All Downloads are FREE. Search and download functionalities are using the official Maven repository.

drv.BigArrayBigList.drv Maven / Gradle / Ivy

Go to download

fastutil extends the Java Collections Framework by providing type-specific maps, sets, lists and priority queues with a small memory footprint and fast access and insertion; provides also big (64-bit) arrays, sets and lists, and fast, practical I/O classes for binary and text files.

There is a newer version: 8.5.15
Show newest version
/*		 
 * Copyright (C) 2002-2016 Sebastiano Vigna
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. 
 */


package PACKAGE;

import java.util.Collection;
import java.util.Iterator;
import java.util.RandomAccess;
import java.util.NoSuchElementException;
import it.unimi.dsi.fastutil.BigArrays;

#if KEYS_PRIMITIVE

/** A type-specific big list based on a big array; provides some additional methods that use polymorphism to avoid (un)boxing. 
 *
 * 

This class implements a lightweight, fast, open, optimized, * reuse-oriented version of big-array-based big lists. Instances of this class * represent a big list with a big array that is enlarged as needed when new entries * are created (by doubling the current length), but is * never made smaller (even on a {@link #clear()}). A family of * {@linkplain #trim() trimming methods} lets you control the size of the * backing big array; this is particularly useful if you reuse instances of this class. * Range checks are equivalent to those of {@link java.util}'s classes, but * they are delayed as much as possible. The backing big array is exposed by the * {@link #elements()} method. * *

This class implements the bulk methods removeElements(), * addElements() and getElements() using * high-performance system calls (e.g., {@link * System#arraycopy(Object,int,Object,int,int) System.arraycopy()} instead of * expensive loops. * * @see java.util.ArrayList */ public class BIG_ARRAY_BIG_LIST KEY_GENERIC extends ABSTRACT_BIG_LIST KEY_GENERIC implements RandomAccess, Cloneable, java.io.Serializable { private static final long serialVersionUID = -7046029254386353130L; #else /** A type-specific big-array-based big list; provides some additional methods that use polymorphism to avoid (un)boxing. * *

This class implements a lightweight, fast, open, optimized, * reuse-oriented version of big-array-based big lists. Instances of this class * represent a big list with a big array that is enlarged as needed when new entries * are created (by doubling the current length), but is * never made smaller (even on a {@link #clear()}). A family of * {@linkplain #trim() trimming methods} lets you control the size of the * backing big array; this is particularly useful if you reuse instances of this class. * Range checks are equivalent to those of {@link java.util}'s classes, but * they are delayed as much as possible. * *

The backing big array is exposed by the {@link #elements()} method. If an instance * of this class was created {@linkplain #wrap(Object[][],long) by wrapping}, * backing-array reallocations will be performed using reflection, so that * {@link #elements()} can return a big array of the same type of the original big array; the comments * about efficiency made in {@link it.unimi.dsi.fastutil.objects.ObjectArrays} apply here. * *

This class implements the bulk methods removeElements(), * addElements() and getElements() using * high-performance system calls (e.g., {@link * System#arraycopy(Object,int,Object,int,int) System.arraycopy()} instead of * expensive loops. * * @see java.util.ArrayList */ public class BIG_ARRAY_BIG_LIST KEY_GENERIC extends ABSTRACT_BIG_LIST KEY_GENERIC implements RandomAccess, Cloneable, java.io.Serializable { private static final long serialVersionUID = -7046029254386353131L; #endif /** The initial default capacity of a big-array big list. */ public final static int DEFAULT_INITIAL_CAPACITY = 16; #if ! KEYS_PRIMITIVE /** Whether the backing big array was passed to wrap(). In * this case, we must reallocate with the same type of big array. */ protected final boolean wrapped; #endif /** The backing big array. */ protected transient KEY_GENERIC_TYPE a[][]; /** The current actual size of the big list (never greater than the backing-array length). */ protected long size; private static final boolean ASSERTS = ASSERTS_VALUE; /** Creates a new big-array big list using a given array. * *

This constructor is only meant to be used by the wrapping methods. * * @param a the big array that will be used to back this big-array big list. */ @SuppressWarnings("unused") protected BIG_ARRAY_BIG_LIST( final KEY_GENERIC_TYPE a[][], boolean dummy ) { this.a = a; #if ! KEYS_PRIMITIVE this.wrapped = true; #endif } /** Creates a new big-array big list with given capacity. * * @param capacity the initial capacity of the array list (may be 0). */ SUPPRESS_WARNINGS_KEY_UNCHECKED public BIG_ARRAY_BIG_LIST( final long capacity ) { if ( capacity < 0 ) throw new IllegalArgumentException( "Initial capacity (" + capacity + ") is negative" ); a = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.newBigArray( capacity ); #if ! KEYS_PRIMITIVE wrapped = false; #endif } /** Creates a new big-array big list with {@link #DEFAULT_INITIAL_CAPACITY} capacity. */ public BIG_ARRAY_BIG_LIST() { this( DEFAULT_INITIAL_CAPACITY ); } /** Creates a new big-array big list and fills it with a given type-specific collection. * * @param c a type-specific collection that will be used to fill the array list. */ public BIG_ARRAY_BIG_LIST( final COLLECTION KEY_EXTENDS_GENERIC c ) { this( c.size() ); for( KEY_ITERATOR KEY_EXTENDS_GENERIC i = c.iterator(); i.hasNext(); ) add( i.NEXT_KEY() ); } /** Creates a new big-array big list and fills it with a given type-specific list. * * @param l a type-specific list that will be used to fill the array list. */ public BIG_ARRAY_BIG_LIST( final BIG_LIST KEY_EXTENDS_GENERIC l ) { this( l.size64() ); l.getElements( 0, a, 0, size = l.size64() ); } /** Creates a new big-array big list and fills it with the elements of a given big array. * *

Note that this constructor makes it easy to build big lists from literal arrays * declared as type[][] {{ init_values }}. * The only constraint is that the number of initialisation values is * below {@link it.unimi.dsi.fastutil.BigArrays#SEGMENT_SIZE}. * * @param a a big array whose elements will be used to fill the array list. */ public BIG_ARRAY_BIG_LIST( final KEY_GENERIC_TYPE a[][] ) { this( a, 0, BIG_ARRAYS.length( a ) ); } /** Creates a new big-array big list and fills it with the elements of a given big array. * *

Note that this constructor makes it easy to build big lists from literal arrays * declared as type[][] {{ init_values }}. * The only constraint is that the number of initialisation values is * below {@link it.unimi.dsi.fastutil.BigArrays#SEGMENT_SIZE}. * * @param a a big array whose elements will be used to fill the array list. * @param offset the first element to use. * @param length the number of elements to use. */ public BIG_ARRAY_BIG_LIST( final KEY_GENERIC_TYPE a[][], final long offset, final long length ) { this( length ); BIG_ARRAYS.copy( a, offset, this.a, 0, length ); size = length; } /** Creates a new big-array big list and fills it with the elements returned by an iterator.. * * @param i an iterator whose returned elements will fill the array list. */ public BIG_ARRAY_BIG_LIST( final Iterator i ) { this(); while( i.hasNext() ) this.add( i.next() ); } /** Creates a new big-array big list and fills it with the elements returned by a type-specific iterator.. * * @param i a type-specific iterator whose returned elements will fill the array list. */ public BIG_ARRAY_BIG_LIST( final KEY_ITERATOR KEY_EXTENDS_GENERIC i ) { this(); while( i.hasNext() ) this.add( i.NEXT_KEY() ); } #if KEYS_PRIMITIVE /** Returns the backing big array of this big list. * * @return the backing big array. */ public KEY_GENERIC_TYPE[][] elements() { return a; } #else /** Returns the backing big array of this big list. * *

If this big-array big list was created by wrapping a given big array, it is guaranteed * that the type of the returned big array will be the same. Otherwise, the returned * big array will be an big array of objects. * * @return the backing big array. */ public KEY_GENERIC_TYPE[][] elements() { return a; } #endif /** Wraps a given big array into a big-array list of given size. * * @param a a big array to wrap. * @param length the length of the resulting big-array list. * @return a new big-array list of the given size, wrapping the given big array. */ public static KEY_GENERIC BIG_ARRAY_BIG_LIST KEY_GENERIC wrap( final KEY_GENERIC_TYPE a[][], final long length ) { if ( length > BIG_ARRAYS.length( a ) ) throw new IllegalArgumentException( "The specified length (" + length + ") is greater than the array size (" + BIG_ARRAYS.length( a ) + ")" ); final BIG_ARRAY_BIG_LIST KEY_GENERIC l = new BIG_ARRAY_BIG_LIST KEY_GENERIC( a, false ); l.size = length; return l; } /** Wraps a given big array into a big-array big list. * * @param a a big array to wrap. * @return a new big-array big list wrapping the given array. */ public static KEY_GENERIC BIG_ARRAY_BIG_LIST KEY_GENERIC wrap( final KEY_GENERIC_TYPE a[][] ) { return wrap( a, BIG_ARRAYS.length( a ) ); } /** Ensures that this big-array big list can contain the given number of entries without resizing. * * @param capacity the new minimum capacity for this big-array big list. */ SUPPRESS_WARNINGS_KEY_UNCHECKED public void ensureCapacity( final long capacity ) { #if KEYS_PRIMITIVE a = BIG_ARRAYS.ensureCapacity( a, capacity, size ); #else if ( wrapped ) a = BIG_ARRAYS.ensureCapacity( a, capacity, size ); else { if ( capacity > BIG_ARRAYS.length( a ) ) { final Object t[][] = BIG_ARRAYS.newBigArray( capacity ); BIG_ARRAYS.copy( a, 0, t, 0, size ); a = (KEY_GENERIC_TYPE[][])t; } } #endif if ( ASSERTS ) assert size <= BIG_ARRAYS.length( a ); } /** Grows this big-array big list, ensuring that it can contain the given number of entries without resizing, * and in case enlarging it at least by a factor of two. * * @param capacity the new minimum capacity for this big-array big list. */ SUPPRESS_WARNINGS_KEY_UNCHECKED private void grow( final long capacity ) { #if KEYS_PRIMITIVE a = BIG_ARRAYS.grow( a, capacity, size ); #else if ( wrapped ) a = BIG_ARRAYS.grow( a, capacity, size ); else { if ( capacity > BIG_ARRAYS.length( a ) ) { final int newLength = (int)Math.max( Math.min( 2 * BIG_ARRAYS.length( a ), it.unimi.dsi.fastutil.Arrays.MAX_ARRAY_SIZE ), capacity ); final Object t[][] = BIG_ARRAYS.newBigArray( newLength ); BIG_ARRAYS.copy( a, 0, t, 0, size ); a = (KEY_GENERIC_TYPE[][])t; } } #endif if ( ASSERTS ) assert size <= BIG_ARRAYS.length( a ); } public void add( final long index, final KEY_GENERIC_TYPE k ) { ensureIndex( index ); grow( size + 1 ); if ( index != size ) BIG_ARRAYS.copy( a, index, a, index + 1, size - index ); BIG_ARRAYS.set( a, index, k ); size++; if ( ASSERTS ) assert size <= BIG_ARRAYS.length( a ); } public boolean add( final KEY_GENERIC_TYPE k ) { grow( size + 1 ); BIG_ARRAYS.set( a, size++, k ); if ( ASSERTS ) assert size <= BIG_ARRAYS.length( a ); return true; } public KEY_GENERIC_TYPE GET_KEY( final long index ) { if ( index >= size ) throw new IndexOutOfBoundsException( "Index (" + index + ") is greater than or equal to list size (" + size + ")" ); return BIG_ARRAYS.get( a, index ); } public long indexOf( final KEY_TYPE k ) { for( long i = 0; i < size; i++ ) if ( KEY_EQUALS( k, BIG_ARRAYS.get( a, i ) ) ) return i; return -1; } public long lastIndexOf( final KEY_TYPE k ) { for( long i = size; i-- != 0; ) if ( KEY_EQUALS( k, BIG_ARRAYS.get( a, i ) ) ) return i; return -1; } public KEY_GENERIC_TYPE REMOVE_KEY( final long index ) { if ( index >= size ) throw new IndexOutOfBoundsException( "Index (" + index + ") is greater than or equal to list size (" + size + ")" ); final KEY_GENERIC_TYPE old = BIG_ARRAYS.get( a, index ); size--; if ( index != size ) BIG_ARRAYS.copy( a, index + 1, a, index, size - index ); #if KEYS_REFERENCE BIG_ARRAYS.set( a, size, null ); #endif if ( ASSERTS ) assert size <= BIG_ARRAYS.length( a ); return old; } public boolean rem( final KEY_TYPE k ) { final long index = indexOf( k ); if ( index == -1 ) return false; REMOVE_KEY( index ); if ( ASSERTS ) assert size <= BIG_ARRAYS.length( a ); return true; } #if KEYS_REFERENCE public boolean remove( final Object o ) { return rem( o ); } #endif public KEY_GENERIC_TYPE set( final long index, final KEY_GENERIC_TYPE k ) { if ( index >= size ) throw new IndexOutOfBoundsException( "Index (" + index + ") is greater than or equal to list size (" + size + ")" ); KEY_GENERIC_TYPE old = BIG_ARRAYS.get( a, index ); BIG_ARRAYS.set( a, index, k ); return old; } #if KEYS_PRIMITIVE @Override public boolean removeAll( final COLLECTION c ) { KEY_GENERIC_TYPE[] s = null, d = null; int ss = -1, sd = BigArrays.SEGMENT_SIZE, ds = -1, dd = BigArrays.SEGMENT_SIZE; for ( long i = 0; i < size; i++ ) { if ( sd == BigArrays.SEGMENT_SIZE ) { sd = 0; s = a[ ++ss ]; } if ( !c.contains( s[ sd ] ) ) { if ( dd == BigArrays.SEGMENT_SIZE ) { d = a[ ++ds ]; dd = 0; } d[ dd++ ] = s[ sd ]; } sd++; } final long j = BigArrays.index( ds, dd ); final boolean modified = size != j; size = j; return modified; } @Override public boolean removeAll( final Collection c ) { KEY_GENERIC_TYPE[] s = null, d = null; int ss = -1, sd = BigArrays.SEGMENT_SIZE, ds = -1, dd = BigArrays.SEGMENT_SIZE; for ( long i = 0; i < size; i++ ) { if ( sd == BigArrays.SEGMENT_SIZE ) { sd = 0; s = a[ ++ss ]; } if ( !c.contains( KEY2OBJ( s[ sd ] ) ) ) { if ( dd == BigArrays.SEGMENT_SIZE ) { d = a[ ++ds ]; dd = 0; } d[ dd++ ] = s[ sd ]; } sd++; } final long j = BigArrays.index( ds, dd ); final boolean modified = size != j; size = j; return modified; } #else @Override public boolean removeAll( final Collection c ) { KEY_GENERIC_TYPE[] s = null, d = null; int ss = -1, sd = BigArrays.SEGMENT_SIZE, ds = -1, dd = BigArrays.SEGMENT_SIZE; for ( long i = 0; i < size; i++ ) { if ( sd == BigArrays.SEGMENT_SIZE ) { sd = 0; s = a[ ++ss ]; } if ( !c.contains( s[ sd ] ) ) { if ( dd == BigArrays.SEGMENT_SIZE ) { d = a[ ++ds ]; dd = 0; } d[ dd++ ] = s[ sd ]; } sd++; } final long j = BigArrays.index( ds, dd ); final boolean modified = size != j; size = j; return modified; } #endif public void clear() { #if KEYS_REFERENCE BIG_ARRAYS.fill( a, 0, size, null ); #endif size = 0; if ( ASSERTS ) assert size <= BIG_ARRAYS.length( a ); } public long size64() { return size; } public void size( final long size ) { if ( size > BIG_ARRAYS.length( a ) ) ensureCapacity( size ); if ( size > this.size ) BIG_ARRAYS.fill( a, this.size, size, KEY_NULL ); #if KEYS_REFERENCE else BIG_ARRAYS.fill( a, size, this.size, KEY_NULL ); #endif this.size = size; } public boolean isEmpty() { return size == 0; } /** Trims this big-array big list so that the capacity is equal to the size. * * @see java.util.ArrayList#trimToSize() */ public void trim() { trim( 0 ); } /** Trims the backing big array if it is too large. * * If the current big array length is smaller than or equal to * n, this method does nothing. Otherwise, it trims the * big-array length to the maximum between n and {@link #size64()}. * *

This method is useful when reusing big lists. {@linkplain #clear() Clearing a * big list} leaves the big-array length untouched. If you are reusing a big list * many times, you can call this method with a typical * size to avoid keeping around a very large big array just * because of a few large transient big lists. * * @param n the threshold for the trimming. */ public void trim( final long n ) { final long arrayLength = BIG_ARRAYS.length( a ); if ( n >= arrayLength || size == arrayLength ) return; a = BIG_ARRAYS.trim( a, Math.max( n, size ) ); if ( ASSERTS ) assert size <= BIG_ARRAYS.length( a ); } /** Copies element of this type-specific list into the given big array using optimized system calls. * * @param from the start index (inclusive). * @param a the destination big array. * @param offset the offset into the destination array where to store the first element copied. * @param length the number of elements to be copied. */ public void getElements( final int from, final KEY_TYPE[][] a, final long offset, final long length ) { BIG_ARRAYS.copy( this.a, from, a, offset, length ); } /** Removes elements of this type-specific list using optimized system calls. * * @param from the start index (inclusive). * @param to the end index (exclusive). */ public void removeElements( final int from, final int to ) { BigArrays.ensureFromTo( size, from, to ); BIG_ARRAYS.copy( a, to, a, from, size - to ); size -= ( to - from ); #if KEYS_REFERENCE BIG_ARRAYS.fill( a, size, size + to - from, null ); #endif } /** Adds elements to this type-specific list using optimized system calls. * * @param index the index at which to add elements. * @param a the big array containing the elements. * @param offset the offset of the first element to add. * @param length the number of elements to add. */ public void addElements( final int index, final KEY_GENERIC_TYPE a[][], final long offset, final long length ) { ensureIndex( index ); BIG_ARRAYS.ensureOffsetLength( a, offset, length ); grow( size + length ); BIG_ARRAYS.copy( this.a, index, this.a, index + length, size - index ); BIG_ARRAYS.copy( a, offset, this.a, index, length ); size += length; } @Override public KEY_BIG_LIST_ITERATOR KEY_GENERIC listIterator( final long index ) { ensureIndex( index ); return new KEY_ABSTRACT_BIG_LIST_ITERATOR KEY_GENERIC() { long pos = index, last = -1; public boolean hasNext() { return pos < size; } public boolean hasPrevious() { return pos > 0; } public KEY_GENERIC_TYPE NEXT_KEY() { if ( ! hasNext() ) throw new NoSuchElementException(); return BIG_ARRAYS.get( a, last = pos++ ); } public KEY_GENERIC_TYPE PREV_KEY() { if ( ! hasPrevious() ) throw new NoSuchElementException(); return BIG_ARRAYS.get( a, last = --pos ); } public long nextIndex() { return pos; } public long previousIndex() { return pos - 1; } public void add( KEY_GENERIC_TYPE k ) { BIG_ARRAY_BIG_LIST.this.add( pos++, k ); last = -1; } public void set( KEY_GENERIC_TYPE k ) { if ( last == -1 ) throw new IllegalStateException(); BIG_ARRAY_BIG_LIST.this.set( last, k ); } public void remove() { if ( last == -1 ) throw new IllegalStateException(); BIG_ARRAY_BIG_LIST.this.REMOVE_KEY( last ); /* If the last operation was a next(), we are removing an element *before* us, and we must decrease pos correspondingly. */ if ( last < pos ) pos--; last = -1; } }; } public BIG_ARRAY_BIG_LIST KEY_GENERIC clone() { BIG_ARRAY_BIG_LIST KEY_GENERIC c = new BIG_ARRAY_BIG_LIST KEY_GENERIC( size ); BIG_ARRAYS.copy( a, 0, c.a, 0, size ); c.size = size; return c; } #if KEY_CLASS_Object private boolean valEquals( final K a, final K b ) { return a == null ? b == null : a.equals( b ); } #endif /** Compares this type-specific big-array list to another one. * *

This method exists only for sake of efficiency. The implementation * inherited from the abstract implementation would already work. * * @param l a type-specific big-array list. * @return true if the argument contains the same elements of this type-specific big-array list. */ public boolean equals( final BIG_ARRAY_BIG_LIST KEY_GENERIC l ) { if ( l == this ) return true; long s = size64(); if ( s != l.size64() ) return false; final KEY_GENERIC_TYPE[][] a1 = a; final KEY_GENERIC_TYPE[][] a2 = l.a; #if KEY_CLASS_Object while( s-- != 0 ) if ( ! valEquals( BIG_ARRAYS.get( a1, s ), BIG_ARRAYS.get( a2, s ) ) ) return false; #else while( s-- != 0 ) if ( BIG_ARRAYS.get( a1, s ) != BIG_ARRAYS.get( a2, s ) ) return false; #endif return true; } #if ! KEY_CLASS_Reference /** Compares this big list to another big list. * *

This method exists only for sake of efficiency. The implementation * inherited from the abstract implementation would already work. * * @param l a big list. * @return a negative integer, * zero, or a positive integer as this big list is lexicographically less than, equal * to, or greater than the argument. */ SUPPRESS_WARNINGS_KEY_UNCHECKED public int compareTo( final BIG_ARRAY_BIG_LIST KEY_EXTENDS_GENERIC l ) { final long s1 = size64(), s2 = l.size64(); final KEY_GENERIC_TYPE a1[][] = a, a2[][] = l.a; KEY_GENERIC_TYPE e1, e2; int r, i; for( i = 0; i < s1 && i < s2; i++ ) { e1 = BIG_ARRAYS.get( a1, i ); e2 = BIG_ARRAYS.get( a2, i ); if ( ( r = KEY_CMP( e1, e2 ) ) != 0 ) return r; } return i < s2 ? -1 : ( i < s1 ? 1 : 0 ); } #endif private void writeObject( java.io.ObjectOutputStream s ) throws java.io.IOException { s.defaultWriteObject(); for( int i = 0; i < size; i++ ) s.WRITE_KEY( BIG_ARRAYS.get( a, i ) ); } SUPPRESS_WARNINGS_KEY_UNCHECKED private void readObject( java.io.ObjectInputStream s ) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); a = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.newBigArray( size ); for( int i = 0; i < size; i++ ) BIG_ARRAYS.set( a, i, KEY_GENERIC_CAST s.READ_KEY() ); } #ifdef TEST private static long seed = System.currentTimeMillis(); private static java.util.Random r = new java.util.Random( seed ); private static KEY_TYPE genKey() { #if KEY_CLASS_Byte || KEY_CLASS_Short || KEY_CLASS_Character return (KEY_TYPE)(r.nextInt()); #elif KEYS_PRIMITIVE return r.NEXT_KEY(); #elif KEY_CLASS_Object return Integer.toBinaryString( r.nextInt() ); #else return new java.io.Serializable() {}; #endif } private static java.text.NumberFormat format = new java.text.DecimalFormat( "#,###.00" ); private static java.text.FieldPosition p = new java.text.FieldPosition( 0 ); private static String format( double d ) { StringBuffer s = new StringBuffer(); return format.format( d, s, p ).toString(); } private static void speedTest( int n, boolean comp ) { System.out.println( "There are presently no speed tests for this class." ); } private static void fatal( String msg ) { System.out.println( msg ); System.exit( 1 ); } private static void ensure( boolean cond, String msg ) { if ( cond ) return; fatal( msg ); } private static Object[] k, v, nk; private static KEY_TYPE kt[]; private static KEY_TYPE nkt[]; private static BIG_ARRAY_BIG_LIST topList; protected static void testLists( BIG_LIST m, BIG_LIST t, int n, int level ) { long ms; Exception mThrowsIllegal, tThrowsIllegal, mThrowsOutOfBounds, tThrowsOutOfBounds; Object rt = null; KEY_TYPE rm = KEY_NULL; if ( level > 4 ) return; /* Now we check that both sets agree on random keys. For m we use the polymorphic method. */ for( int i = 0; i < n; i++ ) { int p = r.nextInt() % ( n * 2 ); KEY_TYPE T = genKey(); mThrowsOutOfBounds = tThrowsOutOfBounds = null; try { m.set( p, T ); } catch ( IndexOutOfBoundsException e ) { mThrowsOutOfBounds = e; } try { t.set( p, KEY2OBJ( T ) ); } catch ( IndexOutOfBoundsException e ) { tThrowsOutOfBounds = e; } ensure( ( mThrowsOutOfBounds == null ) == ( tThrowsOutOfBounds == null ), "Error (" + level + ", " + seed + "): set() divergence at start in IndexOutOfBoundsException for index " + p + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")" ); if ( mThrowsOutOfBounds == null ) ensure( t.get( p ).equals( KEY2OBJ( m.GET_KEY( p ) ) ), "Error (" + level + ", " + seed + "): m and t differ after set() on position " + p + " (" + m.GET_KEY( p ) + ", " + t.get( p ) + ")" ); p = r.nextInt() % ( n * 2 ); mThrowsOutOfBounds = tThrowsOutOfBounds = null; try { m.GET_KEY( p ); } catch ( IndexOutOfBoundsException e ) { mThrowsOutOfBounds = e; } try { t.get( p ); } catch ( IndexOutOfBoundsException e ) { tThrowsOutOfBounds = e; } ensure( ( mThrowsOutOfBounds == null ) == ( tThrowsOutOfBounds == null ), "Error (" + level + ", " + seed + "): get() divergence at start in IndexOutOfBoundsException for index " + p + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")" ); if ( mThrowsOutOfBounds == null ) ensure( t.get( p ).equals( KEY2OBJ( m.GET_KEY( p ) ) ), "Error (" + level + ", " + seed + "): m and t differ aftre get() on position " + p + " (" + m.GET_KEY( p ) + ", " + t.get( p ) + ")" ); } /* Now we check that both sets agree on random keys. For m we use the standard method. */ for( int i = 0; i < n; i++ ) { int p = r.nextInt() % ( n * 2 ); mThrowsOutOfBounds = tThrowsOutOfBounds = null; try { m.get( p ); } catch ( IndexOutOfBoundsException e ) { mThrowsOutOfBounds = e; } try { t.get( p ); } catch ( IndexOutOfBoundsException e ) { tThrowsOutOfBounds = e; } ensure( ( mThrowsOutOfBounds == null ) == ( tThrowsOutOfBounds == null ), "Error (" + level + ", " + seed + "): get() divergence at start in IndexOutOfBoundsException for index " + p + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")" ); if ( mThrowsOutOfBounds == null ) ensure( t.get( p ).equals( m.get( p ) ), "Error (" + level + ", " + seed + "): m and t differ at start on position " + p + " (" + m.get( p ) + ", " + t.get( p ) + ")" ); } /* Now we check that m and t are equal. */ if ( !m.equals( t ) || ! t.equals( m ) ) System.err.println("m: " + m + " t: " + t); ensure( m.equals( t ), "Error (" + level + ", " + seed + "): ! m.equals( t ) at start" ); ensure( t.equals( m ), "Error (" + level + ", " + seed + "): ! t.equals( m ) at start" ); /* Now we check that m actually holds that data. */ for(Iterator i=t.iterator(); i.hasNext(); ) { ensure( m.contains( i.next() ), "Error (" + level + ", " + seed + "): m and t differ on an entry after insertion (iterating on t)" ); } /* Now we check that m actually holds that data, but iterating on m. */ for(Iterator i=m.listIterator(); i.hasNext(); ) { ensure( t.contains( i.next() ), "Error (" + level + ", " + seed + "): m and t differ on an entry after insertion (iterating on m)" ); } /* Now we check that inquiries about random data give the same answer in m and t. For m we use the polymorphic method. */ for(int i=0; i n ) { m.size( n ); while( t.size64() != n ) t.remove( t.size64() -1 ); } /* Now we add random data in m and t using addAll on a type-specific collection, checking that the result is the same. */ for(int i=0; i n ) { m.size( n ); while( t.size64() != n ) t.remove( t.size64() -1 ); } /* Now we add random data in m and t using addAll on a list, checking that the result is the same. */ for(int i=0; i 2 ) r = new java.util.Random( seed = Long.parseLong( args[ 2 ] ) ); try { if ("speedTest".equals(args[0]) || "speedComp".equals(args[0])) speedTest( n, "speedComp".equals(args[0]) ); else if ( "test".equals( args[0] ) ) test(n); } catch( Throwable e ) { e.printStackTrace( System.err ); System.err.println( "seed: " + seed ); } } #endif }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy