All Downloads are FREE. Search and download functionalities are using the official Maven repository.

drv.HeapIndirectPriorityQueue.drv Maven / Gradle / Ivy

Go to download

fastutil extends the Java Collections Framework by providing type-specific maps, sets, lists and priority queues with a small memory footprint and fast access and insertion; provides also big (64-bit) arrays, sets and lists, and fast, practical I/O classes for binary and text files.

There is a newer version: 8.5.15
Show newest version
/*		 
 * Copyright (C) 2003-2016 Paolo Boldi and Sebastiano Vigna
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. 
 */


package PACKAGE;

#if KEY_CLASS_Object
import java.util.Comparator;
#endif

import it.unimi.dsi.fastutil.ints.IntArrays;

import java.util.Arrays;
import java.util.NoSuchElementException;

/** A type-specific heap-based indirect priority queue. 
 *
 * 

Instances of this class use an additional inversion array, of the same length of the reference array, * to keep track of the heap position containing a given element of the reference array. The priority queue is * represented using a heap. The heap is enlarged as needed, but it is never * shrunk. Use the {@link #trim()} method to reduce its size, if necessary. * *

This implementation does not allow one to enqueue several times the same index. */ public class HEAP_INDIRECT_PRIORITY_QUEUE KEY_GENERIC extends HEAP_SEMI_INDIRECT_PRIORITY_QUEUE KEY_GENERIC { /** The inversion array. */ protected final int inv[]; /** Creates a new empty queue with a given capacity and comparator. * * @param refArray the reference array. * @param capacity the initial capacity of this queue. * @param c the comparator used in this queue, or null for the natural order. */ public HEAP_INDIRECT_PRIORITY_QUEUE( KEY_GENERIC_TYPE[] refArray, int capacity, KEY_COMPARATOR KEY_SUPER_GENERIC c ) { super( refArray, capacity, c ); if ( capacity > 0 ) this.heap = new int[ capacity ]; this.c = c; this.inv = new int[ refArray.length ]; Arrays.fill( inv, -1 ); } /** Creates a new empty queue with a given capacity and using the natural order. * * @param refArray the reference array. * @param capacity the initial capacity of this queue. */ public HEAP_INDIRECT_PRIORITY_QUEUE( KEY_GENERIC_TYPE[] refArray, int capacity ) { this( refArray, capacity, null ); } /** Creates a new empty queue with capacity equal to the length of the reference array and a given comparator. * * @param refArray the reference array. * @param c the comparator used in this queue, or null for the natural order. */ public HEAP_INDIRECT_PRIORITY_QUEUE( KEY_GENERIC_TYPE[] refArray, KEY_COMPARATOR KEY_SUPER_GENERIC c ) { this( refArray, refArray.length, c ); } /** Creates a new empty queue with capacity equal to the length of the reference array and using the natural order. * @param refArray the reference array. */ public HEAP_INDIRECT_PRIORITY_QUEUE( KEY_GENERIC_TYPE[] refArray ) { this( refArray, refArray.length, null ); } /** Wraps a given array in a queue using a given comparator. * *

The queue returned by this method will be backed by the given array. * The first size element of the array will be rearranged so to form a heap (this is * more efficient than enqueing the elements of a one by one). * * @param refArray the reference array. * @param a an array of indices into refArray. * @param size the number of elements to be included in the queue. * @param c the comparator used in this queue, or null for the natural order. */ public HEAP_INDIRECT_PRIORITY_QUEUE( final KEY_GENERIC_TYPE[] refArray, final int[] a, final int size, final KEY_COMPARATOR KEY_SUPER_GENERIC c ) { this( refArray, 0, c ); this.heap = a; this.size = size; int i = size; while( i-- != 0 ) { if ( inv[ a[ i ] ] != -1 ) throw new IllegalArgumentException( "Index " + a[ i ] + " appears twice in the heap" ); inv[ a[ i ] ] = i; } INDIRECT_HEAPS.makeHeap( refArray, a, inv, size, c ); } /** Wraps a given array in a queue using a given comparator. * *

The queue returned by this method will be backed by the given array. * The elements of the array will be rearranged so to form a heap (this is * more efficient than enqueing the elements of a one by one). * * @param refArray the reference array. * @param a an array of indices into refArray. * @param c the comparator used in this queue, or null for the natural order. */ public HEAP_INDIRECT_PRIORITY_QUEUE( final KEY_GENERIC_TYPE[] refArray, final int[] a, final KEY_COMPARATOR KEY_SUPER_GENERIC c ) { this( refArray, a, a.length, c ); } /** Wraps a given array in a queue using the natural order. * *

