) reasons make array lists unsuitable. * *

Note that {@link it.unimi.dsi.fastutil.io.BinIO} and {@link it.unimi.dsi.fastutil.io.TextIO} * contain several methods make it possible to load and save arrays of primitive types as sequences * of elements in {@link java.io.DataInput} format (i.e., not as objects) or as sequences of lines of text. * *

Sorting

* *

There are several sorting methods available. The main theme is that of letting you choose * the sorting algorithm you prefer (i.e., trading stability of mergesort for no memory allocation in quicksort). * Several algorithms provide a parallel version, that will use the {@linkplain Runtime#availableProcessors() number of cores available}. * Some algorithms also provide an explicit indirect sorting facility, which makes it possible * to sort an array using the values in another array as comparator. * *

All comparison-based algorithm have an implementation based on a type-specific comparator. * *

As a general rule, sequential radix sort is significantly faster than quicksort or mergesort, in particular * on random-looking data. In * the parallel case, up to a few cores parallel radix sort is still the fastest, but at some point quicksort * exploits parallelism better. * *

If you are fine with not knowing exactly which algorithm will be run (in particular, not knowing exactly whether a support array will be allocated), * the dual-pivot parallel sorts in {@link java.util.Arrays} * are about 50% faster than the classical single-pivot implementation used here. * *

In any case, if sorting time is important I suggest that you benchmark your sorting load * with your data distribution and on your architecture. * * @see java.util.Arrays */ public class ARRAYS { #else import java.util.Comparator; /** A class providing static methods and objects that do useful things with type-specific arrays. * * In particular, the ensureCapacity(), grow(), * trim() and setLength() methods allow to handle * arrays much like array lists. This can be very useful when efficiency (or * syntactic simplicity) reasons make array lists unsuitable. * *

Warning: if your array is not of type {@code Object[]}, * {@link #ensureCapacity(Object[],int,int)} and {@link #grow(Object[],int,int)} * will use {@linkplain java.lang.reflect.Array#newInstance(Class,int) reflection} * to preserve your array type. Reflection is significantly slower than using new. * This phenomenon is particularly * evident in the first growth phases of an array reallocated with doubling (or similar) logic. * *

Sorting

* *

There are several sorting methods available. The main theme is that of letting you choose * the sorting algorithm you prefer (i.e., trading stability of mergesort for no memory allocation in quicksort). * Several algorithms provide a parallel version, that will use the {@linkplain Runtime#availableProcessors() number of cores available}. * *

All comparison-based algorithm have an implementation based on a type-specific comparator. * *

If you are fine with not knowing exactly which algorithm will be run (in particular, not knowing exactly whether a support array will be allocated), * the dual-pivot parallel sorts in {@link java.util.Arrays} * are about 50% faster than the classical single-pivot implementation used here. * *

In any case, if sorting time is important I suggest that you benchmark your sorting load * with your data distribution and on your architecture. * * @see java.util.Arrays */ public class ARRAYS { #endif private ARRAYS() {} /** A static, final, empty array. */ public final static KEY_TYPE[] EMPTY_ARRAY = {}; #if KEY_CLASS_Object /** Creates a new array using a the given one as prototype. * *

This method returns a new array of the given length whose element * are of the same class as of those of prototype. In case * of an empty array, it tries to return {@link #EMPTY_ARRAY}, if possible. * * @param prototype an array that will be used to type the new one. * @param length the length of the new array. * @return a new array of given type and length. */ SUPPRESS_WARNINGS_KEY_UNCHECKED private static K[] newArray( final K[] prototype, final int length ) { final Class klass = prototype.getClass(); if ( klass == Object[].class ) return (K[])( length == 0 ? EMPTY_ARRAY : new Object[ length ] ); return (K[])java.lang.reflect.Array.newInstance( klass.getComponentType(), length ); } #endif /** Ensures that an array can contain the given number of entries. * *

If you cannot foresee whether this array will need again to be * enlarged, you should probably use grow() instead. * * @param array an array. * @param length the new minimum length for this array. * @return array, if it contains length entries or more; otherwise, * an array with length entries whose first array.length * entries are the same as those of array. */ public static KEY_GENERIC KEY_GENERIC_TYPE[] ensureCapacity( final KEY_GENERIC_TYPE[] array, final int length ) { if ( length > array.length ) { final KEY_GENERIC_TYPE t[] = #if KEY_CLASS_Object newArray( array, length ); #else new KEY_TYPE[ length ]; #endif System.arraycopy( array, 0, t, 0, array.length ); return t; } return array; } /** Ensures that an array can contain the given number of entries, preserving just a part of the array. * * @param array an array. * @param length the new minimum length for this array. * @param preserve the number of elements of the array that must be preserved in case a new allocation is necessary. * @return array, if it can contain length entries or more; otherwise, * an array with length entries whose first preserve * entries are the same as those of array. */ public static KEY_GENERIC KEY_GENERIC_TYPE[] ensureCapacity( final KEY_GENERIC_TYPE[] array, final int length, final int preserve ) { if ( length > array.length ) { final KEY_GENERIC_TYPE t[] = #if KEY_CLASS_Object newArray( array, length ); #else new KEY_TYPE[ length ]; #endif System.arraycopy( array, 0, t, 0, preserve ); return t; } return array; } /** Grows the given array to the maximum between the given length and * the current length multiplied by two, provided that the given * length is larger than the current length. * *

If you want complete control on the array growth, you * should probably use ensureCapacity() instead. * * @param array an array. * @param length the new minimum length for this array. * @return array, if it can contain length * entries; otherwise, an array with * max(length,array.length/φ) entries whose first * array.length entries are the same as those of array. * */ public static KEY_GENERIC KEY_GENERIC_TYPE[] grow( final KEY_GENERIC_TYPE[] array, final int length ) { if ( length > array.length ) { final int newLength = (int)Math.max( Math.min( 2L * array.length, Arrays.MAX_ARRAY_SIZE ), length ); final KEY_GENERIC_TYPE t[] = #if KEY_CLASS_Object newArray( array, newLength ); #else new KEY_TYPE[ newLength ]; #endif System.arraycopy( array, 0, t, 0, array.length ); return t; } return array; } /** Grows the given array to the maximum between the given length and * the current length multiplied by two, provided that the given * length is larger than the current length, preserving just a part of the array. * *

If you want complete control on the array growth, you * should probably use ensureCapacity() instead. * * @param array an array. * @param length the new minimum length for this array. * @param preserve the number of elements of the array that must be preserved in case a new allocation is necessary. * @return array, if it can contain length * entries; otherwise, an array with * max(length,array.length/φ) entries whose first * preserve entries are the same as those of array. * */ public static KEY_GENERIC KEY_GENERIC_TYPE[] grow( final KEY_GENERIC_TYPE[] array, final int length, final int preserve ) { if ( length > array.length ) { final int newLength = (int)Math.max( Math.min( 2L * array.length, Arrays.MAX_ARRAY_SIZE ), length ); final KEY_GENERIC_TYPE t[] = #if KEY_CLASS_Object newArray( array, newLength ); #else new KEY_TYPE[ newLength ]; #endif System.arraycopy( array, 0, t, 0, preserve ); return t; } return array; } /** Trims the given array to the given length. * * @param array an array. * @param length the new maximum length for the array. * @return array, if it contains length * entries or less; otherwise, an array with * length entries whose entries are the same as * the first length entries of array. * */ public static KEY_GENERIC KEY_GENERIC_TYPE[] trim( final KEY_GENERIC_TYPE[] array, final int length ) { if ( length >= array.length ) return array; final KEY_GENERIC_TYPE t[] = #if KEY_CLASS_Object newArray( array, length ); #else length == 0 ? EMPTY_ARRAY : new KEY_TYPE[ length ]; #endif System.arraycopy( array, 0, t, 0, length ); return t; } /** Sets the length of the given array. * * @param array an array. * @param length the new length for the array. * @return array, if it contains exactly length * entries; otherwise, if it contains more than * length entries, an array with length entries * whose entries are the same as the first length entries of * array; otherwise, an array with length entries * whose first array.length entries are the same as those of * array. * */ public static KEY_GENERIC KEY_GENERIC_TYPE[] setLength( final KEY_GENERIC_TYPE[] array, final int length ) { if ( length == array.length ) return array; if ( length < array.length ) return trim( array, length ); return ensureCapacity( array, length ); } /** Returns a copy of a portion of an array. * * @param array an array. * @param offset the first element to copy. * @param length the number of elements to copy. * @return a new array containing length elements of array starting at offset. */ public static KEY_GENERIC KEY_GENERIC_TYPE[] copy( final KEY_GENERIC_TYPE[] array, final int offset, final int length ) { ensureOffsetLength( array, offset, length ); final KEY_GENERIC_TYPE[] a = #if KEY_CLASS_Object newArray( array, length ); #else length == 0 ? EMPTY_ARRAY : new KEY_TYPE[ length ]; #endif System.arraycopy( array, offset, a, 0, length ); return a; } /** Returns a copy of an array. * * @param array an array. * @return a copy of array. */ public static KEY_GENERIC KEY_GENERIC_TYPE[] copy( final KEY_GENERIC_TYPE[] array ) { return array.clone(); } /** Fills the given array with the given value. * * @param array an array. * @param value the new value for all elements of the array. * @deprecated Please use the corresponding {@link java.util.Arrays} method. */ @Deprecated public static KEY_GENERIC void fill( final KEY_GENERIC_TYPE[] array, final KEY_GENERIC_TYPE value ) { int i = array.length; while( i-- != 0 ) array[ i ] = value; } /** Fills a portion of the given array with the given value. * * @param array an array. * @param from the starting index of the portion to fill (inclusive). * @param to the end index of the portion to fill (exclusive). * @param value the new value for all elements of the specified portion of the array. * @deprecated Please use the corresponding {@link java.util.Arrays} method. */ @Deprecated public static KEY_GENERIC void fill( final KEY_GENERIC_TYPE[] array, final int from, int to, final KEY_GENERIC_TYPE value ) { ensureFromTo( array, from, to ); if ( from == 0 ) while( to-- != 0 ) array[ to ] = value; else for( int i = from; i < to; i++ ) array[ i ] = value; } /** Returns true if the two arrays are elementwise equal. * * @param a1 an array. * @param a2 another array. * @return true if the two arrays are of the same length, and their elements are equal. * @deprecated Please use the corresponding {@link java.util.Arrays} method, which is intrinsified in recent JVMs. */ @Deprecated public static KEY_GENERIC boolean equals( final KEY_GENERIC_TYPE[] a1, final KEY_GENERIC_TYPE a2[] ) { int i = a1.length; if ( i != a2.length ) return false; while( i-- != 0 ) if (! KEY_EQUALS( a1[ i ], a2[ i ] ) ) return false; return true; } /** Ensures that a range given by its first (inclusive) and last (exclusive) elements fits an array. * *

This method may be used whenever an array range check is needed. * * @param a an array. * @param from a start index (inclusive). * @param to an end index (exclusive). * @throws IllegalArgumentException if from is greater than to. * @throws ArrayIndexOutOfBoundsException if from or to are greater than the array length or negative. */ public static KEY_GENERIC void ensureFromTo( final KEY_GENERIC_TYPE[] a, final int from, final int to ) { Arrays.ensureFromTo( a.length, from, to ); } /** Ensures that a range given by an offset and a length fits an array. * *

This method may be used whenever an array range check is needed. * * @param a an array. * @param offset a start index. * @param length a length (the number of elements in the range). * @throws IllegalArgumentException if length is negative. * @throws ArrayIndexOutOfBoundsException if offset is negative or offset+length is greater than the array length. */ public static KEY_GENERIC void ensureOffsetLength( final KEY_GENERIC_TYPE[] a, final int offset, final int length ) { Arrays.ensureOffsetLength( a.length, offset, length ); } /** Ensures that two arrays are of the same length. * * @param a an array. * @param b another array. * @throws IllegalArgumentException if the two argument arrays are not of the same length. */ public static KEY_GENERIC void ensureSameLength( final KEY_GENERIC_TYPE[] a, final KEY_GENERIC_TYPE[] b ) { if ( a.length != b.length ) throw new IllegalArgumentException( "Array size mismatch: " + a.length + " != " + b.length ); } private static final int QUICKSORT_NO_REC = 16; private static final int PARALLEL_QUICKSORT_NO_FORK = 8192; private static final int QUICKSORT_MEDIAN_OF_9 = 128; private static final int MERGESORT_NO_REC = 16; /** Swaps two elements of an anrray. * * @param x an array. * @param a a position in {@code x}. * @param b another position in {@code x}. */ public static KEY_GENERIC void swap( final KEY_GENERIC_TYPE x[], final int a, final int b ) { final KEY_GENERIC_TYPE t = x[ a ]; x[ a ] = x[ b ]; x[ b ] = t; } /** Swaps two sequences of elements of an array. * * @param x an array. * @param a a position in {@code x}. * @param b another position in {@code x}. * @param n the number of elements to exchange starting at {@code a} and {@code b}. */ public static KEY_GENERIC void swap( final KEY_GENERIC_TYPE[] x, int a, int b, final int n ) { for( int i = 0; i < n; i++, a++, b++ ) swap( x, a, b ); } private static KEY_GENERIC int med3( final KEY_GENERIC_TYPE x[], final int a, final int b, final int c, KEY_COMPARATOR KEY_GENERIC comp ) { final int ab = comp.compare( x[ a ], x[ b ] ); final int ac = comp.compare( x[ a ], x[ c ] ); final int bc = comp.compare( x[ b ], x[ c ] ); return ( ab < 0 ? ( bc < 0 ? b : ac < 0 ? c : a ) : ( bc > 0 ? b : ac > 0 ? c : a ) ); } private static KEY_GENERIC void selectionSort( final KEY_GENERIC_TYPE[] a, final int from, final int to, final KEY_COMPARATOR KEY_GENERIC comp ) { for( int i = from; i < to - 1; i++ ) { int m = i; for( int j = i + 1; j < to; j++ ) if ( comp.compare( a[ j ], a[ m ] ) < 0 ) m = j; if ( m != i ) { final KEY_GENERIC_TYPE u = a[ i ]; a[ i ] = a[ m ]; a[ m ] = u; } } } private static KEY_GENERIC void insertionSort( final KEY_GENERIC_TYPE[] a, final int from, final int to, final KEY_COMPARATOR KEY_GENERIC comp ) { for ( int i = from; ++i < to; ) { KEY_GENERIC_TYPE t = a[ i ]; int j = i; for ( KEY_GENERIC_TYPE u = a[ j - 1 ]; comp.compare( t, u ) < 0; u = a[ --j - 1 ] ) { a[ j ] = u; if ( from == j - 1 ) { --j; break; } } a[ j ] = t; } } /** Sorts the specified range of elements according to the order induced by the specified * comparator using quicksort. * *

The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas * McIlroy, “Engineering a Sort Function”, Software: Practice and Experience, 23(11), pages * 1249−1265, 1993. * *

Note that this implementation does not allocate any object, contrarily to the implementation * used to sort primitive types in {@link java.util.Arrays}, which switches to mergesort on large inputs. * * @param x the array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. * @param comp the comparator to determine the sorting order. * */ public static KEY_GENERIC void quickSort( final KEY_GENERIC_TYPE[] x, final int from, final int to, final KEY_COMPARATOR KEY_GENERIC comp ) { final int len = to - from; // Selection sort on smallest arrays if ( len < QUICKSORT_NO_REC ) { selectionSort( x, from, to, comp ); return; } // Choose a partition element, v int m = from + len / 2; int l = from; int n = to - 1; if ( len > QUICKSORT_MEDIAN_OF_9 ) { // Big arrays, pseudomedian of 9 int s = len / 8; l = med3( x, l, l + s, l + 2 * s, comp ); m = med3( x, m - s, m, m + s, comp ); n = med3( x, n - 2 * s, n - s, n, comp ); } m = med3( x, l, m, n, comp ); // Mid-size, med of 3 final KEY_GENERIC_TYPE v = x[ m ]; // Establish Invariant: v* (v)* v* int a = from, b = a, c = to - 1, d = c; while( true ) { int comparison; while ( b <= c && ( comparison = comp.compare( x[ b ], v ) ) <= 0 ) { if ( comparison == 0 ) swap( x, a++, b ); b++; } while ( c >= b && ( comparison = comp.compare( x[ c ], v ) ) >=0 ) { if ( comparison == 0 ) swap( x, c, d-- ); c--; } if ( b > c ) break; swap( x, b++, c-- ); } // Swap partition elements back to middle int s; s = Math.min( a - from, b - a ); swap( x, from, b - s, s ); s = Math.min( d - c, to - d - 1 ); swap( x, b, to - s, s ); // Recursively sort non-partition-elements if ( ( s = b - a ) > 1 ) quickSort( x, from, from + s, comp ); if ( ( s = d - c ) > 1 ) quickSort( x, to - s, to, comp ); } /** Sorts an array according to the order induced by the specified * comparator using quicksort. * *

The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas * McIlroy, “Engineering a Sort Function”, Software: Practice and Experience, 23(11), pages * 1249−1265, 1993. * *

Note that this implementation does not allocate any object, contrarily to the implementation * used to sort primitive types in {@link java.util.Arrays}, which switches to mergesort on large inputs. * * @param x the array to be sorted. * @param comp the comparator to determine the sorting order. * */ public static KEY_GENERIC void quickSort( final KEY_GENERIC_TYPE[] x, final KEY_COMPARATOR KEY_GENERIC comp ) { quickSort( x, 0, x.length, comp ); } protected static class ForkJoinQuickSortComp KEY_GENERIC extends RecursiveAction { private static final long serialVersionUID = 1L; private final int from; private final int to; private final KEY_GENERIC_TYPE[] x; private final KEY_COMPARATOR KEY_GENERIC comp; public ForkJoinQuickSortComp( final KEY_GENERIC_TYPE[] x , final int from , final int to, final KEY_COMPARATOR KEY_GENERIC comp ) { this.from = from; this.to = to; this.x = x; this.comp = comp; } @Override protected void compute() { final KEY_GENERIC_TYPE[] x = this.x; final int len = to - from; if ( len < PARALLEL_QUICKSORT_NO_FORK ) { quickSort( x, from, to, comp ); return; } // Choose a partition element, v int m = from + len / 2; int l = from; int n = to - 1; int s = len / 8; l = med3( x, l, l + s, l + 2 * s, comp ); m = med3( x, m - s, m, m + s, comp ); n = med3( x, n - 2 * s, n - s, n, comp ); m = med3( x, l, m, n, comp ); final KEY_GENERIC_TYPE v = x[ m ]; // Establish Invariant: v* (v)* v* int a = from, b = a, c = to - 1, d = c; while ( true ) { int comparison; while ( b <= c && ( comparison = comp.compare( x[ b ], v ) ) <= 0 ) { if ( comparison == 0 ) swap( x, a++, b ); b++; } while ( c >= b && ( comparison = comp.compare( x[ c ], v ) ) >= 0 ) { if ( comparison == 0 ) swap( x, c, d-- ); c--; } if ( b > c ) break; swap( x, b++, c-- ); } // Swap partition elements back to middle int t; s = Math.min( a - from, b - a ); swap( x, from, b - s, s ); s = Math.min( d - c, to - d - 1 ); swap( x, b, to - s, s ); // Recursively sort non-partition-elements s = b - a; t = d - c; if ( s > 1 && t > 1 ) invokeAll( new ForkJoinQuickSortComp KEY_GENERIC( x, from, from + s, comp ), new ForkJoinQuickSortComp KEY_GENERIC( x, to - t, to, comp ) ); else if ( s > 1 ) invokeAll( new ForkJoinQuickSortComp KEY_GENERIC( x, from, from + s, comp ) ); else invokeAll( new ForkJoinQuickSortComp KEY_GENERIC( x, to - t, to, comp ) ); } } /** Sorts the specified range of elements according to the order induced by the specified * comparator using a parallel quicksort. * *

The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas * McIlroy, “Engineering a Sort Function”, Software: Practice and Experience, 23(11), pages * 1249−1265, 1993. * *

This implementation uses a {@link ForkJoinPool} executor service with * {@link Runtime#availableProcessors()} parallel threads. * * @param x the array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. * @param comp the comparator to determine the sorting order. */ public static KEY_GENERIC void parallelQuickSort( final KEY_GENERIC_TYPE[] x, final int from, final int to, final KEY_COMPARATOR KEY_GENERIC comp ) { if ( to - from < PARALLEL_QUICKSORT_NO_FORK ) quickSort( x, from, to, comp ); else { final ForkJoinPool pool = new ForkJoinPool( Runtime.getRuntime().availableProcessors() ); pool.invoke( new ForkJoinQuickSortComp KEY_GENERIC( x, from, to, comp ) ); pool.shutdown(); } } /** Sorts an array according to the order induced by the specified * comparator using a parallel quicksort. * *

The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas * McIlroy, “Engineering a Sort Function”, Software: Practice and Experience, 23(11), pages * 1249−1265, 1993. * *

This implementation uses a {@link ForkJoinPool} executor service with * {@link Runtime#availableProcessors()} parallel threads. * * @param x the array to be sorted. * @param comp the comparator to determine the sorting order. */ public static KEY_GENERIC void parallelQuickSort( final KEY_GENERIC_TYPE[] x, final KEY_COMPARATOR KEY_GENERIC comp ) { parallelQuickSort( x, 0, x.length, comp ); } SUPPRESS_WARNINGS_KEY_UNCHECKED private static KEY_GENERIC int med3( final KEY_GENERIC_TYPE x[], final int a, final int b, final int c ) { final int ab = KEY_CMP( x[ a ], x[ b ] ); final int ac = KEY_CMP( x[ a ], x[ c ] ); final int bc = KEY_CMP( x[ b ], x[ c ] ); return ( ab < 0 ? ( bc < 0 ? b : ac < 0 ? c : a ) : ( bc > 0 ? b : ac > 0 ? c : a ) ); } SUPPRESS_WARNINGS_KEY_UNCHECKED private static KEY_GENERIC void selectionSort( final KEY_GENERIC_TYPE[] a, final int from, final int to ) { for( int i = from; i < to - 1; i++ ) { int m = i; for( int j = i + 1; j < to; j++ ) if ( KEY_LESS( a[ j ], a[ m ] ) ) m = j; if ( m != i ) { final KEY_GENERIC_TYPE u = a[ i ]; a[ i ] = a[ m ]; a[ m ] = u; } } } SUPPRESS_WARNINGS_KEY_UNCHECKED private static KEY_GENERIC void insertionSort( final KEY_GENERIC_TYPE[] a, final int from, final int to ) { for ( int i = from; ++i < to; ) { KEY_GENERIC_TYPE t = a[ i ]; int j = i; for ( KEY_GENERIC_TYPE u = a[ j - 1 ]; KEY_LESS( t, u ); u = a[ --j - 1 ] ) { a[ j ] = u; if ( from == j - 1 ) { --j; break; } } a[ j ] = t; } } /** Sorts the specified range of elements according to the natural ascending order using quicksort. * *

The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas * McIlroy, “Engineering a Sort Function”, Software: Practice and Experience, 23(11), pages * 1249−1265, 1993. * *

Note that this implementation does not allocate any object, contrarily to the implementation * used to sort primitive types in {@link java.util.Arrays}, which switches to mergesort on large inputs. * * @param x the array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. */ SUPPRESS_WARNINGS_KEY_UNCHECKED public static KEY_GENERIC void quickSort( final KEY_GENERIC_TYPE[] x, final int from, final int to ) { final int len = to - from; // Selection sort on smallest arrays if ( len < QUICKSORT_NO_REC ) { selectionSort( x, from, to ); return; } // Choose a partition element, v int m = from + len / 2; int l = from; int n = to - 1; if ( len > QUICKSORT_MEDIAN_OF_9 ) { // Big arrays, pseudomedian of 9 int s = len / 8; l = med3( x, l, l + s, l + 2 * s ); m = med3( x, m - s, m, m + s ); n = med3( x, n - 2 * s, n - s, n ); } m = med3( x, l, m, n ); // Mid-size, med of 3 final KEY_GENERIC_TYPE v = x[ m ]; // Establish Invariant: v* (v)* v* int a = from, b = a, c = to - 1, d = c; while(true) { int comparison; while ( b <= c && ( comparison = KEY_CMP( x[ b ], v ) ) <= 0 ) { if ( comparison == 0 ) swap( x, a++, b ); b++; } while (c >= b && ( comparison = KEY_CMP( x[ c ], v ) ) >=0 ) { if ( comparison == 0 ) swap( x, c, d-- ); c--; } if ( b > c ) break; swap( x, b++, c-- ); } // Swap partition elements back to middle int s; s = Math.min( a - from, b - a ); swap( x, from, b - s, s ); s = Math.min( d - c, to - d - 1 ); swap( x, b, to - s, s ); // Recursively sort non-partition-elements if ( ( s = b - a ) > 1 ) quickSort( x, from, from + s ); if ( ( s = d - c ) > 1 ) quickSort( x, to - s, to ); } /** Sorts an array according to the natural ascending order using quicksort. * *

The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas * McIlroy, “Engineering a Sort Function”, Software: Practice and Experience, 23(11), pages * 1249−1265, 1993. * *

Note that this implementation does not allocate any object, contrarily to the implementation * used to sort primitive types in {@link java.util.Arrays}, which switches to mergesort on large inputs. * * @param x the array to be sorted. * */ public static KEY_GENERIC void quickSort( final KEY_GENERIC_TYPE[] x ) { quickSort( x, 0, x.length ); } protected static class ForkJoinQuickSort KEY_GENERIC extends RecursiveAction { private static final long serialVersionUID = 1L; private final int from; private final int to; private final KEY_GENERIC_TYPE[] x; public ForkJoinQuickSort( final KEY_GENERIC_TYPE[] x , final int from , final int to ) { this.from = from; this.to = to; this.x = x; } @Override SUPPRESS_WARNINGS_KEY_UNCHECKED protected void compute() { final KEY_GENERIC_TYPE[] x = this.x; final int len = to - from; if ( len < PARALLEL_QUICKSORT_NO_FORK ) { quickSort( x, from, to ); return; } // Choose a partition element, v int m = from + len / 2; int l = from; int n = to - 1; int s = len / 8; l = med3( x, l, l + s, l + 2 * s ); m = med3( x, m - s, m, m + s ); n = med3( x, n - 2 * s, n - s, n ); m = med3( x, l, m, n ); final KEY_GENERIC_TYPE v = x[ m ]; // Establish Invariant: v* (v)* v* int a = from, b = a, c = to - 1, d = c; while ( true ) { int comparison; while ( b <= c && ( comparison = KEY_CMP( x[ b ], v ) ) <= 0 ) { if ( comparison == 0 ) swap( x, a++, b ); b++; } while ( c >= b && ( comparison = KEY_CMP( x[ c ], v ) ) >= 0 ) { if ( comparison == 0 ) swap( x, c, d-- ); c--; } if ( b > c ) break; swap( x, b++, c-- ); } // Swap partition elements back to middle int t; s = Math.min( a - from, b - a ); swap( x, from, b - s, s ); s = Math.min( d - c, to - d - 1 ); swap( x, b, to - s, s ); // Recursively sort non-partition-elements s = b - a; t = d - c; if ( s > 1 && t > 1 ) invokeAll( new ForkJoinQuickSort KEY_GENERIC( x, from, from + s ), new ForkJoinQuickSort KEY_GENERIC( x, to - t, to ) ); else if ( s > 1 ) invokeAll( new ForkJoinQuickSort KEY_GENERIC( x, from, from + s ) ); else invokeAll( new ForkJoinQuickSort KEY_GENERIC( x, to - t, to ) ); } } /** Sorts the specified range of elements according to the natural ascending order using a parallel quicksort. * *

The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas * McIlroy, “Engineering a Sort Function”, Software: Practice and Experience, 23(11), pages * 1249−1265, 1993. * *

This implementation uses a {@link ForkJoinPool} executor service with * {@link Runtime#availableProcessors()} parallel threads. * * @param x the array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. */ public static KEY_GENERIC void parallelQuickSort( final KEY_GENERIC_TYPE[] x, final int from, final int to ) { if ( to - from < PARALLEL_QUICKSORT_NO_FORK ) quickSort( x, from, to ); else { final ForkJoinPool pool = new ForkJoinPool( Runtime.getRuntime().availableProcessors() ); pool.invoke( new ForkJoinQuickSort KEY_GENERIC( x, from, to ) ); pool.shutdown(); } } /** Sorts an array according to the natural ascending order using a parallel quicksort. * *

The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas * McIlroy, “Engineering a Sort Function”, Software: Practice and Experience, 23(11), pages * 1249−1265, 1993. * *

This implementation uses a {@link ForkJoinPool} executor service with * {@link Runtime#availableProcessors()} parallel threads. * * @param x the array to be sorted. * */ public static KEY_GENERIC void parallelQuickSort( final KEY_GENERIC_TYPE[] x ) { parallelQuickSort( x, 0, x.length ); } SUPPRESS_WARNINGS_KEY_UNCHECKED private static KEY_GENERIC int med3Indirect( final int perm[], final KEY_GENERIC_TYPE x[], final int a, final int b, final int c ) { final KEY_GENERIC_TYPE aa = x[ perm[ a ] ]; final KEY_GENERIC_TYPE bb = x[ perm[ b ] ]; final KEY_GENERIC_TYPE cc = x[ perm[ c ] ]; final int ab = KEY_CMP( aa, bb ); final int ac = KEY_CMP( aa, cc ); final int bc = KEY_CMP( bb, cc ); return ( ab < 0 ? ( bc < 0 ? b : ac < 0 ? c : a ) : ( bc > 0 ? b : ac > 0 ? c : a ) ); } SUPPRESS_WARNINGS_KEY_UNCHECKED private static KEY_GENERIC void insertionSortIndirect( final int[] perm, final KEY_GENERIC_TYPE[] a, final int from, final int to ) { for ( int i = from; ++i < to; ) { int t = perm[ i ]; int j = i; for ( int u = perm[ j - 1 ]; KEY_LESS( a[ t ], a[ u ] ); u = perm[ --j - 1 ] ) { perm[ j ] = u; if ( from == j - 1 ) { --j; break; } } perm[ j ] = t; } } /** Sorts the specified range of elements according to the natural ascending order using indirect quicksort. * *

The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas * McIlroy, “Engineering a Sort Function”, Software: Practice and Experience, 23(11), pages * 1249−1265, 1993. * *

This method implement an indirect sort. The elements of perm (which must * be exactly the numbers in the interval [0..perm.length)) will be permuted so that * x[ perm[ i ] ] ≤ x[ perm[ i + 1 ] ]. * *

Note that this implementation does not allocate any object, contrarily to the implementation * used to sort primitive types in {@link java.util.Arrays}, which switches to mergesort on large inputs. * * @param perm a permutation array indexing {@code x}. * @param x the array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. */ SUPPRESS_WARNINGS_KEY_UNCHECKED public static KEY_GENERIC void quickSortIndirect( final int[] perm, final KEY_GENERIC_TYPE[] x, final int from, final int to ) { final int len = to - from; // Selection sort on smallest arrays if ( len < QUICKSORT_NO_REC ) { insertionSortIndirect( perm, x, from, to ); return; } // Choose a partition element, v int m = from + len / 2; int l = from; int n = to - 1; if ( len > QUICKSORT_MEDIAN_OF_9 ) { // Big arrays, pseudomedian of 9 int s = len / 8; l = med3Indirect( perm, x, l, l + s, l + 2 * s ); m = med3Indirect( perm, x, m - s, m, m + s ); n = med3Indirect( perm, x, n - 2 * s, n - s, n ); } m = med3Indirect( perm, x, l, m, n ); // Mid-size, med of 3 final KEY_GENERIC_TYPE v = x[ perm[ m ] ]; // Establish Invariant: v* (v)* v* int a = from, b = a, c = to - 1, d = c; while(true) { int comparison; while ( b <= c && ( comparison = KEY_CMP( x[ perm[ b ] ], v ) ) <= 0 ) { if ( comparison == 0 ) IntArrays.swap( perm, a++, b ); b++; } while (c >= b && ( comparison = KEY_CMP( x[ perm[ c ] ], v ) ) >=0 ) { if ( comparison == 0 ) IntArrays.swap( perm, c, d-- ); c--; } if ( b > c ) break; IntArrays.swap( perm, b++, c-- ); } // Swap partition elements back to middle int s; s = Math.min( a - from, b - a ); IntArrays.swap( perm, from, b - s, s ); s = Math.min( d - c, to - d - 1 ); IntArrays.swap( perm, b, to - s, s ); // Recursively sort non-partition-elements if ( ( s = b - a ) > 1 ) quickSortIndirect( perm, x, from, from + s ); if ( ( s = d - c ) > 1 ) quickSortIndirect( perm, x, to - s, to ); } /** Sorts an array according to the natural ascending order using indirect quicksort. * *

The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas * McIlroy, “Engineering a Sort Function”, Software: Practice and Experience, 23(11), pages * 1249−1265, 1993. * *

This method implement an indirect sort. The elements of perm (which must * be exactly the numbers in the interval [0..perm.length)) will be permuted so that * x[ perm[ i ] ] ≤ x[ perm[ i + 1 ] ]. * *

Note that this implementation does not allocate any object, contrarily to the implementation * used to sort primitive types in {@link java.util.Arrays}, which switches to mergesort on large inputs. * * @param perm a permutation array indexing {@code x}. * @param x the array to be sorted. */ public static KEY_GENERIC void quickSortIndirect( final int perm[], final KEY_GENERIC_TYPE[] x ) { quickSortIndirect( perm, x, 0, x.length ); } protected static class ForkJoinQuickSortIndirect KEY_GENERIC extends RecursiveAction { private static final long serialVersionUID = 1L; private final int from; private final int to; private final int[] perm; private final KEY_GENERIC_TYPE[] x; public ForkJoinQuickSortIndirect( final int perm[], final KEY_GENERIC_TYPE[] x , final int from , final int to ) { this.from = from; this.to = to; this.x = x; this.perm = perm; } @Override SUPPRESS_WARNINGS_KEY_UNCHECKED protected void compute() { final KEY_GENERIC_TYPE[] x = this.x; final int len = to - from; if ( len < PARALLEL_QUICKSORT_NO_FORK ) { quickSortIndirect( perm, x, from, to ); return; } // Choose a partition element, v int m = from + len / 2; int l = from; int n = to - 1; int s = len / 8; l = med3Indirect( perm, x, l, l + s, l + 2 * s ); m = med3Indirect( perm, x, m - s, m, m + s ); n = med3Indirect( perm, x, n - 2 * s, n - s, n ); m = med3Indirect( perm, x, l, m, n ); final KEY_GENERIC_TYPE v = x[ perm[ m ] ]; // Establish Invariant: v* (v)* v* int a = from, b = a, c = to - 1, d = c; while ( true ) { int comparison; while ( b <= c && ( comparison = KEY_CMP( x[ perm[ b ] ], v ) ) <= 0 ) { if ( comparison == 0 ) IntArrays.swap( perm, a++, b ); b++; } while ( c >= b && ( comparison = KEY_CMP( x[ perm[ c ] ], v ) ) >= 0 ) { if ( comparison == 0 ) IntArrays.swap( perm, c, d-- ); c--; } if ( b > c ) break; IntArrays.swap( perm, b++, c-- ); } // Swap partition elements back to middle int t; s = Math.min( a - from, b - a ); IntArrays.swap( perm, from, b - s, s ); s = Math.min( d - c, to - d - 1 ); IntArrays.swap( perm, b, to - s, s ); // Recursively sort non-partition-elements s = b - a; t = d - c; if ( s > 1 && t > 1 ) invokeAll( new ForkJoinQuickSortIndirect KEY_GENERIC( perm, x, from, from + s ), new ForkJoinQuickSortIndirect KEY_GENERIC( perm, x, to - t, to ) ); else if ( s > 1 ) invokeAll( new ForkJoinQuickSortIndirect KEY_GENERIC( perm, x, from, from + s ) ); else invokeAll( new ForkJoinQuickSortIndirect KEY_GENERIC( perm, x, to - t, to ) ); } } /** Sorts the specified range of elements according to the natural ascending order using a parallel indirect quicksort. * *

The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas * McIlroy, “Engineering a Sort Function”, Software: Practice and Experience, 23(11), pages * 1249−1265, 1993. * *

This method implement an indirect sort. The elements of perm (which must * be exactly the numbers in the interval [0..perm.length)) will be permuted so that * x[ perm[ i ] ] ≤ x[ perm[ i + 1 ] ]. * *

This implementation uses a {@link ForkJoinPool} executor service with * {@link Runtime#availableProcessors()} parallel threads. * * @param perm a permutation array indexing {@code x}. * @param x the array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. */ public static KEY_GENERIC void parallelQuickSortIndirect( final int[] perm, final KEY_GENERIC_TYPE[] x, final int from, final int to ) { if ( to - from < PARALLEL_QUICKSORT_NO_FORK ) quickSortIndirect( perm, x, from, to ); else { final ForkJoinPool pool = new ForkJoinPool( Runtime.getRuntime().availableProcessors() ); pool.invoke( new ForkJoinQuickSortIndirect KEY_GENERIC( perm, x, from, to ) ); pool.shutdown(); } } /** Sorts an array according to the natural ascending order using a parallel indirect quicksort. * *

The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas * McIlroy, “Engineering a Sort Function”, Software: Practice and Experience, 23(11), pages * 1249−1265, 1993. * *

This method implement an indirect sort. The elements of perm (which must * be exactly the numbers in the interval [0..perm.length)) will be permuted so that * x[ perm[ i ] ] ≤ x[ perm[ i + 1 ] ]. * *

This implementation uses a {@link ForkJoinPool} executor service with * {@link Runtime#availableProcessors()} parallel threads. * * @param perm a permutation array indexing {@code x}. * @param x the array to be sorted. * */ public static KEY_GENERIC void parallelQuickSortIndirect( final int perm[], final KEY_GENERIC_TYPE[] x ) { parallelQuickSortIndirect( perm, x, 0, x.length ); } /** Stabilizes a permutation. * *

This method can be used to stabilize the permutation generated by an indirect sorting, assuming that * initially the permutation array was in ascending order (e.g., the identity, as usually happens). This method * scans the permutation, and for each non-singleton block of elements with the same associated values in {@code x}, * permutes them in ascending order. The resulting permutation corresponds to a stable sort. * *

Usually combining an unstable indirect sort and this method is more efficient than using a stable sort, * as most stable sort algorithms require a support array. * *

More precisely, assuming that x[ perm[ i ] ] ≤ x[ perm[ i + 1 ] ], after * stabilization we will also have that x[ perm[ i ] ] = x[ perm[ i + 1 ] ] implies * perm[ i ] ≤ perm[ i + 1 ]. * * @param perm a permutation array indexing {@code x} so that it is sorted. * @param x the sorted array to be stabilized. * @param from the index of the first element (inclusive) to be stabilized. * @param to the index of the last element (exclusive) to be stabilized. */ public static KEY_GENERIC void stabilize( final int perm[], final KEY_GENERIC_TYPE[] x, final int from, final int to ) { int curr = from; for( int i = from + 1; i < to; i++ ) { if ( x[ perm[ i ] ] != x[ perm[ curr ] ] ) { if ( i - curr > 1 ) IntArrays.parallelQuickSort( perm, curr, i ); curr = i; } } if ( to - curr > 1 ) IntArrays.parallelQuickSort( perm, curr, to ); } /** Stabilizes a permutation. * *

This method can be used to stabilize the permutation generated by an indirect sorting, assuming that * initially the permutation array was in ascending order (e.g., the identity, as usually happens). This method * scans the permutation, and for each non-singleton block of elements with the same associated values in {@code x}, * permutes them in ascending order. The resulting permutation corresponds to a stable sort. * *

Usually combining an unstable indirect sort and this method is more efficient than using a stable sort, * as most stable sort algorithms require a support array. * *

More precisely, assuming that x[ perm[ i ] ] ≤ x[ perm[ i + 1 ] ], after * stabilization we will also have that x[ perm[ i ] ] = x[ perm[ i + 1 ] ] implies * perm[ i ] ≤ perm[ i + 1 ]. * * @param perm a permutation array indexing {@code x} so that it is sorted. * @param x the sorted array to be stabilized. */ public static KEY_GENERIC void stabilize( final int perm[], final KEY_GENERIC_TYPE[] x ) { stabilize( perm, x, 0, perm.length ); } SUPPRESS_WARNINGS_KEY_UNCHECKED private static KEY_GENERIC int med3( final KEY_GENERIC_TYPE x[], final KEY_GENERIC_TYPE[] y, final int a, final int b, final int c ) { int t; final int ab = ( t = KEY_CMP( x[ a ], x[ b ] ) ) == 0 ? KEY_CMP( y[ a ], y[ b ] ) : t; final int ac = ( t = KEY_CMP( x[ a ], x[ c ] ) ) == 0 ? KEY_CMP( y[ a ], y[ c ] ) : t; final int bc = ( t = KEY_CMP( x[ b ], x[ c ] ) ) == 0 ? KEY_CMP( y[ b ], y[ c ] ) : t; return ( ab < 0 ? ( bc < 0 ? b : ac < 0 ? c : a ) : ( bc > 0 ? b : ac > 0 ? c : a ) ); } private static KEY_GENERIC void swap( final KEY_GENERIC_TYPE x[], final KEY_GENERIC_TYPE[] y, final int a, final int b ) { final KEY_GENERIC_TYPE t = x[ a ]; final KEY_GENERIC_TYPE u = y[ a ]; x[ a ] = x[ b ]; y[ a ] = y[ b ]; x[ b ] = t; y[ b ] = u; } private static KEY_GENERIC void swap( final KEY_GENERIC_TYPE[] x, final KEY_GENERIC_TYPE[] y, int a, int b, final int n ) { for ( int i = 0; i < n; i++, a++, b++ ) swap( x, y, a, b ); } SUPPRESS_WARNINGS_KEY_UNCHECKED private static KEY_GENERIC void selectionSort( final KEY_GENERIC_TYPE[] a, final KEY_GENERIC_TYPE[] b, final int from, final int to ) { for( int i = from; i < to - 1; i++ ) { int m = i, u; for( int j = i + 1; j < to; j++ ) if ( ( u = KEY_CMP( a[ j ], a[ m ] ) ) < 0 || u == 0 && KEY_LESS( b[ j ], b[ m ] ) ) m = j; if ( m != i ) { KEY_GENERIC_TYPE t = a[ i ]; a[ i ] = a[ m ]; a[ m ] = t; t = b[ i ]; b[ i ] = b[ m ]; b[ m ] = t; } } } /** Sorts the specified range of elements of two arrays according to the natural lexicographical * ascending order using quicksort. * *

The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas * McIlroy, “Engineering a Sort Function”, Software: Practice and Experience, 23(11), pages * 1249−1265, 1993. * *

This method implements a lexicographical sorting of the arguments. Pairs of * elements in the same position in the two provided arrays will be considered a single key, and * permuted accordingly. In the end, either x[ i ] < x[ i + 1 ] or x[ i ] * == x[ i + 1 ] and y[ i ] ≤ y[ i + 1 ]. * * @param x the first array to be sorted. * @param y the second array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. */ SUPPRESS_WARNINGS_KEY_UNCHECKED public static KEY_GENERIC void quickSort( final KEY_GENERIC_TYPE[] x, final KEY_GENERIC_TYPE[] y, final int from, final int to ) { final int len = to - from; if ( len < QUICKSORT_NO_REC ) { selectionSort( x, y, from, to ); return; } // Choose a partition element, v int m = from + len / 2; int l = from; int n = to - 1; if ( len > QUICKSORT_MEDIAN_OF_9 ) { // Big arrays, pseudomedian of 9 int s = len / 8; l = med3( x, y, l, l + s, l + 2 * s ); m = med3( x, y, m - s, m, m + s ); n = med3( x, y, n - 2 * s, n - s, n ); } m = med3( x, y, l, m, n ); // Mid-size, med of 3 final KEY_GENERIC_TYPE v = x[ m ], w = y[ m ]; // Establish Invariant: v* (v)* v* int a = from, b = a, c = to - 1, d = c; while ( true ) { int comparison, t; while ( b <= c && ( comparison = ( t = KEY_CMP( x[ b ], v ) ) == 0 ? KEY_CMP( y[ b ], w ) : t ) <= 0 ) { if ( comparison == 0 ) swap( x, y, a++, b ); b++; } while ( c >= b && ( comparison = ( t = KEY_CMP( x[ c ], v ) ) == 0 ? KEY_CMP( y[ c ], w ) : t ) >= 0 ) { if ( comparison == 0 ) swap( x, y, c, d-- ); c--; } if ( b > c ) break; swap( x, y, b++, c-- ); } // Swap partition elements back to middle int s; s = Math.min( a - from, b - a ); swap( x, y, from, b - s, s ); s = Math.min( d - c, to - d - 1 ); swap( x, y, b, to - s, s ); // Recursively sort non-partition-elements if ( ( s = b - a ) > 1 ) quickSort( x, y, from, from + s ); if ( ( s = d - c ) > 1 ) quickSort( x, y, to - s, to ); } /** Sorts two arrays according to the natural lexicographical ascending order using quicksort. * *

The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas * McIlroy, “Engineering a Sort Function”, Software: Practice and Experience, 23(11), pages * 1249−1265, 1993. * *

This method implements a lexicographical sorting of the arguments. Pairs of * elements in the same position in the two provided arrays will be considered a single key, and * permuted accordingly. In the end, either x[ i ] < x[ i + 1 ] or x[ i ] * == x[ i + 1 ] and y[ i ] ≤ y[ i + 1 ]. * * @param x the first array to be sorted. * @param y the second array to be sorted. */ public static KEY_GENERIC void quickSort( final KEY_GENERIC_TYPE[] x, final KEY_GENERIC_TYPE[] y ) { ensureSameLength( x, y ); quickSort( x, y, 0, x.length ); } protected static class ForkJoinQuickSort2 KEY_GENERIC extends RecursiveAction { private static final long serialVersionUID = 1L; private final int from; private final int to; private final KEY_GENERIC_TYPE[] x, y; public ForkJoinQuickSort2( final KEY_GENERIC_TYPE[] x, final KEY_GENERIC_TYPE[] y, final int from , final int to ) { this.from = from; this.to = to; this.x = x; this.y = y; } @Override SUPPRESS_WARNINGS_KEY_UNCHECKED protected void compute() { final KEY_GENERIC_TYPE[] x = this.x; final KEY_GENERIC_TYPE[] y = this.y; final int len = to - from; if ( len < PARALLEL_QUICKSORT_NO_FORK ) { quickSort( x, y, from, to ); return; } // Choose a partition element, v int m = from + len / 2; int l = from; int n = to - 1; int s = len / 8; l = med3( x, y, l, l + s, l + 2 * s ); m = med3( x, y, m - s, m, m + s ); n = med3( x, y, n - 2 * s, n - s, n ); m = med3( x, y, l, m, n ); final KEY_GENERIC_TYPE v = x[ m ], w = y[ m ]; // Establish Invariant: v* (v)* v* int a = from, b = a, c = to - 1, d = c; while ( true ) { int comparison, t; while ( b <= c && ( comparison = ( t = KEY_CMP( x[ b ], v ) ) == 0 ? KEY_CMP( y[ b ], w ) : t ) <= 0 ) { if ( comparison == 0 ) swap( x, y, a++, b ); b++; } while ( c >= b && ( comparison = ( t = KEY_CMP( x[ c ], v ) ) == 0 ? KEY_CMP( y[ c ], w ) : t ) >= 0 ) { if ( comparison == 0 ) swap( x, y, c, d-- ); c--; } if ( b > c ) break; swap( x, y, b++, c-- ); } // Swap partition elements back to middle int t; s = Math.min( a - from, b - a ); swap( x, y, from, b - s, s ); s = Math.min( d - c, to - d - 1 ); swap( x, y, b, to - s, s ); s = b - a; t = d - c; // Recursively sort non-partition-elements if ( s > 1 && t > 1 ) invokeAll( new ForkJoinQuickSort2 KEY_GENERIC( x, y, from, from + s ), new ForkJoinQuickSort2 KEY_GENERIC( x, y, to - t, to ) ); else if ( s > 1 ) invokeAll( new ForkJoinQuickSort2 KEY_GENERIC( x, y, from, from + s ) ); else invokeAll( new ForkJoinQuickSort2 KEY_GENERIC( x, y, to - t, to ) ); } } /** Sorts the specified range of elements of two arrays according to the natural lexicographical * ascending order using a parallel quicksort. * *

The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas * McIlroy, “Engineering a Sort Function”, Software: Practice and Experience, 23(11), pages * 1249−1265, 1993. * *

This method implements a lexicographical sorting of the arguments. Pairs of * elements in the same position in the two provided arrays will be considered a single key, and * permuted accordingly. In the end, either x[ i ] < x[ i + 1 ] or x[ i ] * == x[ i + 1 ] and y[ i ] ≤ y[ i + 1 ]. * *

This implementation uses a {@link ForkJoinPool} executor service with * {@link Runtime#availableProcessors()} parallel threads. * * @param x the first array to be sorted. * @param y the second array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. */ public static KEY_GENERIC void parallelQuickSort( final KEY_GENERIC_TYPE[] x, final KEY_GENERIC_TYPE[] y, final int from, final int to ) { if ( to - from < PARALLEL_QUICKSORT_NO_FORK ) quickSort( x, y, from, to ); final ForkJoinPool pool = new ForkJoinPool( Runtime.getRuntime().availableProcessors() ); pool.invoke( new ForkJoinQuickSort2 KEY_GENERIC( x, y, from, to ) ); pool.shutdown(); } /** Sorts two arrays according to the natural lexicographical * ascending order using a parallel quicksort. * *

The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas * McIlroy, “Engineering a Sort Function”, Software: Practice and Experience, 23(11), pages * 1249−1265, 1993. * *

This method implements a lexicographical sorting of the arguments. Pairs of * elements in the same position in the two provided arrays will be considered a single key, and * permuted accordingly. In the end, either x[ i ] < x[ i + 1 ] or x[ i ] * == x[ i + 1 ] and y[ i ] ≤ y[ i + 1 ]. * *

This implementation uses a {@link ForkJoinPool} executor service with * {@link Runtime#availableProcessors()} parallel threads. * * @param x the first array to be sorted. * @param y the second array to be sorted. */ public static KEY_GENERIC void parallelQuickSort( final KEY_GENERIC_TYPE[] x, final KEY_GENERIC_TYPE[] y ) { ensureSameLength( x, y ); parallelQuickSort( x, y, 0, x.length ); } /** Sorts the specified range of elements according to the natural ascending order using mergesort, using a given pre-filled support array. * *

This sort is guaranteed to be stable: equal elements will not be reordered as a result * of the sort. Moreover, no support arrays will be allocated. * @param a the array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. * @param supp a support array containing at least to elements, and whose entries are identical to those * of {@code a} in the specified range. */ SUPPRESS_WARNINGS_KEY_UNCHECKED public static KEY_GENERIC void mergeSort( final KEY_GENERIC_TYPE a[], final int from, final int to, final KEY_GENERIC_TYPE supp[] ) { int len = to - from; // Insertion sort on smallest arrays if ( len < MERGESORT_NO_REC ) { insertionSort( a, from, to ); return; } // Recursively sort halves of a into supp final int mid = ( from + to ) >>> 1; mergeSort( supp, from, mid, a ); mergeSort( supp, mid, to, a ); // If list is already sorted, just copy from supp to a. This is an // optimization that results in faster sorts for nearly ordered lists. if ( KEY_LESSEQ( supp[ mid - 1 ], supp[ mid ] ) ) { System.arraycopy( supp, from, a, from, len ); return; } // Merge sorted halves (now in supp) into a for( int i = from, p = from, q = mid; i < to; i++ ) { if ( q >= to || p < mid && KEY_LESSEQ( supp[ p ], supp[ q ] ) ) a[ i ] = supp[ p++ ]; else a[ i ] = supp[ q++ ]; } } /** Sorts the specified range of elements according to the natural ascending order using mergesort. * *

This sort is guaranteed to be stable: equal elements will not be reordered as a result * of the sort. An array as large as a will be allocated by this method. * @param a the array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. */ public static KEY_GENERIC void mergeSort( final KEY_GENERIC_TYPE a[], final int from, final int to ) { mergeSort( a, from, to, a.clone() ); } /** Sorts an array according to the natural ascending order using mergesort. * *

This sort is guaranteed to be stable: equal elements will not be reordered as a result * of the sort. An array as large as a will be allocated by this method. * @param a the array to be sorted. */ public static KEY_GENERIC void mergeSort( final KEY_GENERIC_TYPE a[] ) { mergeSort( a, 0, a.length ); } /** Sorts the specified range of elements according to the order induced by the specified * comparator using mergesort, using a given pre-filled support array. * *

This sort is guaranteed to be stable: equal elements will not be reordered as a result * of the sort. Moreover, no support arrays will be allocated. * @param a the array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. * @param comp the comparator to determine the sorting order. * @param supp a support array containing at least to elements, and whose entries are identical to those * of {@code a} in the specified range. */ public static KEY_GENERIC void mergeSort( final KEY_GENERIC_TYPE a[], final int from, final int to, KEY_COMPARATOR KEY_GENERIC comp, final KEY_GENERIC_TYPE supp[] ) { int len = to - from; // Insertion sort on smallest arrays if ( len < MERGESORT_NO_REC ) { insertionSort( a, from, to, comp ); return; } // Recursively sort halves of a into supp final int mid = ( from + to ) >>> 1; mergeSort( supp, from, mid, comp, a ); mergeSort( supp, mid, to, comp, a ); // If list is already sorted, just copy from supp to a. This is an // optimization that results in faster sorts for nearly ordered lists. if ( comp.compare( supp[ mid - 1 ], supp[ mid ] ) <= 0 ) { System.arraycopy( supp, from, a, from, len ); return; } // Merge sorted halves (now in supp) into a for( int i = from, p = from, q = mid; i < to; i++ ) { if ( q >= to || p < mid && comp.compare( supp[ p ], supp[ q ] ) <= 0 ) a[ i ] = supp[ p++ ]; else a[ i ] = supp[ q++ ]; } } /** Sorts the specified range of elements according to the order induced by the specified * comparator using mergesort. * *

This sort is guaranteed to be stable: equal elements will not be reordered as a result * of the sort. An array as large as a will be allocated by this method. * * @param a the array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. * @param comp the comparator to determine the sorting order. */ public static KEY_GENERIC void mergeSort( final KEY_GENERIC_TYPE a[], final int from, final int to, KEY_COMPARATOR KEY_GENERIC comp ) { mergeSort( a, from, to, comp, a.clone() ); } /** Sorts an array according to the order induced by the specified * comparator using mergesort. * *

This sort is guaranteed to be stable: equal elements will not be reordered as a result * of the sort. An array as large as a will be allocated by this method. * @param a the array to be sorted. * @param comp the comparator to determine the sorting order. */ public static KEY_GENERIC void mergeSort( final KEY_GENERIC_TYPE a[], KEY_COMPARATOR KEY_GENERIC comp ) { mergeSort( a, 0, a.length, comp ); } #if ! KEY_CLASS_Boolean /** * Searches a range of the specified array for the specified value using * the binary search algorithm. The range must be sorted prior to making this call. * If it is not sorted, the results are undefined. If the range contains multiple elements with * the specified value, there is no guarantee which one will be found. * * @param a the array to be searched. * @param from the index of the first element (inclusive) to be searched. * @param to the index of the last element (exclusive) to be searched. * @param key the value to be searched for. * @return index of the search key, if it is contained in the array; * otherwise, (-(insertion point) - 1). The insertion * point is defined as the the point at which the value would * be inserted into the array: the index of the first * element greater than the key, or the length of the array, if all * elements in the array are less than the specified key. Note * that this guarantees that the return value will be ≥ 0 if * and only if the key is found. * @see java.util.Arrays */ SUPPRESS_WARNINGS_KEY_UNCHECKED public static KEY_GENERIC int binarySearch( final KEY_GENERIC_TYPE[] a, int from, int to, final KEY_GENERIC_TYPE key ) { KEY_GENERIC_TYPE midVal; to--; while (from <= to) { final int mid = (from + to) >>> 1; midVal = a[ mid ]; #if KEYS_PRIMITIVE if (midVal < key) from = mid + 1; else if (midVal > key) to = mid - 1; else return mid; #else final int cmp = ((Comparable KEY_SUPER_GENERIC)midVal).compareTo( key ); if ( cmp < 0 ) from = mid + 1; else if (cmp > 0) to = mid - 1; else return mid; #endif } return -( from + 1 ); } /** * Searches an array for the specified value using * the binary search algorithm. The range must be sorted prior to making this call. * If it is not sorted, the results are undefined. If the range contains multiple elements with * the specified value, there is no guarantee which one will be found. * * @param a the array to be searched. * @param key the value to be searched for. * @return index of the search key, if it is contained in the array; * otherwise, (-(insertion point) - 1). The insertion * point is defined as the the point at which the value would * be inserted into the array: the index of the first * element greater than the key, or the length of the array, if all * elements in the array are less than the specified key. Note * that this guarantees that the return value will be ≥ 0 if * and only if the key is found. * @see java.util.Arrays */ public static KEY_GENERIC int binarySearch( final KEY_GENERIC_TYPE[] a, final KEY_GENERIC_TYPE key ) { return binarySearch( a, 0, a.length, key ); } /** * Searches a range of the specified array for the specified value using * the binary search algorithm and a specified comparator. The range must be sorted following the comparator prior to making this call. * If it is not sorted, the results are undefined. If the range contains multiple elements with * the specified value, there is no guarantee which one will be found. * * @param a the array to be searched. * @param from the index of the first element (inclusive) to be searched. * @param to the index of the last element (exclusive) to be searched. * @param key the value to be searched for. * @param c a comparator. * @return index of the search key, if it is contained in the array; * otherwise, (-(insertion point) - 1). The insertion * point is defined as the the point at which the value would * be inserted into the array: the index of the first * element greater than the key, or the length of the array, if all * elements in the array are less than the specified key. Note * that this guarantees that the return value will be ≥ 0 if * and only if the key is found. * @see java.util.Arrays */ public static KEY_GENERIC int binarySearch( final KEY_GENERIC_TYPE[] a, int from, int to, final KEY_GENERIC_TYPE key, final KEY_COMPARATOR KEY_GENERIC c ) { KEY_GENERIC_TYPE midVal; to--; while (from <= to) { final int mid = (from + to) >>> 1; midVal = a[ mid ]; final int cmp = c.compare( midVal, key ); if ( cmp < 0 ) from = mid + 1; else if (cmp > 0) to = mid - 1; else return mid; // key found } return -( from + 1 ); } /** * Searches an array for the specified value using * the binary search algorithm and a specified comparator. The range must be sorted following the comparator prior to making this call. * If it is not sorted, the results are undefined. If the range contains multiple elements with * the specified value, there is no guarantee which one will be found. * * @param a the array to be searched. * @param key the value to be searched for. * @param c a comparator. * @return index of the search key, if it is contained in the array; * otherwise, (-(insertion point) - 1). The insertion * point is defined as the the point at which the value would * be inserted into the array: the index of the first * element greater than the key, or the length of the array, if all * elements in the array are less than the specified key. Note * that this guarantees that the return value will be ≥ 0 if * and only if the key is found. * @see java.util.Arrays */ public static KEY_GENERIC int binarySearch( final KEY_GENERIC_TYPE[] a, final KEY_GENERIC_TYPE key, final KEY_COMPARATOR KEY_GENERIC c ) { return binarySearch( a, 0, a.length, key, c ); } #if KEYS_PRIMITIVE /** The size of a digit used during radix sort (must be a power of 2). */ private static final int DIGIT_BITS = 8; /** The mask to extract a digit of {@link #DIGIT_BITS} bits. */ private static final int DIGIT_MASK = ( 1 << DIGIT_BITS ) - 1; /** The number of digits per element. */ private static final int DIGITS_PER_ELEMENT = KEY_CLASS.SIZE / DIGIT_BITS; private static final int RADIXSORT_NO_REC = 1024; private static final int PARALLEL_RADIXSORT_NO_FORK = 1024; /** This method fixes negative numbers so that the combination exponent/significand is lexicographically sorted. */ #if KEY_CLASS_Double private static final long fixDouble( final double d ) { final long l = Double.doubleToLongBits( d ); return l >= 0 ? l : l ^ 0x7FFFFFFFFFFFFFFFL; } #elif KEY_CLASS_Float private static final int fixFloat( final float f ) { final int i = Float.floatToIntBits( f ); return i >= 0 ? i : i ^ 0x7FFFFFFF; } #endif /** Sorts the specified array using radix sort. * *

The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas * McIlroy, “Engineering radix sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

This implementation is significantly faster than quicksort * already at small sizes (say, more than 10000 elements), but it can only * sort in ascending order. * * @param a the array to be sorted. */ public static void radixSort( final KEY_TYPE[] a ) { radixSort( a, 0, a.length ); } /** Sorts the specified range of an array using radix sort. * *

The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas * McIlroy, “Engineering radix sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

This implementation is significantly faster than quicksort * already at small sizes (say, more than 10000 elements), but it can only * sort in ascending order. * * @param a the array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. */ public static void radixSort( final KEY_TYPE[] a, final int from, final int to ) { if ( to - from < RADIXSORT_NO_REC ) { quickSort( a, from, to ); return; } final int maxLevel = DIGITS_PER_ELEMENT - 1; final int stackSize = ( ( 1 << DIGIT_BITS ) - 1 ) * ( DIGITS_PER_ELEMENT - 1 ) + 1; int stackPos = 0; final int[] offsetStack = new int[ stackSize ]; final int[] lengthStack = new int[ stackSize ]; final int[] levelStack = new int[ stackSize ]; offsetStack[ stackPos ] = from; lengthStack[ stackPos ] = to - from; levelStack[ stackPos++ ] = 0; final int[] count = new int[ 1 << DIGIT_BITS ]; final int[] pos = new int[ 1 << DIGIT_BITS ]; while( stackPos > 0 ) { final int first = offsetStack[ --stackPos ]; final int length = lengthStack[ stackPos ]; final int level = levelStack[ stackPos ]; #if KEY_CLASS_Character final int signMask = 0; #else final int signMask = level % DIGITS_PER_ELEMENT == 0 ? 1 << DIGIT_BITS - 1 : 0; #endif final int shift = ( DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT ) * DIGIT_BITS; // This is the shift that extract the right byte from a key // Count keys. for( int i = first + length; i-- != first; ) count[ INT( KEY2LEXINT( a[ i ] ) >>> shift & DIGIT_MASK ^ signMask ) ]++; // Compute cumulative distribution int lastUsed = -1; for ( int i = 0, p = first; i < 1 << DIGIT_BITS; i++ ) { if ( count[ i ] != 0 ) lastUsed = i; pos[ i ] = ( p += count[ i ] ); } final int end = first + length - count[ lastUsed ]; // i moves through the start of each block for( int i = first, c = -1, d; i <= end; i += count[ c ], count[ c ] = 0 ) { KEY_TYPE t = a[ i ]; c = INT( KEY2LEXINT( t ) >>> shift & DIGIT_MASK ^ signMask ); if ( i < end ) { // When all slots are OK, the last slot is necessarily OK. while ( ( d = --pos[ c ] ) > i ) { final KEY_TYPE z = t; t = a[ d ]; a[ d ] = z; c = INT( KEY2LEXINT( t ) >>> shift & DIGIT_MASK ^ signMask ); } a[ i ] = t; } if ( level < maxLevel && count[ c ] > 1 ) { if ( count[ c ] < RADIXSORT_NO_REC ) quickSort( a, i, i + count[ c ] ); else { offsetStack[ stackPos ] = i; lengthStack[ stackPos ] = count[ c ]; levelStack[ stackPos++ ] = level + 1; } } } } } protected final static class Segment { protected final int offset, length, level; protected Segment( final int offset, final int length, final int level ) { this.offset = offset; this.length = length; this.level = level; } @Override public String toString() { return "Segment [offset=" + offset + ", length=" + length + ", level=" + level + "]"; } } protected final static Segment POISON_PILL = new Segment( -1, -1, -1 ); /** Sorts the specified range of an array using parallel radix sort. * *

The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas * McIlroy, “Engineering radix sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

This implementation uses a pool of {@link Runtime#availableProcessors()} threads. * * @param a the array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. */ public static void parallelRadixSort( final KEY_TYPE[] a, final int from, final int to ) { if ( to - from < PARALLEL_RADIXSORT_NO_FORK ) { quickSort( a, from, to ); return; } final int maxLevel = DIGITS_PER_ELEMENT - 1; final LinkedBlockingQueue queue = new LinkedBlockingQueue(); queue.add( new Segment( from, to - from, 0 ) ); final AtomicInteger queueSize = new AtomicInteger( 1 ); final int numberOfThreads = Runtime.getRuntime().availableProcessors(); final ExecutorService executorService = Executors.newFixedThreadPool( numberOfThreads, Executors.defaultThreadFactory() ); final ExecutorCompletionService executorCompletionService = new ExecutorCompletionService( executorService ); for( int i = numberOfThreads; i-- != 0; ) executorCompletionService.submit( new Callable() { public Void call() throws Exception { final int[] count = new int[ 1 << DIGIT_BITS ]; final int[] pos = new int[ 1 << DIGIT_BITS ]; for(;;) { if ( queueSize.get() == 0 ) for( int i = numberOfThreads; i-- != 0; ) queue.add( POISON_PILL ); final Segment segment = queue.take(); if ( segment == POISON_PILL ) return null; final int first = segment.offset; final int length = segment.length; final int level = segment.level; #if KEY_CLASS_Character final int signMask = 0; #else final int signMask = level % DIGITS_PER_ELEMENT == 0 ? 1 << DIGIT_BITS - 1 : 0; #endif final int shift = ( DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT ) * DIGIT_BITS; // This is the shift that extract the right byte from a key // Count keys. for( int i = first + length; i-- != first; ) count[ INT( KEY2LEXINT( a[ i ] ) >>> shift & DIGIT_MASK ^ signMask ) ]++; // Compute cumulative distribution int lastUsed = -1; for( int i = 0, p = first; i < 1 << DIGIT_BITS; i++ ) { if ( count[ i ] != 0 ) lastUsed = i; pos[ i ] = ( p += count[ i ] ); } final int end = first + length - count[ lastUsed ]; // i moves through the start of each block for( int i = first, c = -1, d; i <= end; i += count[ c ], count[ c ] = 0 ) { KEY_TYPE t = a[ i ]; c = INT( KEY2LEXINT( t ) >>> shift & DIGIT_MASK ^ signMask ); if ( i < end ) { while( ( d = --pos[ c ] ) > i ) { final KEY_TYPE z = t; t = a[ d ]; a[ d ] = z; c = INT( KEY2LEXINT( t ) >>> shift & DIGIT_MASK ^ signMask ); } a[ i ] = t; } if ( level < maxLevel && count[ c ] > 1 ) { if ( count[ c ] < PARALLEL_RADIXSORT_NO_FORK ) quickSort( a, i, i + count[ c ] ); else { queueSize.incrementAndGet(); queue.add( new Segment( i, count[ c ], level + 1 ) ); } } } queueSize.decrementAndGet(); } } } ); Throwable problem = null; for( int i = numberOfThreads; i-- != 0; ) try { executorCompletionService.take().get(); } catch( Exception e ) { problem = e.getCause(); // We keep only the last one. They will be logged anyway. } executorService.shutdown(); if ( problem != null ) throw ( problem instanceof RuntimeException ) ? (RuntimeException)problem : new RuntimeException( problem ); } /** Sorts the specified array using parallel radix sort. * *

The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas * McIlroy, “Engineering radix sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

This implementation uses a pool of {@link Runtime#availableProcessors()} threads. * * @param a the array to be sorted. */ public static void parallelRadixSort( final KEY_TYPE[] a ) { parallelRadixSort( a, 0, a.length ); } /** Sorts the specified array using indirect radix sort. * *

The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas * McIlroy, “Engineering radix sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

This method implement an indirect sort. The elements of perm (which must * be exactly the numbers in the interval [0..perm.length)) will be permuted so that * a[ perm[ i ] ] ≤ a[ perm[ i + 1 ] ]. * *

This implementation will allocate, in the stable case, a support array as large as perm (note that the stable * version is slightly faster). * * @param perm a permutation array indexing a. * @param a the array to be sorted. * @param stable whether the sorting algorithm should be stable. */ public static void radixSortIndirect( final int[] perm, final KEY_TYPE[] a, final boolean stable ) { radixSortIndirect( perm, a, 0, perm.length, stable ); } /** Sorts the specified array using indirect radix sort. * *

The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas * McIlroy, “Engineering radix sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

This method implement an indirect sort. The elements of perm (which must * be exactly the numbers in the interval [0..perm.length)) will be permuted so that * a[ perm[ i ] ] ≤ a[ perm[ i + 1 ] ]. * *

This implementation will allocate, in the stable case, a support array as large as perm (note that the stable * version is slightly faster). * * @param perm a permutation array indexing a. * @param a the array to be sorted. * @param from the index of the first element of perm (inclusive) to be permuted. * @param to the index of the last element of perm (exclusive) to be permuted. * @param stable whether the sorting algorithm should be stable. */ public static void radixSortIndirect( final int[] perm, final KEY_TYPE[] a, final int from, final int to, final boolean stable ) { if ( to - from < RADIXSORT_NO_REC ) { insertionSortIndirect( perm, a, from, to ); return; } final int maxLevel = DIGITS_PER_ELEMENT - 1; final int stackSize = ( ( 1 << DIGIT_BITS ) - 1 ) * ( DIGITS_PER_ELEMENT - 1 ) + 1; int stackPos = 0; final int[] offsetStack = new int[ stackSize ]; final int[] lengthStack = new int[ stackSize ]; final int[] levelStack = new int[ stackSize ]; offsetStack[ stackPos ] = from; lengthStack[ stackPos ] = to - from; levelStack[ stackPos++ ] = 0; final int[] count = new int[ 1 << DIGIT_BITS ]; final int[] pos = new int[ 1 << DIGIT_BITS ]; final int[] support = stable ? new int[ perm.length ] : null; while( stackPos > 0 ) { final int first = offsetStack[ --stackPos ]; final int length = lengthStack[ stackPos ]; final int level = levelStack[ stackPos ]; #if KEY_CLASS_Character final int signMask = 0; #else final int signMask = level % DIGITS_PER_ELEMENT == 0 ? 1 << DIGIT_BITS - 1 : 0; #endif final int shift = ( DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT ) * DIGIT_BITS; // This is the shift that extract the right byte from a key // Count keys. for( int i = first + length; i-- != first; ) count[ INT( KEY2LEXINT( a[ perm[ i ] ] ) >>> shift & DIGIT_MASK ^ signMask ) ]++; // Compute cumulative distribution int lastUsed = -1; for ( int i = 0, p = stable ? 0 : first; i < 1 << DIGIT_BITS; i++ ) { if ( count[ i ] != 0 ) lastUsed = i; pos[ i ] = ( p += count[ i ] ); } if ( stable ) { for( int i = first + length; i-- != first; ) support[ --pos[ INT( KEY2LEXINT( a[ perm[ i ] ] ) >>> shift & DIGIT_MASK ^ signMask ) ] ] = perm[ i ]; System.arraycopy( support, 0, perm, first, length ); for( int i = 0, p = first; i <= lastUsed; i++ ) { if ( level < maxLevel && count[ i ] > 1 ) { if ( count[ i ] < RADIXSORT_NO_REC ) insertionSortIndirect( perm, a, p, p + count[ i ] ); else { offsetStack[ stackPos ] = p; lengthStack[ stackPos ] = count[ i ]; levelStack[ stackPos++ ] = level + 1; } } p += count[ i ]; } java.util.Arrays.fill( count, 0 ); } else { final int end = first + length - count[ lastUsed ]; // i moves through the start of each block for( int i = first, c = -1, d; i <= end; i += count[ c ], count[ c ] = 0 ) { int t = perm[ i ]; c = INT( KEY2LEXINT( a[ t ] ) >>> shift & DIGIT_MASK ^ signMask ); if ( i < end ) { // When all slots are OK, the last slot is necessarily OK. while( ( d = --pos[ c ] ) > i ) { final int z = t; t = perm[ d ]; perm[ d ] = z; c = INT( KEY2LEXINT( a[ t ] ) >>> shift & DIGIT_MASK ^ signMask ); } perm[ i ] = t; } if ( level < maxLevel && count[ c ] > 1 ) { if ( count[ c ] < RADIXSORT_NO_REC ) insertionSortIndirect( perm, a, i, i + count[ c ] ); else { offsetStack[ stackPos ] = i; lengthStack[ stackPos ] = count[ c ]; levelStack[ stackPos++ ] = level + 1; } } } } } } /** Sorts the specified range of an array using parallel indirect radix sort. * *

The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas * McIlroy, “Engineering radix sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

This method implement an indirect sort. The elements of perm (which must * be exactly the numbers in the interval [0..perm.length)) will be permuted so that * a[ perm[ i ] ] ≤ a[ perm[ i + 1 ] ]. * *

This implementation uses a pool of {@link Runtime#availableProcessors()} threads. * * @param perm a permutation array indexing a. * @param a the array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. * @param stable whether the sorting algorithm should be stable. */ public static void parallelRadixSortIndirect( final int perm[], final KEY_TYPE[] a, final int from, final int to, final boolean stable ) { if ( to - from < PARALLEL_RADIXSORT_NO_FORK ) { radixSortIndirect( perm, a, from, to, stable ); return; } final int maxLevel = DIGITS_PER_ELEMENT - 1; final LinkedBlockingQueue queue = new LinkedBlockingQueue(); queue.add( new Segment( from, to - from, 0 ) ); final AtomicInteger queueSize = new AtomicInteger( 1 ); final int numberOfThreads = Runtime.getRuntime().availableProcessors(); final ExecutorService executorService = Executors.newFixedThreadPool( numberOfThreads, Executors.defaultThreadFactory() ); final ExecutorCompletionService executorCompletionService = new ExecutorCompletionService( executorService ); final int[] support = stable ? new int[ perm.length ] : null; for( int i = numberOfThreads; i-- != 0; ) executorCompletionService.submit( new Callable() { public Void call() throws Exception { final int[] count = new int[ 1 << DIGIT_BITS ]; final int[] pos = new int[ 1 << DIGIT_BITS ]; for(;;) { if ( queueSize.get() == 0 ) for( int i = numberOfThreads; i-- != 0; ) queue.add( POISON_PILL ); final Segment segment = queue.take(); if ( segment == POISON_PILL ) return null; final int first = segment.offset; final int length = segment.length; final int level = segment.level; #if KEY_CLASS_Character final int signMask = 0; #else final int signMask = level % DIGITS_PER_ELEMENT == 0 ? 1 << DIGIT_BITS - 1 : 0; #endif final int shift = ( DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT ) * DIGIT_BITS; // This is the shift that extract the right byte from a key // Count keys. for( int i = first + length; i-- != first; ) count[ INT( KEY2LEXINT( a[ perm[ i ] ] ) >>> shift & DIGIT_MASK ^ signMask ) ]++; // Compute cumulative distribution int lastUsed = -1; for ( int i = 0, p = first; i < 1 << DIGIT_BITS; i++ ) { if ( count[ i ] != 0 ) lastUsed = i; pos[ i ] = ( p += count[ i ] ); } if ( stable ) { for( int i = first + length; i-- != first; ) support[ --pos[ INT( KEY2LEXINT( a[ perm[ i ] ] ) >>> shift & DIGIT_MASK ^ signMask ) ] ] = perm[ i ]; System.arraycopy( support, first, perm, first, length ); for( int i = 0, p = first; i <= lastUsed; i++ ) { if ( level < maxLevel && count[ i ] > 1 ) { if ( count[ i ] < PARALLEL_RADIXSORT_NO_FORK ) radixSortIndirect( perm, a, p, p + count[ i ], stable ); else { queueSize.incrementAndGet(); queue.add( new Segment( p, count[ i ], level + 1 ) ); } } p += count[ i ]; } java.util.Arrays.fill( count, 0 ); } else { final int end = first + length - count[ lastUsed ]; // i moves through the start of each block for( int i = first, c = -1, d; i <= end; i += count[ c ], count[ c ] = 0 ) { int t = perm[ i ]; c = INT( KEY2LEXINT( a[ t ] ) >>> shift & DIGIT_MASK ^ signMask ); if ( i < end ) { // When all slots are OK, the last slot is necessarily OK. while( ( d = --pos[ c ] ) > i ) { final int z = t; t = perm[ d ]; perm[ d ] = z; c = INT( KEY2LEXINT( a[ t ] ) >>> shift & DIGIT_MASK ^ signMask ); } perm[ i ] = t; } if ( level < maxLevel && count[ c ] > 1 ) { if ( count[ c ] < PARALLEL_RADIXSORT_NO_FORK ) radixSortIndirect( perm, a, i, i + count[ c ], stable ); else { queueSize.incrementAndGet(); queue.add( new Segment( i, count[ c ], level + 1 ) ); } } } } queueSize.decrementAndGet(); } } } ); Throwable problem = null; for( int i = numberOfThreads; i-- != 0; ) try { executorCompletionService.take().get(); } catch( Exception e ) { problem = e.getCause(); // We keep only the last one. They will be logged anyway. } executorService.shutdown(); if ( problem != null ) throw ( problem instanceof RuntimeException ) ? (RuntimeException)problem : new RuntimeException( problem ); } /** Sorts the specified array using parallel indirect radix sort. * *

The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas * McIlroy, “Engineering radix sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

This method implement an indirect sort. The elements of perm (which must * be exactly the numbers in the interval [0..perm.length)) will be permuted so that * a[ perm[ i ] ] ≤ a[ perm[ i + 1 ] ]. * *

This implementation uses a pool of {@link Runtime#availableProcessors()} threads. * * @param perm a permutation array indexing a. * @param a the array to be sorted. * @param stable whether the sorting algorithm should be stable. */ public static void parallelRadixSortIndirect( final int perm[], final KEY_TYPE[] a, final boolean stable ) { parallelRadixSortIndirect( perm, a, 0, a.length, stable ); } /** Sorts the specified pair of arrays lexicographically using radix sort. *

The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas * McIlroy, “Engineering radix sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

This method implements a lexicographical sorting of the arguments. Pairs of elements * in the same position in the two provided arrays will be considered a single key, and permuted * accordingly. In the end, either a[ i ] < a[ i + 1 ] or a[ i ] == a[ i + 1 ] and b[ i ] ≤ b[ i + 1 ]. * * @param a the first array to be sorted. * @param b the second array to be sorted. */ public static void radixSort( final KEY_TYPE[] a, final KEY_TYPE[] b ) { ensureSameLength( a, b ); radixSort( a, b, 0, a.length ); } /** Sorts the specified range of elements of two arrays using radix sort. * *

The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas * McIlroy, “Engineering radix sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

This method implements a lexicographical sorting of the arguments. Pairs of elements * in the same position in the two provided arrays will be considered a single key, and permuted * accordingly. In the end, either a[ i ] < a[ i + 1 ] or a[ i ] == a[ i + 1 ] and b[ i ] ≤ b[ i + 1 ]. * * @param a the first array to be sorted. * @param b the second array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. */ public static void radixSort( final KEY_TYPE[] a, final KEY_TYPE[] b, final int from, final int to ) { if ( to - from < RADIXSORT_NO_REC ) { selectionSort( a, b, from, to ); return; } final int layers = 2; final int maxLevel = DIGITS_PER_ELEMENT * layers - 1; final int stackSize = ( ( 1 << DIGIT_BITS ) - 1 ) * ( layers * DIGITS_PER_ELEMENT - 1 ) + 1; int stackPos = 0; final int[] offsetStack = new int[ stackSize ]; final int[] lengthStack = new int[ stackSize ]; final int[] levelStack = new int[ stackSize ]; offsetStack[ stackPos ] = from; lengthStack[ stackPos ] = to - from; levelStack[ stackPos++ ] = 0; final int[] count = new int[ 1 << DIGIT_BITS ]; final int[] pos = new int[ 1 << DIGIT_BITS ]; while( stackPos > 0 ) { final int first = offsetStack[ --stackPos ]; final int length = lengthStack[ stackPos ]; final int level = levelStack[ stackPos ]; #if KEY_CLASS_Character final int signMask = 0; #else final int signMask = level % DIGITS_PER_ELEMENT == 0 ? 1 << DIGIT_BITS - 1 : 0; #endif final KEY_TYPE[] k = level < DIGITS_PER_ELEMENT ? a : b; // This is the key array final int shift = ( DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT ) * DIGIT_BITS; // This is the shift that extract the right byte from a key // Count keys. for( int i = first + length; i-- != first; ) count[ INT( KEY2LEXINT( k[ i ] ) >>> shift & DIGIT_MASK ^ signMask ) ]++; // Compute cumulative distribution int lastUsed = -1; for ( int i = 0, p = first; i < 1 << DIGIT_BITS; i++ ) { if ( count[ i ] != 0 ) lastUsed = i; pos[ i ] = ( p += count[ i ] ); } final int end = first + length - count[ lastUsed ]; // i moves through the start of each block for( int i = first, c = -1, d; i <= end; i += count[ c ], count[ c ] = 0 ) { KEY_TYPE t = a[ i ]; KEY_TYPE u = b[ i ]; c = INT( KEY2LEXINT( k[ i ] ) >>> shift & DIGIT_MASK ^ signMask ); if ( i < end ) { // When all slots are OK, the last slot is necessarily OK. while( ( d = --pos[ c ] ) > i ) { c = INT( KEY2LEXINT( k[ d ] ) >>> shift & DIGIT_MASK ^ signMask ); KEY_TYPE z = t; t = a[ d ]; a[ d ] = z; z = u; u = b[ d ]; b[ d ] = z; } a[ i ] = t; b[ i ] = u; } if ( level < maxLevel && count[ c ] > 1 ) { if ( count[ c ] < RADIXSORT_NO_REC ) selectionSort( a, b, i, i + count[ c ] ); else { offsetStack[ stackPos ] = i; lengthStack[ stackPos ] = count[ c ]; levelStack[ stackPos++ ] = level + 1; } } } } } /** Sorts the specified range of elements of two arrays using a parallel radix sort. * *

The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas * McIlroy, “Engineering radix sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

This method implements a lexicographical sorting of the arguments. Pairs of elements * in the same position in the two provided arrays will be considered a single key, and permuted * accordingly. In the end, either a[ i ] < a[ i + 1 ] or a[ i ] == a[ i + 1 ] and b[ i ] ≤ b[ i + 1 ]. * *

This implementation uses a pool of {@link Runtime#availableProcessors()} threads. * * @param a the first array to be sorted. * @param b the second array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. */ public static void parallelRadixSort( final KEY_TYPE[] a, final KEY_TYPE[] b, final int from, final int to ) { if ( to - from < PARALLEL_RADIXSORT_NO_FORK ) { quickSort( a, b, from, to ); return; } final int layers = 2; if ( a.length != b.length ) throw new IllegalArgumentException( "Array size mismatch." ); final int maxLevel = DIGITS_PER_ELEMENT * layers - 1; final LinkedBlockingQueue queue = new LinkedBlockingQueue(); queue.add( new Segment( from, to - from, 0 ) ); final AtomicInteger queueSize = new AtomicInteger( 1 ); final int numberOfThreads = Runtime.getRuntime().availableProcessors(); final ExecutorService executorService = Executors.newFixedThreadPool( numberOfThreads, Executors.defaultThreadFactory() ); final ExecutorCompletionService executorCompletionService = new ExecutorCompletionService( executorService ); for ( int i = numberOfThreads; i-- != 0; ) executorCompletionService.submit( new Callable() { public Void call() throws Exception { final int[] count = new int[ 1 << DIGIT_BITS ]; final int[] pos = new int[ 1 << DIGIT_BITS ]; for ( ;; ) { if ( queueSize.get() == 0 ) for ( int i = numberOfThreads; i-- != 0; ) queue.add( POISON_PILL ); final Segment segment = queue.take(); if ( segment == POISON_PILL ) return null; final int first = segment.offset; final int length = segment.length; final int level = segment.level; final int signMask = level % DIGITS_PER_ELEMENT == 0 ? 1 << DIGIT_BITS - 1 : 0; final KEY_TYPE[] k = level < DIGITS_PER_ELEMENT ? a : b; // This is the key array final int shift = ( DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT ) * DIGIT_BITS; // Count keys. for ( int i = first + length; i-- != first; ) count[ INT( KEY2LEXINT( k[ i ] ) >>> shift & DIGIT_MASK ^ signMask ) ]++; // Compute cumulative distribution int lastUsed = -1; for ( int i = 0, p = first; i < 1 << DIGIT_BITS; i++ ) { if ( count[ i ] != 0 ) lastUsed = i; pos[ i ] = ( p += count[ i ] ); } final int end = first + length - count[ lastUsed ]; for ( int i = first, c = -1, d; i <= end; i += count[ c ], count[ c ] = 0 ) { KEY_TYPE t = a[ i ]; KEY_TYPE u = b[ i ]; c = INT( KEY2LEXINT( k[ i ] ) >>> shift & DIGIT_MASK ^ signMask ); if ( i < end ) { // When all slots are OK, the last slot is necessarily OK. while ( ( d = --pos[ c ] ) > i ) { c = INT( KEY2LEXINT( k[ d ] ) >>> shift & DIGIT_MASK ^ signMask ); final KEY_TYPE z = t; final KEY_TYPE w = u; t = a[ d ]; u = b[ d ]; a[ d ] = z; b[ d ] = w; } a[ i ] = t; b[ i ] = u; } if ( level < maxLevel && count[ c ] > 1 ) { if ( count[ c ] < PARALLEL_RADIXSORT_NO_FORK ) quickSort( a, b, i, i + count[ c ] ); else { queueSize.incrementAndGet(); queue.add( new Segment( i, count[ c ], level + 1 ) ); } } } queueSize.decrementAndGet(); } } } ); Throwable problem = null; for ( int i = numberOfThreads; i-- != 0; ) try { executorCompletionService.take().get(); } catch ( Exception e ) { problem = e.getCause(); // We keep only the last one. They will be logged anyway. } executorService.shutdown(); if ( problem != null ) throw ( problem instanceof RuntimeException ) ? (RuntimeException)problem : new RuntimeException( problem ); } /** Sorts two arrays using a parallel radix sort. * *

The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas * McIlroy, “Engineering radix sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

This method implements a lexicographical sorting of the arguments. Pairs of elements * in the same position in the two provided arrays will be considered a single key, and permuted * accordingly. In the end, either a[ i ] < a[ i + 1 ] or a[ i ] == a[ i + 1 ] and b[ i ] ≤ b[ i + 1 ]. * *

This implementation uses a pool of {@link Runtime#availableProcessors()} threads. * * @param a the first array to be sorted. * @param b the second array to be sorted. */ public static void parallelRadixSort( final KEY_TYPE[] a, final KEY_TYPE[] b ) { ensureSameLength( a, b ); parallelRadixSort( a, b, 0, a.length ); } private static KEY_GENERIC void insertionSortIndirect( final int[] perm, final KEY_TYPE[] a, final KEY_TYPE[] b, final int from, final int to ) { for ( int i = from; ++i < to; ) { int t = perm[ i ]; int j = i; for ( int u = perm[ j - 1 ]; KEY_LESS( a[ t ], a[ u ] ) || KEY_CMP_EQ( a[ t ], a[ u ] ) && KEY_LESS( b[ t ], b[ u ] ); u = perm[ --j - 1 ] ) { perm[ j ] = u; if ( from == j - 1 ) { --j; break; } } perm[ j ] = t; } } /** Sorts the specified pair of arrays lexicographically using indirect radix sort. * *

The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas * McIlroy, “Engineering radix sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

This method implement an indirect sort. The elements of perm (which must * be exactly the numbers in the interval [0..perm.length)) will be permuted so that * a[ perm[ i ] ] ≤ a[ perm[ i + 1 ] ]. * *

This implementation will allocate, in the stable case, a further support array as large as perm (note that the stable * version is slightly faster). * * @param perm a permutation array indexing a. * @param a the array to be sorted. * @param b the second array to be sorted. * @param stable whether the sorting algorithm should be stable. */ public static void radixSortIndirect( final int[] perm, final KEY_TYPE[] a, final KEY_TYPE[] b, final boolean stable ) { ensureSameLength( a, b ); radixSortIndirect( perm, a, b, 0, a.length, stable ); } /** Sorts the specified pair of arrays lexicographically using indirect radix sort. * *

The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas * McIlroy, “Engineering radix sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

This method implement an indirect sort. The elements of perm (which must * be exactly the numbers in the interval [0..perm.length)) will be permuted so that * a[ perm[ i ] ] ≤ a[ perm[ i + 1 ] ]. * *

This implementation will allocate, in the stable case, a further support array as large as perm (note that the stable * version is slightly faster). * * @param perm a permutation array indexing a. * @param a the array to be sorted. * @param b the second array to be sorted. * @param from the index of the first element of perm (inclusive) to be permuted. * @param to the index of the last element of perm (exclusive) to be permuted. * @param stable whether the sorting algorithm should be stable. */ public static void radixSortIndirect( final int[] perm, final KEY_TYPE[] a, final KEY_TYPE[] b, final int from, final int to, final boolean stable ) { if ( to - from < RADIXSORT_NO_REC ) { insertionSortIndirect( perm, a, b, from, to ); return; } final int layers = 2; final int maxLevel = DIGITS_PER_ELEMENT * layers - 1; final int stackSize = ( ( 1 << DIGIT_BITS ) - 1 ) * ( layers * DIGITS_PER_ELEMENT - 1 ) + 1; int stackPos = 0; final int[] offsetStack = new int[ stackSize ]; final int[] lengthStack = new int[ stackSize ]; final int[] levelStack = new int[ stackSize ]; offsetStack[ stackPos ] = from; lengthStack[ stackPos ] = to - from; levelStack[ stackPos++ ] = 0; final int[] count = new int[ 1 << DIGIT_BITS ]; final int[] pos = new int[ 1 << DIGIT_BITS ]; final int[] support = stable ? new int[ perm.length ] : null; while( stackPos > 0 ) { final int first = offsetStack[ --stackPos ]; final int length = lengthStack[ stackPos ]; final int level = levelStack[ stackPos ]; #if KEY_CLASS_Character final int signMask = 0; #else final int signMask = level % DIGITS_PER_ELEMENT == 0 ? 1 << DIGIT_BITS - 1 : 0; #endif final KEY_TYPE[] k = level < DIGITS_PER_ELEMENT ? a : b; // This is the key array final int shift = ( DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT ) * DIGIT_BITS; // This is the shift that extract the right byte from a key // Count keys. for( int i = first + length; i-- != first; ) count[ INT( KEY2LEXINT( k[ perm[ i ] ] ) >>> shift & DIGIT_MASK ^ signMask ) ]++; // Compute cumulative distribution int lastUsed = -1; for ( int i = 0, p = stable ? 0 : first; i < 1 << DIGIT_BITS; i++ ) { if ( count[ i ] != 0 ) lastUsed = i; pos[ i ] = ( p += count[ i ] ); } if ( stable ) { for( int i = first + length; i-- != first; ) support[ --pos[ INT( KEY2LEXINT( k[ perm[ i ] ] ) >>> shift & DIGIT_MASK ^ signMask ) ] ] = perm[ i ]; System.arraycopy( support, 0, perm, first, length ); for( int i = 0, p = first; i < 1 << DIGIT_BITS; i++ ) { if ( level < maxLevel && count[ i ] > 1 ) { if ( count[ i ] < RADIXSORT_NO_REC ) insertionSortIndirect( perm, a, b, p, p + count[ i ] ); else { offsetStack[ stackPos ] = p; lengthStack[ stackPos ] = count[ i ]; levelStack[ stackPos++ ] = level + 1; } } p += count[ i ]; } java.util.Arrays.fill( count, 0 ); } else { final int end = first + length - count[ lastUsed ]; // i moves through the start of each block for( int i = first, c = -1, d; i <= end; i += count[ c ], count[ c ] = 0 ) { int t = perm[ i ]; c = INT( KEY2LEXINT( k[ t ] ) >>> shift & DIGIT_MASK ^ signMask ); if ( i < end ) { // When all slots are OK, the last slot is necessarily OK. while( ( d = --pos[ c ] ) > i ) { final int z = t; t = perm[ d ]; perm[ d ] = z; c = INT( KEY2LEXINT( k[ t ] ) >>> shift & DIGIT_MASK ^ signMask ); } perm[ i ] = t; } if ( level < maxLevel && count[ c ] > 1 ) { if ( count[ c ] < RADIXSORT_NO_REC ) insertionSortIndirect( perm, a, b, i, i + count[ c ] ); else { offsetStack[ stackPos ] = i; lengthStack[ stackPos ] = count[ c ]; levelStack[ stackPos++ ] = level + 1; } } } } } } private static void selectionSort( final KEY_TYPE[][] a, final int from, final int to, final int level ) { final int layers = a.length; final int firstLayer = level / DIGITS_PER_ELEMENT; for( int i = from; i < to - 1; i++ ) { int m = i; for( int j = i + 1; j < to; j++ ) { for( int p = firstLayer; p < layers; p++ ) { if ( a[ p ][ j ] < a[ p ][ m ] ) { m = j; break; } else if ( a[ p ][ j ] > a[ p ][ m ] ) break; } } if ( m != i ) { for( int p = layers; p-- != 0; ) { final KEY_TYPE u = a[ p ][ i ]; a[ p ][ i ] = a[ p ][ m ]; a[ p ][ m ] = u; } } } } /** Sorts the specified array of arrays lexicographically using radix sort. * *

The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas * McIlroy, “Engineering radix sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

This method implements a lexicographical sorting of the provided arrays. Tuples of elements * in the same position will be considered a single key, and permuted * accordingly. * * @param a an array containing arrays of equal length to be sorted lexicographically in parallel. */ public static void radixSort( final KEY_TYPE[][] a ) { radixSort( a, 0, a[ 0 ].length ); } /** Sorts the specified array of arrays lexicographically using radix sort. * *

The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas * McIlroy, “Engineering radix sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

This method implements a lexicographical sorting of the provided arrays. Tuples of elements * in the same position will be considered a single key, and permuted * accordingly. * * @param a an array containing arrays of equal length to be sorted lexicographically in parallel. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. */ public static void radixSort( final KEY_TYPE[][] a, final int from, final int to ) { if ( to - from < RADIXSORT_NO_REC ) { selectionSort( a, from, to, 0 ); return; } final int layers = a.length; final int maxLevel = DIGITS_PER_ELEMENT * layers - 1; for( int p = layers, l = a[ 0 ].length; p-- != 0; ) if ( a[ p ].length != l ) throw new IllegalArgumentException( "The array of index " + p + " has not the same length of the array of index 0." ); final int stackSize = ( ( 1 << DIGIT_BITS ) - 1 ) * ( layers * DIGITS_PER_ELEMENT - 1 ) + 1; int stackPos = 0; final int[] offsetStack = new int[ stackSize ]; final int[] lengthStack = new int[ stackSize ]; final int[] levelStack = new int[ stackSize ]; offsetStack[ stackPos ] = from; lengthStack[ stackPos ] = to - from; levelStack[ stackPos++ ] = 0; final int[] count = new int[ 1 << DIGIT_BITS ]; final int[] pos = new int[ 1 << DIGIT_BITS ]; final KEY_TYPE[] t = new KEY_TYPE[ layers ]; while( stackPos > 0 ) { final int first = offsetStack[ --stackPos ]; final int length = lengthStack[ stackPos ]; final int level = levelStack[ stackPos ]; #if KEY_CLASS_Character final int signMask = 0; #else final int signMask = level % DIGITS_PER_ELEMENT == 0 ? 1 << DIGIT_BITS - 1 : 0; #endif final KEY_TYPE[] k = a[ level / DIGITS_PER_ELEMENT ]; // This is the key array final int shift = ( DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT ) * DIGIT_BITS; // This is the shift that extract the right byte from a key // Count keys. for( int i = first + length; i-- != first; ) count[ INT( KEY2LEXINT( k[ i ] ) >>> shift & DIGIT_MASK ^ signMask ) ]++; // Compute cumulative distribution int lastUsed = -1; for ( int i = 0, p = first; i < 1 << DIGIT_BITS; i++ ) { if ( count[ i ] != 0 ) lastUsed = i; pos[ i ] = ( p += count[ i ] ); } final int end = first + length - count[ lastUsed ]; // i moves through the start of each block for( int i = first, c = -1, d; i <= end; i += count[ c ], count[ c ] = 0 ) { for( int p = layers; p-- != 0; ) t[ p ] = a[ p ][ i ]; c = INT( KEY2LEXINT( k[ i ] ) >>> shift & DIGIT_MASK ^ signMask ); if ( i < end ) { // When all slots are OK, the last slot is necessarily OK. while( ( d = --pos[ c ] ) > i ) { c = INT( KEY2LEXINT( k[ d ] ) >>> shift & DIGIT_MASK ^ signMask ); for( int p = layers; p-- != 0; ) { final KEY_TYPE u = t[ p ]; t[ p ] = a[ p ][ d ]; a[ p ][ d ] = u; } } for( int p = layers; p-- != 0; ) a[ p ][ i ] = t[ p ]; } if ( level < maxLevel && count[ c ] > 1 ) { if ( count[ c ] < RADIXSORT_NO_REC ) selectionSort( a, i, i + count[ c ], level + 1 ); else { offsetStack[ stackPos ] = i; lengthStack[ stackPos ] = count[ c ]; levelStack[ stackPos++ ] = level + 1; } } } } } #endif #endif /** Shuffles the specified array fragment using the specified pseudorandom number generator. * * @param a the array to be shuffled. * @param from the index of the first element (inclusive) to be shuffled. * @param to the index of the last element (exclusive) to be shuffled. * @param random a pseudorandom number generator (please use a XorShift* generator). * @return a. */ public static KEY_GENERIC KEY_GENERIC_TYPE[] shuffle( final KEY_GENERIC_TYPE[] a, final int from, final int to, final Random random ) { for( int i = to - from; i-- != 0; ) { final int p = random.nextInt( i + 1 ); final KEY_GENERIC_TYPE t = a[ from + i ]; a[ from + i ] = a[ from + p ]; a[ from + p ] = t; } return a; } /** Shuffles the specified array using the specified pseudorandom number generator. * * @param a the array to be shuffled. * @param random a pseudorandom number generator (please use a XorShift* generator). * @return a. */ public static KEY_GENERIC KEY_GENERIC_TYPE[] shuffle( final KEY_GENERIC_TYPE[] a, final Random random ) { for( int i = a.length; i-- != 0; ) { final int p = random.nextInt( i + 1 ); final KEY_GENERIC_TYPE t = a[ i ]; a[ i ] = a[ p ]; a[ p ] = t; } return a; } /** Reverses the order of the elements in the specified array. * * @param a the array to be reversed. * @return a. */ public static KEY_GENERIC KEY_GENERIC_TYPE[] reverse( final KEY_GENERIC_TYPE[] a ) { final int length = a.length; for( int i = length / 2; i-- != 0; ) { final KEY_GENERIC_TYPE t = a[ length - i - 1 ]; a[ length - i - 1 ] = a[ i ]; a[ i ] = t; } return a; } /** Reverses the order of the elements in the specified array fragment. * * @param a the array to be reversed. * @param from the index of the first element (inclusive) to be reversed. * @param to the index of the last element (exclusive) to be reversed. * @return a. */ public static KEY_GENERIC KEY_GENERIC_TYPE[] reverse( final KEY_GENERIC_TYPE[] a, final int from, final int to ) { final int length = to - from; for( int i = length / 2; i-- != 0; ) { final KEY_GENERIC_TYPE t = a[ from + length - i - 1 ]; a[ from + length - i - 1 ] = a[ from + i ]; a[ from + i ] = t; } return a; } /** A type-specific content-based hash strategy for arrays. */ private static final class ArrayHashStrategy KEY_GENERIC implements Hash.Strategy, java.io.Serializable { private static final long serialVersionUID = -7046029254386353129L; public int hashCode( final KEY_GENERIC_TYPE[] o ) { return java.util.Arrays.hashCode( o ); } public boolean equals( final KEY_GENERIC_TYPE[] a, final KEY_GENERIC_TYPE[] b ) { return java.util.Arrays.equals( a, b ); } } /** A type-specific content-based hash strategy for arrays. * *

This hash strategy may be used in custom hash collections whenever keys are * arrays, and they must be considered equal by content. This strategy * will handle null correctly, and it is serializable. */ #if KEYS_PRIMITIVE public final static Hash.Strategy HASH_STRATEGY = new ArrayHashStrategy(); #else @SuppressWarnings({"rawtypes"}) public final static Hash.Strategy HASH_STRATEGY = new ArrayHashStrategy(); #endif }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy