drv.BigArrayBigList.drv Maven / Gradle / Ivy
Show all versions of fastutil Show documentation
/*
* Copyright (C) 2002-2016 Sebastiano Vigna
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package PACKAGE;
import java.util.Collection;
import java.util.Iterator;
import java.util.RandomAccess;
import java.util.NoSuchElementException;
import it.unimi.dsi.fastutil.BigArrays;
#if KEYS_PRIMITIVE
/** A type-specific big list based on a big array; provides some additional methods that use polymorphism to avoid (un)boxing.
*
* This class implements a lightweight, fast, open, optimized,
* reuse-oriented version of big-array-based big lists. Instances of this class
* represent a big list with a big array that is enlarged as needed when new entries
* are created (by doubling the current length), but is
* never made smaller (even on a {@link #clear()}). A family of
* {@linkplain #trim() trimming methods} lets you control the size of the
* backing big array; this is particularly useful if you reuse instances of this class.
* Range checks are equivalent to those of {@link java.util}'s classes, but
* they are delayed as much as possible. The backing big array is exposed by the
* {@link #elements()} method.
*
*
This class implements the bulk methods removeElements()
,
* addElements()
and getElements()
using
* high-performance system calls (e.g., {@link
* System#arraycopy(Object,int,Object,int,int) System.arraycopy()} instead of
* expensive loops.
*
* @see java.util.ArrayList
*/
public class BIG_ARRAY_BIG_LIST KEY_GENERIC extends ABSTRACT_BIG_LIST KEY_GENERIC implements RandomAccess, Cloneable, java.io.Serializable {
private static final long serialVersionUID = -7046029254386353130L;
#else
/** A type-specific big-array-based big list; provides some additional methods that use polymorphism to avoid (un)boxing.
*
*
This class implements a lightweight, fast, open, optimized,
* reuse-oriented version of big-array-based big lists. Instances of this class
* represent a big list with a big array that is enlarged as needed when new entries
* are created (by doubling the current length), but is
* never made smaller (even on a {@link #clear()}). A family of
* {@linkplain #trim() trimming methods} lets you control the size of the
* backing big array; this is particularly useful if you reuse instances of this class.
* Range checks are equivalent to those of {@link java.util}'s classes, but
* they are delayed as much as possible.
*
*
The backing big array is exposed by the {@link #elements()} method. If an instance
* of this class was created {@linkplain #wrap(Object[][],long) by wrapping},
* backing-array reallocations will be performed using reflection, so that
* {@link #elements()} can return a big array of the same type of the original big array; the comments
* about efficiency made in {@link it.unimi.dsi.fastutil.objects.ObjectArrays} apply here.
*
*
This class implements the bulk methods removeElements()
,
* addElements()
and getElements()
using
* high-performance system calls (e.g., {@link
* System#arraycopy(Object,int,Object,int,int) System.arraycopy()} instead of
* expensive loops.
*
* @see java.util.ArrayList
*/
public class BIG_ARRAY_BIG_LIST KEY_GENERIC extends ABSTRACT_BIG_LIST KEY_GENERIC implements RandomAccess, Cloneable, java.io.Serializable {
private static final long serialVersionUID = -7046029254386353131L;
#endif
/** The initial default capacity of a big-array big list. */
public final static int DEFAULT_INITIAL_CAPACITY = 16;
#if ! KEYS_PRIMITIVE
/** Whether the backing big array was passed to wrap()
. In
* this case, we must reallocate with the same type of big array. */
protected final boolean wrapped;
#endif
/** The backing big array. */
protected transient KEY_GENERIC_TYPE a[][];
/** The current actual size of the big list (never greater than the backing-array length). */
protected long size;
private static final boolean ASSERTS = ASSERTS_VALUE;
/** Creates a new big-array big list using a given array.
*
*
This constructor is only meant to be used by the wrapping methods.
*
* @param a the big array that will be used to back this big-array big list.
*/
@SuppressWarnings("unused")
protected BIG_ARRAY_BIG_LIST( final KEY_GENERIC_TYPE a[][], boolean dummy ) {
this.a = a;
#if ! KEYS_PRIMITIVE
this.wrapped = true;
#endif
}
/** Creates a new big-array big list with given capacity.
*
* @param capacity the initial capacity of the array list (may be 0).
*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
public BIG_ARRAY_BIG_LIST( final long capacity ) {
if ( capacity < 0 ) throw new IllegalArgumentException( "Initial capacity (" + capacity + ") is negative" );
a = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.newBigArray( capacity );
#if ! KEYS_PRIMITIVE
wrapped = false;
#endif
}
/** Creates a new big-array big list with {@link #DEFAULT_INITIAL_CAPACITY} capacity.
*/
public BIG_ARRAY_BIG_LIST() {
this( DEFAULT_INITIAL_CAPACITY );
}
/** Creates a new big-array big list and fills it with a given type-specific collection.
*
* @param c a type-specific collection that will be used to fill the array list.
*/
public BIG_ARRAY_BIG_LIST( final COLLECTION KEY_EXTENDS_GENERIC c ) {
this( c.size() );
for( KEY_ITERATOR KEY_EXTENDS_GENERIC i = c.iterator(); i.hasNext(); ) add( i.NEXT_KEY() );
}
/** Creates a new big-array big list and fills it with a given type-specific list.
*
* @param l a type-specific list that will be used to fill the array list.
*/
public BIG_ARRAY_BIG_LIST( final BIG_LIST KEY_EXTENDS_GENERIC l ) {
this( l.size64() );
l.getElements( 0, a, 0, size = l.size64() );
}
/** Creates a new big-array big list and fills it with the elements of a given big array.
*
*
Note that this constructor makes it easy to build big lists from literal arrays
* declared as type[][] {{ init_values }}
.
* The only constraint is that the number of initialisation values is
* below {@link it.unimi.dsi.fastutil.BigArrays#SEGMENT_SIZE}.
*
* @param a a big array whose elements will be used to fill the array list.
*/
public BIG_ARRAY_BIG_LIST( final KEY_GENERIC_TYPE a[][] ) {
this( a, 0, BIG_ARRAYS.length( a ) );
}
/** Creates a new big-array big list and fills it with the elements of a given big array.
*
*
Note that this constructor makes it easy to build big lists from literal arrays
* declared as type[][] {{ init_values }}
.
* The only constraint is that the number of initialisation values is
* below {@link it.unimi.dsi.fastutil.BigArrays#SEGMENT_SIZE}.
*
* @param a a big array whose elements will be used to fill the array list.
* @param offset the first element to use.
* @param length the number of elements to use.
*/
public BIG_ARRAY_BIG_LIST( final KEY_GENERIC_TYPE a[][], final long offset, final long length ) {
this( length );
BIG_ARRAYS.copy( a, offset, this.a, 0, length );
size = length;
}
/** Creates a new big-array big list and fills it with the elements returned by an iterator..
*
* @param i an iterator whose returned elements will fill the array list.
*/
public BIG_ARRAY_BIG_LIST( final Iterator extends KEY_GENERIC_CLASS> i ) {
this();
while( i.hasNext() ) this.add( i.next() );
}
/** Creates a new big-array big list and fills it with the elements returned by a type-specific iterator..
*
* @param i a type-specific iterator whose returned elements will fill the array list.
*/
public BIG_ARRAY_BIG_LIST( final KEY_ITERATOR KEY_EXTENDS_GENERIC i ) {
this();
while( i.hasNext() ) this.add( i.NEXT_KEY() );
}
#if KEYS_PRIMITIVE
/** Returns the backing big array of this big list.
*
* @return the backing big array.
*/
public KEY_GENERIC_TYPE[][] elements() {
return a;
}
#else
/** Returns the backing big array of this big list.
*
*
If this big-array big list was created by wrapping a given big array, it is guaranteed
* that the type of the returned big array will be the same. Otherwise, the returned
* big array will be an big array of objects.
*
* @return the backing big array.
*/
public KEY_GENERIC_TYPE[][] elements() {
return a;
}
#endif
/** Wraps a given big array into a big-array list of given size.
*
* @param a a big array to wrap.
* @param length the length of the resulting big-array list.
* @return a new big-array list of the given size, wrapping the given big array.
*/
public static KEY_GENERIC BIG_ARRAY_BIG_LIST KEY_GENERIC wrap( final KEY_GENERIC_TYPE a[][], final long length ) {
if ( length > BIG_ARRAYS.length( a ) ) throw new IllegalArgumentException( "The specified length (" + length + ") is greater than the array size (" + BIG_ARRAYS.length( a ) + ")" );
final BIG_ARRAY_BIG_LIST KEY_GENERIC l = new BIG_ARRAY_BIG_LIST KEY_GENERIC( a, false );
l.size = length;
return l;
}
/** Wraps a given big array into a big-array big list.
*
* @param a a big array to wrap.
* @return a new big-array big list wrapping the given array.
*/
public static KEY_GENERIC BIG_ARRAY_BIG_LIST KEY_GENERIC wrap( final KEY_GENERIC_TYPE a[][] ) {
return wrap( a, BIG_ARRAYS.length( a ) );
}
/** Ensures that this big-array big list can contain the given number of entries without resizing.
*
* @param capacity the new minimum capacity for this big-array big list.
*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
public void ensureCapacity( final long capacity ) {
#if KEYS_PRIMITIVE
a = BIG_ARRAYS.ensureCapacity( a, capacity, size );
#else
if ( wrapped ) a = BIG_ARRAYS.ensureCapacity( a, capacity, size );
else {
if ( capacity > BIG_ARRAYS.length( a ) ) {
final Object t[][] = BIG_ARRAYS.newBigArray( capacity );
BIG_ARRAYS.copy( a, 0, t, 0, size );
a = (KEY_GENERIC_TYPE[][])t;
}
}
#endif
if ( ASSERTS ) assert size <= BIG_ARRAYS.length( a );
}
/** Grows this big-array big list, ensuring that it can contain the given number of entries without resizing,
* and in case enlarging it at least by a factor of two.
*
* @param capacity the new minimum capacity for this big-array big list.
*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
private void grow( final long capacity ) {
#if KEYS_PRIMITIVE
a = BIG_ARRAYS.grow( a, capacity, size );
#else
if ( wrapped ) a = BIG_ARRAYS.grow( a, capacity, size );
else {
if ( capacity > BIG_ARRAYS.length( a ) ) {
final int newLength = (int)Math.max( Math.min( 2 * BIG_ARRAYS.length( a ), it.unimi.dsi.fastutil.Arrays.MAX_ARRAY_SIZE ), capacity );
final Object t[][] = BIG_ARRAYS.newBigArray( newLength );
BIG_ARRAYS.copy( a, 0, t, 0, size );
a = (KEY_GENERIC_TYPE[][])t;
}
}
#endif
if ( ASSERTS ) assert size <= BIG_ARRAYS.length( a );
}
public void add( final long index, final KEY_GENERIC_TYPE k ) {
ensureIndex( index );
grow( size + 1 );
if ( index != size ) BIG_ARRAYS.copy( a, index, a, index + 1, size - index );
BIG_ARRAYS.set( a, index, k );
size++;
if ( ASSERTS ) assert size <= BIG_ARRAYS.length( a );
}
public boolean add( final KEY_GENERIC_TYPE k ) {
grow( size + 1 );
BIG_ARRAYS.set( a, size++, k );
if ( ASSERTS ) assert size <= BIG_ARRAYS.length( a );
return true;
}
public KEY_GENERIC_TYPE GET_KEY( final long index ) {
if ( index >= size ) throw new IndexOutOfBoundsException( "Index (" + index + ") is greater than or equal to list size (" + size + ")" );
return BIG_ARRAYS.get( a, index );
}
public long indexOf( final KEY_TYPE k ) {
for( long i = 0; i < size; i++ ) if ( KEY_EQUALS( k, BIG_ARRAYS.get( a, i ) ) ) return i;
return -1;
}
public long lastIndexOf( final KEY_TYPE k ) {
for( long i = size; i-- != 0; ) if ( KEY_EQUALS( k, BIG_ARRAYS.get( a, i ) ) ) return i;
return -1;
}
public KEY_GENERIC_TYPE REMOVE_KEY( final long index ) {
if ( index >= size ) throw new IndexOutOfBoundsException( "Index (" + index + ") is greater than or equal to list size (" + size + ")" );
final KEY_GENERIC_TYPE old = BIG_ARRAYS.get( a, index );
size--;
if ( index != size ) BIG_ARRAYS.copy( a, index + 1, a, index, size - index );
#if KEYS_REFERENCE
BIG_ARRAYS.set( a, size, null );
#endif
if ( ASSERTS ) assert size <= BIG_ARRAYS.length( a );
return old;
}
public boolean rem( final KEY_TYPE k ) {
final long index = indexOf( k );
if ( index == -1 ) return false;
REMOVE_KEY( index );
if ( ASSERTS ) assert size <= BIG_ARRAYS.length( a );
return true;
}
#if KEYS_REFERENCE
public boolean remove( final Object o ) {
return rem( o );
}
#endif
public KEY_GENERIC_TYPE set( final long index, final KEY_GENERIC_TYPE k ) {
if ( index >= size ) throw new IndexOutOfBoundsException( "Index (" + index + ") is greater than or equal to list size (" + size + ")" );
KEY_GENERIC_TYPE old = BIG_ARRAYS.get( a, index );
BIG_ARRAYS.set( a, index, k );
return old;
}
#if KEYS_PRIMITIVE
@Override
public boolean removeAll( final COLLECTION c ) {
KEY_GENERIC_TYPE[] s = null, d = null;
int ss = -1, sd = BigArrays.SEGMENT_SIZE, ds = -1, dd = BigArrays.SEGMENT_SIZE;
for ( long i = 0; i < size; i++ ) {
if ( sd == BigArrays.SEGMENT_SIZE ) {
sd = 0;
s = a[ ++ss ];
}
if ( !c.contains( s[ sd ] ) ) {
if ( dd == BigArrays.SEGMENT_SIZE ) {
d = a[ ++ds ];
dd = 0;
}
d[ dd++ ] = s[ sd ];
}
sd++;
}
final long j = BigArrays.index( ds, dd );
final boolean modified = size != j;
size = j;
return modified;
}
@Override
public boolean removeAll( final Collection> c ) {
KEY_GENERIC_TYPE[] s = null, d = null;
int ss = -1, sd = BigArrays.SEGMENT_SIZE, ds = -1, dd = BigArrays.SEGMENT_SIZE;
for ( long i = 0; i < size; i++ ) {
if ( sd == BigArrays.SEGMENT_SIZE ) {
sd = 0;
s = a[ ++ss ];
}
if ( !c.contains( KEY2OBJ( s[ sd ] ) ) ) {
if ( dd == BigArrays.SEGMENT_SIZE ) {
d = a[ ++ds ];
dd = 0;
}
d[ dd++ ] = s[ sd ];
}
sd++;
}
final long j = BigArrays.index( ds, dd );
final boolean modified = size != j;
size = j;
return modified;
}
#else
@Override
public boolean removeAll( final Collection> c ) {
KEY_GENERIC_TYPE[] s = null, d = null;
int ss = -1, sd = BigArrays.SEGMENT_SIZE, ds = -1, dd = BigArrays.SEGMENT_SIZE;
for ( long i = 0; i < size; i++ ) {
if ( sd == BigArrays.SEGMENT_SIZE ) {
sd = 0;
s = a[ ++ss ];
}
if ( !c.contains( s[ sd ] ) ) {
if ( dd == BigArrays.SEGMENT_SIZE ) {
d = a[ ++ds ];
dd = 0;
}
d[ dd++ ] = s[ sd ];
}
sd++;
}
final long j = BigArrays.index( ds, dd );
final boolean modified = size != j;
size = j;
return modified;
}
#endif
public void clear() {
#if KEYS_REFERENCE
BIG_ARRAYS.fill( a, 0, size, null );
#endif
size = 0;
if ( ASSERTS ) assert size <= BIG_ARRAYS.length( a );
}
public long size64() {
return size;
}
public void size( final long size ) {
if ( size > BIG_ARRAYS.length( a ) ) ensureCapacity( size );
if ( size > this.size ) BIG_ARRAYS.fill( a, this.size, size, KEY_NULL );
#if KEYS_REFERENCE
else BIG_ARRAYS.fill( a, size, this.size, KEY_NULL );
#endif
this.size = size;
}
public boolean isEmpty() {
return size == 0;
}
/** Trims this big-array big list so that the capacity is equal to the size.
*
* @see java.util.ArrayList#trimToSize()
*/
public void trim() {
trim( 0 );
}
/** Trims the backing big array if it is too large.
*
* If the current big array length is smaller than or equal to
* n
, this method does nothing. Otherwise, it trims the
* big-array length to the maximum between n
and {@link #size64()}.
*
*
This method is useful when reusing big lists. {@linkplain #clear() Clearing a
* big list} leaves the big-array length untouched. If you are reusing a big list
* many times, you can call this method with a typical
* size to avoid keeping around a very large big array just
* because of a few large transient big lists.
*
* @param n the threshold for the trimming.
*/
public void trim( final long n ) {
final long arrayLength = BIG_ARRAYS.length( a );
if ( n >= arrayLength || size == arrayLength ) return;
a = BIG_ARRAYS.trim( a, Math.max( n, size ) );
if ( ASSERTS ) assert size <= BIG_ARRAYS.length( a );
}
/** Copies element of this type-specific list into the given big array using optimized system calls.
*
* @param from the start index (inclusive).
* @param a the destination big array.
* @param offset the offset into the destination array where to store the first element copied.
* @param length the number of elements to be copied.
*/
public void getElements( final int from, final KEY_TYPE[][] a, final long offset, final long length ) {
BIG_ARRAYS.copy( this.a, from, a, offset, length );
}
/** Removes elements of this type-specific list using optimized system calls.
*
* @param from the start index (inclusive).
* @param to the end index (exclusive).
*/
public void removeElements( final int from, final int to ) {
BigArrays.ensureFromTo( size, from, to );
BIG_ARRAYS.copy( a, to, a, from, size - to );
size -= ( to - from );
#if KEYS_REFERENCE
BIG_ARRAYS.fill( a, size, size + to - from, null );
#endif
}
/** Adds elements to this type-specific list using optimized system calls.
*
* @param index the index at which to add elements.
* @param a the big array containing the elements.
* @param offset the offset of the first element to add.
* @param length the number of elements to add.
*/
public void addElements( final int index, final KEY_GENERIC_TYPE a[][], final long offset, final long length ) {
ensureIndex( index );
BIG_ARRAYS.ensureOffsetLength( a, offset, length );
grow( size + length );
BIG_ARRAYS.copy( this.a, index, this.a, index + length, size - index );
BIG_ARRAYS.copy( a, offset, this.a, index, length );
size += length;
}
@Override
public KEY_BIG_LIST_ITERATOR KEY_GENERIC listIterator( final long index ) {
ensureIndex( index );
return new KEY_ABSTRACT_BIG_LIST_ITERATOR KEY_GENERIC() {
long pos = index, last = -1;
public boolean hasNext() { return pos < size; }
public boolean hasPrevious() { return pos > 0; }
public KEY_GENERIC_TYPE NEXT_KEY() { if ( ! hasNext() ) throw new NoSuchElementException(); return BIG_ARRAYS.get( a, last = pos++ ); }
public KEY_GENERIC_TYPE PREV_KEY() { if ( ! hasPrevious() ) throw new NoSuchElementException(); return BIG_ARRAYS.get( a, last = --pos ); }
public long nextIndex() { return pos; }
public long previousIndex() { return pos - 1; }
public void add( KEY_GENERIC_TYPE k ) {
BIG_ARRAY_BIG_LIST.this.add( pos++, k );
last = -1;
}
public void set( KEY_GENERIC_TYPE k ) {
if ( last == -1 ) throw new IllegalStateException();
BIG_ARRAY_BIG_LIST.this.set( last, k );
}
public void remove() {
if ( last == -1 ) throw new IllegalStateException();
BIG_ARRAY_BIG_LIST.this.REMOVE_KEY( last );
/* If the last operation was a next(), we are removing an element *before* us, and we must decrease pos correspondingly. */
if ( last < pos ) pos--;
last = -1;
}
};
}
public BIG_ARRAY_BIG_LIST KEY_GENERIC clone() {
BIG_ARRAY_BIG_LIST KEY_GENERIC c = new BIG_ARRAY_BIG_LIST KEY_GENERIC( size );
BIG_ARRAYS.copy( a, 0, c.a, 0, size );
c.size = size;
return c;
}
#if KEY_CLASS_Object
private boolean valEquals( final K a, final K b ) {
return a == null ? b == null : a.equals( b );
}
#endif
/** Compares this type-specific big-array list to another one.
*
*
This method exists only for sake of efficiency. The implementation
* inherited from the abstract implementation would already work.
*
* @param l a type-specific big-array list.
* @return true if the argument contains the same elements of this type-specific big-array list.
*/
public boolean equals( final BIG_ARRAY_BIG_LIST KEY_GENERIC l ) {
if ( l == this ) return true;
long s = size64();
if ( s != l.size64() ) return false;
final KEY_GENERIC_TYPE[][] a1 = a;
final KEY_GENERIC_TYPE[][] a2 = l.a;
#if KEY_CLASS_Object
while( s-- != 0 ) if ( ! valEquals( BIG_ARRAYS.get( a1, s ), BIG_ARRAYS.get( a2, s ) ) ) return false;
#else
while( s-- != 0 ) if ( BIG_ARRAYS.get( a1, s ) != BIG_ARRAYS.get( a2, s ) ) return false;
#endif
return true;
}
#if ! KEY_CLASS_Reference
/** Compares this big list to another big list.
*
*
This method exists only for sake of efficiency. The implementation
* inherited from the abstract implementation would already work.
*
* @param l a big list.
* @return a negative integer,
* zero, or a positive integer as this big list is lexicographically less than, equal
* to, or greater than the argument.
*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
public int compareTo( final BIG_ARRAY_BIG_LIST KEY_EXTENDS_GENERIC l ) {
final long s1 = size64(), s2 = l.size64();
final KEY_GENERIC_TYPE a1[][] = a, a2[][] = l.a;
KEY_GENERIC_TYPE e1, e2;
int r, i;
for( i = 0; i < s1 && i < s2; i++ ) {
e1 = BIG_ARRAYS.get( a1, i );
e2 = BIG_ARRAYS.get( a2, i );
if ( ( r = KEY_CMP( e1, e2 ) ) != 0 ) return r;
}
return i < s2 ? -1 : ( i < s1 ? 1 : 0 );
}
#endif
private void writeObject( java.io.ObjectOutputStream s ) throws java.io.IOException {
s.defaultWriteObject();
for( int i = 0; i < size; i++ ) s.WRITE_KEY( BIG_ARRAYS.get( a, i ) );
}
SUPPRESS_WARNINGS_KEY_UNCHECKED
private void readObject( java.io.ObjectInputStream s ) throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
a = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.newBigArray( size );
for( int i = 0; i < size; i++ ) BIG_ARRAYS.set( a, i, KEY_GENERIC_CAST s.READ_KEY() );
}
#ifdef TEST
private static long seed = System.currentTimeMillis();
private static java.util.Random r = new java.util.Random( seed );
private static KEY_TYPE genKey() {
#if KEY_CLASS_Byte || KEY_CLASS_Short || KEY_CLASS_Character
return (KEY_TYPE)(r.nextInt());
#elif KEYS_PRIMITIVE
return r.NEXT_KEY();
#elif KEY_CLASS_Object
return Integer.toBinaryString( r.nextInt() );
#else
return new java.io.Serializable() {};
#endif
}
private static java.text.NumberFormat format = new java.text.DecimalFormat( "#,###.00" );
private static java.text.FieldPosition p = new java.text.FieldPosition( 0 );
private static String format( double d ) {
StringBuffer s = new StringBuffer();
return format.format( d, s, p ).toString();
}
private static void speedTest( int n, boolean comp ) {
System.out.println( "There are presently no speed tests for this class." );
}
private static void fatal( String msg ) {
System.out.println( msg );
System.exit( 1 );
}
private static void ensure( boolean cond, String msg ) {
if ( cond ) return;
fatal( msg );
}
private static Object[] k, v, nk;
private static KEY_TYPE kt[];
private static KEY_TYPE nkt[];
private static BIG_ARRAY_BIG_LIST topList;
protected static void testLists( BIG_LIST m, BIG_LIST t, int n, int level ) {
long ms;
Exception mThrowsIllegal, tThrowsIllegal, mThrowsOutOfBounds, tThrowsOutOfBounds;
Object rt = null;
KEY_TYPE rm = KEY_NULL;
if ( level > 4 ) return;
/* Now we check that both sets agree on random keys. For m we use the polymorphic method. */
for( int i = 0; i < n; i++ ) {
int p = r.nextInt() % ( n * 2 );
KEY_TYPE T = genKey();
mThrowsOutOfBounds = tThrowsOutOfBounds = null;
try {
m.set( p, T );
}
catch ( IndexOutOfBoundsException e ) { mThrowsOutOfBounds = e; }
try {
t.set( p, KEY2OBJ( T ) );
}
catch ( IndexOutOfBoundsException e ) { tThrowsOutOfBounds = e; }
ensure( ( mThrowsOutOfBounds == null ) == ( tThrowsOutOfBounds == null ), "Error (" + level + ", " + seed + "): set() divergence at start in IndexOutOfBoundsException for index " + p + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")" );
if ( mThrowsOutOfBounds == null ) ensure( t.get( p ).equals( KEY2OBJ( m.GET_KEY( p ) ) ), "Error (" + level + ", " + seed + "): m and t differ after set() on position " + p + " (" + m.GET_KEY( p ) + ", " + t.get( p ) + ")" );
p = r.nextInt() % ( n * 2 );
mThrowsOutOfBounds = tThrowsOutOfBounds = null;
try {
m.GET_KEY( p );
}
catch ( IndexOutOfBoundsException e ) { mThrowsOutOfBounds = e; }
try {
t.get( p );
}
catch ( IndexOutOfBoundsException e ) { tThrowsOutOfBounds = e; }
ensure( ( mThrowsOutOfBounds == null ) == ( tThrowsOutOfBounds == null ), "Error (" + level + ", " + seed + "): get() divergence at start in IndexOutOfBoundsException for index " + p + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")" );
if ( mThrowsOutOfBounds == null ) ensure( t.get( p ).equals( KEY2OBJ( m.GET_KEY( p ) ) ), "Error (" + level + ", " + seed + "): m and t differ aftre get() on position " + p + " (" + m.GET_KEY( p ) + ", " + t.get( p ) + ")" );
}
/* Now we check that both sets agree on random keys. For m we use the standard method. */
for( int i = 0; i < n; i++ ) {
int p = r.nextInt() % ( n * 2 );
mThrowsOutOfBounds = tThrowsOutOfBounds = null;
try {
m.get( p );
}
catch ( IndexOutOfBoundsException e ) { mThrowsOutOfBounds = e; }
try {
t.get( p );
}
catch ( IndexOutOfBoundsException e ) { tThrowsOutOfBounds = e; }
ensure( ( mThrowsOutOfBounds == null ) == ( tThrowsOutOfBounds == null ), "Error (" + level + ", " + seed + "): get() divergence at start in IndexOutOfBoundsException for index " + p + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")" );
if ( mThrowsOutOfBounds == null ) ensure( t.get( p ).equals( m.get( p ) ), "Error (" + level + ", " + seed + "): m and t differ at start on position " + p + " (" + m.get( p ) + ", " + t.get( p ) + ")" );
}
/* Now we check that m and t are equal. */
if ( !m.equals( t ) || ! t.equals( m ) ) System.err.println("m: " + m + " t: " + t);
ensure( m.equals( t ), "Error (" + level + ", " + seed + "): ! m.equals( t ) at start" );
ensure( t.equals( m ), "Error (" + level + ", " + seed + "): ! t.equals( m ) at start" );
/* Now we check that m actually holds that data. */
for(Iterator i=t.iterator(); i.hasNext(); ) {
ensure( m.contains( i.next() ), "Error (" + level + ", " + seed + "): m and t differ on an entry after insertion (iterating on t)" );
}
/* Now we check that m actually holds that data, but iterating on m. */
for(Iterator i=m.listIterator(); i.hasNext(); ) {
ensure( t.contains( i.next() ), "Error (" + level + ", " + seed + "): m and t differ on an entry after insertion (iterating on m)" );
}
/* Now we check that inquiries about random data give the same answer in m and t. For
m we use the polymorphic method. */
for(int i=0; i n ) {
m.size( n );
while( t.size64() != n ) t.remove( t.size64() -1 );
}
/* Now we add random data in m and t using addAll on a type-specific collection, checking that the result is the same. */
for(int i=0; i n ) {
m.size( n );
while( t.size64() != n ) t.remove( t.size64() -1 );
}
/* Now we add random data in m and t using addAll on a list, checking that the result is the same. */
for(int i=0; i 2 ) r = new java.util.Random( seed = Long.parseLong( args[ 2 ] ) );
try {
if ("speedTest".equals(args[0]) || "speedComp".equals(args[0])) speedTest( n, "speedComp".equals(args[0]) );
else if ( "test".equals( args[0] ) ) test(n);
} catch( Throwable e ) {
e.printStackTrace( System.err );
System.err.println( "seed: " + seed );
}
}
#endif
}