The queue returned by this method will be backed by the given array. * The first size element of the array will be rearranged so to form a heap (this is * more efficient than enqueing the elements of a one by one). * * @param refArray the reference array. * @param a an array of indices into refArray. * @param size the number of elements to be included in the queue. */ public HEAP_INDIRECT_PRIORITY_QUEUE( final KEY_GENERIC_TYPE[] refArray, final int[] a, int size ) { this( refArray, a, size, null ); } /** Wraps a given array in a queue using the natural order. * *

The queue returned by this method will be backed by the given array. * The elements of the array will be rearranged so to form a heap (this is * more efficient than enqueing the elements of a one by one). * * @param refArray the reference array. * @param a an array of indices into refArray. */ public HEAP_INDIRECT_PRIORITY_QUEUE( final KEY_GENERIC_TYPE[] refArray, final int[] a ) { this( refArray, a, a.length ); } public void enqueue( final int x ) { if ( inv[ x ] >= 0 ) throw new IllegalArgumentException( "Index " + x + " belongs to the queue" ); if ( size == heap.length ) heap = IntArrays.grow( heap, size + 1 ); inv[ heap[ size ] = x ] = size++; INDIRECT_HEAPS.upHeap( refArray, heap, inv, size, size - 1, c ); } public boolean contains( final int index ) { return inv[ index ] >= 0; } public int dequeue() { if ( size == 0 ) throw new NoSuchElementException(); final int result = heap[ 0 ]; if ( --size != 0 ) inv[ heap[ 0 ] = heap[ size ] ] = 0; inv[ result ] = -1; if ( size != 0 ) INDIRECT_HEAPS.downHeap( refArray, heap, inv, size, 0, c ); return result; } public void changed() { INDIRECT_HEAPS.downHeap( refArray, heap, inv, size, 0, c ); } public void changed( final int index ) { final int pos = inv[ index ]; if ( pos < 0 ) throw new IllegalArgumentException( "Index " + index + " does not belong to the queue" ); final int newPos = INDIRECT_HEAPS.upHeap( refArray, heap, inv, size, pos, c ); INDIRECT_HEAPS.downHeap( refArray, heap, inv, size, newPos, c ); } /** Rebuilds this heap in a bottom-up fashion. */ public void allChanged() { INDIRECT_HEAPS.makeHeap( refArray, heap, inv, size, c ); } public boolean remove( final int index ) { final int result = inv[ index ]; if ( result < 0 ) return false; inv[ index ] = -1; if ( result < --size ) { inv[ heap[ result ] = heap[ size ] ] = result; final int newPos = INDIRECT_HEAPS.upHeap( refArray, heap, inv, size, result, c ); INDIRECT_HEAPS.downHeap( refArray, heap, inv, size, newPos, c ); } return true; } public void clear() { size = 0; Arrays.fill( inv, -1 ); } #ifdef TEST /** The original class, now just used for testing. */ private static class TestQueue { /** The reference array */ private KEY_TYPE refArray[]; /** Its length */ private int N; /** The number of elements in the heaps */ private int n; /** The two comparators */ private KEY_COMPARATOR primaryComp, secondaryComp; /** Two indirect heaps are used, called primary and secondary. Each of them contains a permutation of n among the indices 0, 1, ..., N-1 in such a way that the corresponding objects be sorted with respect to the two comparators. We also need an array inSec[] so that inSec[k] is the index of secondary containing k. */ private int primary[], secondary[], inSec[]; /** Builds a double indirect priority queue. * @param refArray The reference array. * @param primaryComp The primary comparator. * @param secondaryComp The secondary comparator. */ public TestQueue( KEY_TYPE refArray[], KEY_COMPARATOR primaryComp, KEY_COMPARATOR secondaryComp ) { this.refArray = refArray; this.N = refArray.length; assert this.N != 0; this.n = 0; this.primaryComp = primaryComp; this.secondaryComp = secondaryComp; this.primary = new int[N]; this.secondary = new int[N]; this.inSec = new int[N]; java.util.Arrays.fill( inSec, -1 ); } /** Adds an index to the queue. Notice that the index should not be already present in the queue. * @param i The index to be added */ public void add( int i ) { if ( i < 0 || i >= refArray.length ) throw new IndexOutOfBoundsException(); if ( inSec[ i ] >= 0 ) throw new IllegalArgumentException(); primary[n] = i; secondary[n] = i; inSec[i] = n; n++; swimPrimary( n-1 ); swimSecondary( n-1 ); } /** Heapify the primary heap. * @param i The index of the heap to be heapified. */ private void heapifyPrimary( int i ) { int dep = primary[i]; int child; while ( ( child = 2*i+1 ) < n ) { if ( child+1 < n && primaryComp.compare( refArray[primary[child+1]], refArray[primary[child]] ) < 0 ) child++; if ( primaryComp.compare( refArray[dep], refArray[primary[child]] ) <= 0 ) break; primary[i] = primary[child]; i = child; } primary[i] = dep; } /** Heapify the secondary heap. * @param i The index of the heap to be heapified. */ private void heapifySecondary( int i ) { int dep = secondary[i]; int child; while ( ( child = 2*i+1 ) < n ) { if ( child+1 < n && secondaryComp.compare( refArray[secondary[child+1]], refArray[secondary[child]] ) < 0 ) child++; if ( secondaryComp.compare( refArray[dep], refArray[secondary[child]] ) <= 0 ) break; secondary[i] = secondary[child]; inSec[secondary[i]] = i; i = child; } secondary[i] = dep; inSec[secondary[i]] = i; } /** Swim and heapify the primary heap. * @param i The index to be moved. */ private void swimPrimary( int i ) { int dep = primary[i]; int parent; while ( i != 0 && ( parent = ( i - 1 ) / 2 ) >= 0 ) { if ( primaryComp.compare( refArray[primary[parent]], refArray[dep] ) <= 0 ) break; primary[i] = primary[parent]; i = parent; } primary[i] = dep; heapifyPrimary( i ); } /** Swim and heapify the secondary heap. * @param i The index to be moved. */ private void swimSecondary( int i ) { int dep = secondary[i]; int parent; while ( i != 0 && ( parent = ( i - 1 ) / 2 ) >= 0 ) { if ( secondaryComp.compare( refArray[secondary[parent]], refArray[dep] ) <= 0 ) break; secondary[i] = secondary[parent]; inSec[secondary[i]] = i; i = parent; } secondary[i] = dep; inSec[secondary[i]] = i; heapifySecondary( i ); } /** Returns the minimum element with respect to the primary comparator. @return the minimum element. */ public int top() { if ( n == 0 ) throw new java.util.NoSuchElementException(); return primary[0]; } /** Returns the minimum element with respect to the secondary comparator. @return the minimum element. */ public int secTop() { if ( n == 0 ) throw new java.util.NoSuchElementException(); return secondary[0]; } /** Removes the minimum element with respect to the primary comparator. * @return the removed element. */ public boolean remove() { if ( n == 0 ) throw new java.util.NoSuchElementException(); if ( inSec[primary[0]] == -1 ) return false; int result = primary[0]; int ins = inSec[result]; inSec[ result ] = -1; // Copy a leaf primary[0] = primary[n-1]; if ( ins == n-1 ) { n--; heapifyPrimary( 0 ); return true; } secondary[ins] = secondary[n-1]; inSec[secondary[ins]] = ins; // Heapify n--; heapifyPrimary( 0 ); swimSecondary( ins ); return true; } public void clear() { while( size() != 0 ) remove(); } public void remove( int index ) { if ( index >= refArray.length ) throw new IndexOutOfBoundsException(); if ( inSec[index] == -1 ) return; int ins = inSec[index]; inSec[ index ] = -1; // Copy a leaf primary[ins] = primary[n-1]; if ( ins == n-1 ) { n--; swimPrimary( ins ); return; } secondary[ins] = secondary[n-1]; inSec[secondary[ins]] = ins; // Heapify n--; swimPrimary( ins ); swimSecondary( ins ); } /** Signals that the minimum element with respect to the comparator has changed. */ public void change() { if ( n == 0 ) throw new java.util.NoSuchElementException(); if ( inSec[primary[0]] == -1 ) throw new IllegalArgumentException(); int ins = inSec[primary[0]]; heapifyPrimary( 0 ); swimSecondary( ins ); } public void change(int index) { if ( index >= refArray.length ) throw new IndexOutOfBoundsException(); if ( inSec[index] == -1 ) throw new IllegalArgumentException(); if ( n == 0 ) throw new java.util.NoSuchElementException(); int ins = inSec[ index ]; swimPrimary( ins ); swimSecondary( ins ); } /** Returns the number of elements in the queue. * @return the size of the queue */ public int size() { return n; } public String toString() { String s = "["; for ( int i = 0; i < n; i++ ) s += refArray[primary[i]]+", "; return s+ "]"; } } private static long seed = System.currentTimeMillis(); private static java.util.Random r = new java.util.Random( seed ); private static KEY_TYPE genKey() { #if KEY_CLASS_Byte || KEY_CLASS_Short || KEY_CLASS_Character return (KEY_TYPE)(r.nextInt()); #elif KEYS_PRIMITIVE return r.NEXT_KEY(); #elif KEY_CLASS_Object return Integer.toBinaryString( r.nextInt() ); #else return new java.io.Serializable() {}; #endif } private static java.text.NumberFormat format = new java.text.DecimalFormat( "#,###.00" ); private static java.text.FieldPosition p = new java.text.FieldPosition( 0 ); private static String format( double d ) { StringBuffer s = new StringBuffer(); return format.format( d, s, p ).toString(); } private static void speedTest( int n, boolean comp ) { System.out.println( "There are presently no speed tests for this class." ); } private static void fatal( String msg ) { System.out.println( msg ); System.exit( 1 ); } private static void ensure( boolean cond, String msg ) { if ( cond ) return; fatal( msg ); } private static boolean heapEqual( int[] a, int[] b, int sizea, int sizeb ) { if ( sizea != sizeb ) return false; while( sizea-- != 0 ) if ( a[sizea] != b[sizea] ) return false; return true; } private static boolean invEqual( int inva[], int[] invb ) { int i = inva.length; while( i-- != 0 ) if ( inva[ i ] != invb[ i ] ) return false; return true; } protected static void test( int n ) { long ms; Exception mThrowsIllegal, tThrowsIllegal, mThrowsOutOfBounds, tThrowsOutOfBounds, mThrowsNoElement, tThrowsNoElement; int rm = 0, rt = 0; KEY_TYPE[] refArray = new KEY_TYPE[ n ]; for( int i = 0; i < n; i++ ) refArray[ i ] = genKey(); HEAP_INDIRECT_PRIORITY_QUEUE m = new HEAP_INDIRECT_PRIORITY_QUEUE( refArray, COMPARATORS.NATURAL_COMPARATOR ); TestQueue t = new TestQueue( refArray, COMPARATORS.NATURAL_COMPARATOR, COMPARATORS.NATURAL_COMPARATOR ); /* We add pairs to t. */ for( int i = 0; i < n / 2; i++ ) { t.add( i ); m.enqueue( i ); } ensure( heapEqual( m.heap, t.primary, m.size(), t.size() ), "Error (" + seed + "): m and t differ after creation (" + m + ", " + t + ")" ); ensure( invEqual( m.inv, t.inSec ), "Error (" + seed + "): m and t differ in inversion arrays after creation (" + java.util.Arrays.toString( m.inv ) + ", " + java.util.Arrays.toString( t.inSec ) + ")" ); /* Now we add and remove random data in m and t, checking that the result is the same. */ for(int i=0; i<2*n; i++ ) { if ( r.nextDouble() < 0.01 ) { t.clear(); m.clear(); for( int j = 0; j < n / 2; j++ ) { t.add( j ); m.enqueue( j ); } } int T = r.nextInt( 2 * n ); mThrowsNoElement = tThrowsNoElement = mThrowsOutOfBounds = tThrowsOutOfBounds = mThrowsIllegal = tThrowsIllegal = null; try { m.enqueue( T ); } catch ( IndexOutOfBoundsException e ) { mThrowsOutOfBounds = e; } catch ( IllegalArgumentException e ) { mThrowsIllegal = e; } try { t.add( T ); } catch ( IndexOutOfBoundsException e ) { tThrowsOutOfBounds = e; } catch ( IllegalArgumentException e ) { tThrowsIllegal = e; } ensure( ( mThrowsOutOfBounds == null ) == ( tThrowsOutOfBounds == null ), "Error (" + seed + "): enqueue() divergence in IndexOutOfBoundsException for " + T + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")" ); ensure( ( mThrowsIllegal == null ) == ( tThrowsIllegal == null ), "Error (" + seed + "): enqueue() divergence in IllegalArgumentException for " + T + " (" + mThrowsIllegal + ", " + tThrowsIllegal + ")" ); ensure( heapEqual( m.heap, t.primary, m.size(), t.size() ), "Error (" + seed + "): m and t differ after enqueue (" + m + ", " + t + ")" ); ensure( invEqual( m.inv, t.inSec ), "Error (" + seed + "): m and t differ in inversion arrays after enqueue (" + java.util.Arrays.toString( m.inv ) + ", " + java.util.Arrays.toString( t.inSec ) + ")" ); if ( m.size() != 0 ) { ensure( m.first() == t.top(), "Error (" + seed + "): m and t differ in first element after enqueue (" + m.first() + ", " + t.top() + ")"); } mThrowsNoElement = tThrowsNoElement = mThrowsOutOfBounds = tThrowsOutOfBounds = mThrowsIllegal = tThrowsIllegal = null; try { rm = m.dequeue(); } catch ( IndexOutOfBoundsException e ) { mThrowsOutOfBounds = e; } catch ( IllegalArgumentException e ) { mThrowsIllegal = e; } catch ( java.util.NoSuchElementException e ) { mThrowsNoElement = e; } try { rt = t.top(); t.remove(); } catch ( IndexOutOfBoundsException e ) { tThrowsOutOfBounds = e; } catch ( IllegalArgumentException e ) { tThrowsIllegal = e; } catch ( java.util.NoSuchElementException e ) { tThrowsNoElement = e; } ensure( ( mThrowsOutOfBounds == null ) == ( tThrowsOutOfBounds == null ), "Error (" + seed + "): dequeue() divergence in IndexOutOfBoundsException (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")" ); ensure( ( mThrowsIllegal == null ) == ( tThrowsIllegal == null ), "Error (" + seed + "): dequeue() divergence in IllegalArgumentException (" + mThrowsIllegal + ", " + tThrowsIllegal + ")" ); ensure( ( mThrowsNoElement == null ) == ( tThrowsNoElement == null ), "Error (" + seed + "): dequeue() divergence in java.util.NoSuchElementException (" + mThrowsNoElement + ", " + tThrowsNoElement + ")" ); if ( mThrowsOutOfBounds == null ) ensure( rt == rm , "Error (" + seed + "): divergence in dequeue() between t and m (" + rt + ", " + rm + ")" ); ensure( heapEqual( m.heap, t.primary, m.size(), t.size() ), "Error (" + seed + "): m and t differ after dequeue (" + m + ", " + t + ")" ); ensure( invEqual( m.inv, t.inSec ), "Error (" + seed + "): m and t differ in inversion arrays after dequeue (" + java.util.Arrays.toString( m.inv ) + ", " + java.util.Arrays.toString( t.inSec ) + ")" ); if ( m.size() != 0 ) { ensure( m.first() == t.top(), "Error (" + seed + "): m and t differ in first element after dequeue (" + m.first() + ", " + t.top() + ")"); } int pos = r.nextInt( n * 2 ); try { m.remove( pos ); } catch ( IndexOutOfBoundsException e ) { mThrowsOutOfBounds = e; } catch ( IllegalArgumentException e ) { mThrowsIllegal = e; } catch ( java.util.NoSuchElementException e ) { mThrowsNoElement = e; } try { t.remove( pos ); } catch ( IndexOutOfBoundsException e ) { tThrowsOutOfBounds = e; } catch ( IllegalArgumentException e ) { tThrowsIllegal = e; } catch ( java.util.NoSuchElementException e ) { tThrowsNoElement = e; } ensure( ( mThrowsOutOfBounds == null ) == ( tThrowsOutOfBounds == null ), "Error (" + seed + "): remove(int) divergence in IndexOutOfBoundsException (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")" ); ensure( ( mThrowsIllegal == null ) == ( tThrowsIllegal == null ), "Error (" + seed + "): remove(int) divergence in IllegalArgumentException (" + mThrowsIllegal + ", " + tThrowsIllegal + ")" ); ensure( ( mThrowsNoElement == null ) == ( tThrowsNoElement == null ), "Error (" + seed + "): remove(int) divergence in java.util.NoSuchElementException (" + mThrowsNoElement + ", " + tThrowsNoElement + ")" ); if ( mThrowsOutOfBounds == null ) ensure( rt == rm , "Error (" + seed + "): divergence in remove(int) between t and m (" + rt + ", " + rm + ")" ); ensure( heapEqual( m.heap, t.primary, m.size(), t.size() ), "Error (" + seed + "): m and t differ after remove(int) (" + m + ", " + t + ")" ); ensure( invEqual( m.inv, t.inSec ), "Error (" + seed + "): m and t differ in inversion arrays after remove(int) (" + java.util.Arrays.toString( m.inv ) + ", " + java.util.Arrays.toString( t.inSec ) + ")" ); if ( m.size() != 0 ) { ensure( m.first() == t.top(), "Error (" + seed + "): m and t differ in first element after remove(int) (" + m.first() + ", " + t.top() + ")"); } pos = r.nextInt( n * 2 ); try { m.changed( pos ); } catch ( IndexOutOfBoundsException e ) { mThrowsOutOfBounds = e; } catch ( IllegalArgumentException e ) { mThrowsIllegal = e; } catch ( java.util.NoSuchElementException e ) { mThrowsNoElement = e; } try { t.change( pos ); } catch ( IndexOutOfBoundsException e ) { tThrowsOutOfBounds = e; } catch ( IllegalArgumentException e ) { tThrowsIllegal = e; } catch ( java.util.NoSuchElementException e ) { tThrowsNoElement = e; } ensure( ( mThrowsOutOfBounds == null ) == ( tThrowsOutOfBounds == null ), "Error (" + seed + "): change(int) divergence in IndexOutOfBoundsException (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")" ); ensure( ( mThrowsIllegal == null ) == ( tThrowsIllegal == null ), "Error (" + seed + "): change(int) divergence in IllegalArgumentException (" + mThrowsIllegal + ", " + tThrowsIllegal + ")" ); ensure( ( mThrowsNoElement == null ) == ( tThrowsNoElement == null ), "Error (" + seed + "): change(int) divergence in java.util.NoSuchElementException (" + mThrowsNoElement + ", " + tThrowsNoElement + ")" ); if ( mThrowsOutOfBounds == null ) ensure( rt == rm , "Error (" + seed + "): divergence in change(int) between t and m (" + rt + ", " + rm + ")" ); ensure( heapEqual( m.heap, t.primary, m.size(), t.size() ), "Error (" + seed + "): m and t differ after change(int) (" + m + ", " + t + ")" ); ensure( invEqual( m.inv, t.inSec ), "Error (" + seed + "): m and t differ in inversion arrays after change(int) (" + java.util.Arrays.toString( m.inv ) + ", " + java.util.Arrays.toString( t.inSec ) + ")" ); if ( m.size() != 0 ) { ensure( m.first() == t.top(), "Error (" + seed + "): m and t differ in first element after change(int) (" + m.first() + ", " + t.top() + ")"); } if ( m.size() != 0 ) { refArray[ m.first() ] = genKey(); m.changed(); t.change(); ensure( heapEqual( m.heap, t.primary, m.size(), t.size() ), "Error (" + seed + "): m and t differ after change (" + m + ", " + t + ")" ); ensure( invEqual( m.inv, t.inSec ), "Error (" + seed + "): m and t differ in inversion arrays after change (" + java.util.Arrays.toString( m.inv ) + ", " + java.util.Arrays.toString( t.inSec ) + ")" ); if ( m.size() != 0 ) { ensure( m.first() == t.top(), "Error (" + seed + "): m and t differ in first element after change (" + m.first() + ", " + t.top() + ")"); } } } /* Now we check that m actually holds the same data. */ m.clear(); ensure( m.isEmpty(), "Error (" + seed + "): m is not empty after clear()" ); System.out.println("Test OK"); } public static void main( String args[] ) { int n = Integer.parseInt(args[1]); if ( args.length > 2 ) r = new java.util.Random( seed = Long.parseLong( args[ 2 ] ) ); try { if ("speedTest".equals(args[0]) || "speedComp".equals(args[0])) speedTest( n, "speedComp".equals(args[0]) ); else if ( "test".equals( args[0] ) ) test(n); } catch( Throwable e ) { e.printStackTrace( System.err ); System.err.println( "seed: " + seed ); } } #endif }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy