drv.LinkedOpenCustomHashMap.drv Maven / Gradle / Ivy
Show all versions of fastutil Show documentation
/*
* Copyright (C) 2002-2016 Sebastiano Vigna
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package PACKAGE;
import it.unimi.dsi.fastutil.Hash;
import it.unimi.dsi.fastutil.HashCommon;
import static it.unimi.dsi.fastutil.HashCommon.arraySize;
import static it.unimi.dsi.fastutil.HashCommon.maxFill;
import java.util.Map;
import java.util.Arrays;
import java.util.NoSuchElementException;
import VALUE_PACKAGE.VALUE_COLLECTION;
import VALUE_PACKAGE.VALUE_ABSTRACT_COLLECTION;
#if VALUES_PRIMITIVE || KEYS_PRIMITIVE && VALUE_CLASS_Object
import VALUE_PACKAGE.VALUE_ITERATOR;
#endif
#ifdef Linked
import java.util.Comparator;
#if VALUES_PRIMITIVE
import VALUE_PACKAGE.VALUE_LIST_ITERATOR;
#endif
#if KEYS_PRIMITIVE && VALUE_CLASS_Reference
import it.unimi.dsi.fastutil.objects.ObjectIterator;
#endif
import it.unimi.dsi.fastutil.objects.AbstractObjectSortedSet;
import it.unimi.dsi.fastutil.objects.ObjectListIterator;
import it.unimi.dsi.fastutil.objects.ObjectBidirectionalIterator;
import it.unimi.dsi.fastutil.objects.ObjectSortedSet;
#else
import it.unimi.dsi.fastutil.objects.AbstractObjectSet;
#if KEYS_PRIMITIVE && ! VALUE_CLASS_Object
import it.unimi.dsi.fastutil.objects.ObjectIterator;
#endif
#endif
#ifdef Linked
/** A type-specific linked hash map with with a fast, small-footprint implementation.
*
* Instances of this class use a hash table to represent a map. The table is
* filled up to a specified load factor, and then doubled in size to
* accommodate new entries. If the table is emptied below one fourth
* of the load factor, it is halved in size. However, halving is
* not performed when deleting entries from an iterator, as it would interfere
* with the iteration process.
*
*
Note that {@link #clear()} does not modify the hash table size.
* Rather, a family of {@linkplain #trim() trimming
* methods} lets you control the size of the table; this is particularly useful
* if you reuse instances of this class.
*
*
Iterators generated by this map will enumerate pairs in the same order in which they
* have been added to the map (addition of pairs whose key is already present
* in the set does not change the iteration order). Note that this order has nothing in common with the natural
* order of the keys. The order is kept by means of a doubly linked list, represented
* via an array of longs parallel to the table.
*
*
This class implements the interface of a sorted map, so to allow easy
* access of the iteration order: for instance, you can get the first key
* in iteration order with {@code firstKey()} without having to create an
* iterator; however, this class partially violates the {@link java.util.SortedMap}
* contract because all submap methods throw an exception and {@link
* #comparator()} returns always null
.
*
*
Additional methods, such as getAndMoveToFirst()
, make it easy
* to use instances of this class as a cache (e.g., with LRU policy).
*
*
The iterators provided by the views of this class using are type-specific
* {@linkplain java.util.ListIterator list iterators}, and can be started at any
* element which is a key of the map, or
* a {@link NoSuchElementException} exception will be thrown.
* If, however, the provided element is not the first or last key in the
* set, the first access to the list index will require linear time, as in the worst case
* the entire key set must be scanned in iteration order to retrieve the positional
* index of the starting key. If you use just the methods of a type-specific {@link it.unimi.dsi.fastutil.BidirectionalIterator},
* however, all operations will be performed in constant time.
*
* @see Hash
* @see HashCommon
*/
public class OPEN_HASH_MAP KEY_VALUE_GENERIC extends ABSTRACT_SORTED_MAP KEY_VALUE_GENERIC implements java.io.Serializable, Cloneable, Hash {
#else
#ifdef Custom
/** A type-specific hash map with a fast, small-footprint implementation whose {@linkplain it.unimi.dsi.fastutil.Hash.Strategy hashing strategy}
* is specified at creation time.
*
*
Instances of this class use a hash table to represent a map. The table is
* filled up to a specified load factor, and then doubled in size to
* accommodate new entries. If the table is emptied below one fourth
* of the load factor, it is halved in size. However, halving is
* not performed when deleting entries from an iterator, as it would interfere
* with the iteration process.
*
*
Note that {@link #clear()} does not modify the hash table size.
* Rather, a family of {@linkplain #trim() trimming
* methods} lets you control the size of the table; this is particularly useful
* if you reuse instances of this class.
*
* @see Hash
* @see HashCommon
*/
public class OPEN_HASH_MAP KEY_VALUE_GENERIC extends ABSTRACT_MAP KEY_VALUE_GENERIC implements java.io.Serializable, Cloneable, Hash {
#else
/** A type-specific hash map with a fast, small-footprint implementation.
*
*
Instances of this class use a hash table to represent a map. The table is
* filled up to a specified load factor, and then doubled in size to
* accommodate new entries. If the table is emptied below one fourth
* of the load factor, it is halved in size. However, halving is
* not performed when deleting entries from an iterator, as it would interfere
* with the iteration process.
*
*
Note that {@link #clear()} does not modify the hash table size.
* Rather, a family of {@linkplain #trim() trimming
* methods} lets you control the size of the table; this is particularly useful
* if you reuse instances of this class.
*
* @see Hash
* @see HashCommon
*/
public class OPEN_HASH_MAP KEY_VALUE_GENERIC extends ABSTRACT_MAP KEY_VALUE_GENERIC implements java.io.Serializable, Cloneable, Hash {
#endif
#endif
private static final long serialVersionUID = 0L;
private static final boolean ASSERTS = ASSERTS_VALUE;
/** The array of keys. */
protected transient KEY_GENERIC_TYPE[] key;
/** The array of values. */
protected transient VALUE_GENERIC_TYPE[] value;
/** The mask for wrapping a position counter. */
protected transient int mask;
/** Whether this set contains the key zero. */
protected transient boolean containsNullKey;
#ifdef Custom
/** The hash strategy of this custom map. */
protected STRATEGY KEY_GENERIC strategy;
#endif
#ifdef Linked
/** The index of the first entry in iteration order. It is valid iff {@link #size} is nonzero; otherwise, it contains -1. */
protected transient int first = -1;
/** The index of the last entry in iteration order. It is valid iff {@link #size} is nonzero; otherwise, it contains -1. */
protected transient int last = -1;
/** For each entry, the next and the previous entry in iteration order,
* stored as ((prev & 0xFFFFFFFFL) << 32) | (next & 0xFFFFFFFFL)
.
* The first entry contains predecessor -1, and the last entry
* contains successor -1. */
protected transient long[] link;
#endif
/** The current table size. */
protected transient int n;
/** Threshold after which we rehash. It must be the table size times {@link #f}. */
protected transient int maxFill;
/** Number of entries in the set (including the key zero, if present). */
protected int size;
/** The acceptable load factor. */
protected final float f;
#ifdef Linked
/** Cached set of entries. */
protected transient FastSortedEntrySet KEY_VALUE_GENERIC entries;
/** Cached set of keys. */
protected transient SORTED_SET KEY_GENERIC keys;
#else
/** Cached set of entries. */
protected transient FastEntrySet KEY_VALUE_GENERIC entries;
/** Cached set of keys. */
protected transient SET KEY_GENERIC keys;
#endif
/** Cached collection of values. */
protected transient VALUE_COLLECTION VALUE_GENERIC values;
#ifdef Custom
/** Creates a new hash map.
*
*
The actual table size will be the least power of two greater than expected
/f
.
*
* @param expected the expected number of elements in the hash set.
* @param f the load factor.
* @param strategy the strategy.
*/
SUPPRESS_WARNINGS_KEY_VALUE_UNCHECKED
public OPEN_HASH_MAP( final int expected, final float f, final STRATEGY KEY_GENERIC strategy ) {
this.strategy = strategy;
#else
/** Creates a new hash map.
*
*
The actual table size will be the least power of two greater than expected
/f
.
*
* @param expected the expected number of elements in the hash set.
* @param f the load factor.
*/
SUPPRESS_WARNINGS_KEY_VALUE_UNCHECKED
public OPEN_HASH_MAP( final int expected, final float f ) {
#endif
if ( f <= 0 || f > 1 ) throw new IllegalArgumentException( "Load factor must be greater than 0 and smaller than or equal to 1" );
if ( expected < 0 ) throw new IllegalArgumentException( "The expected number of elements must be nonnegative" );
this.f = f;
n = arraySize( expected, f );
mask = n - 1;
maxFill = maxFill( n, f );
key = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[ n + 1 ];
value = VALUE_GENERIC_ARRAY_CAST new VALUE_TYPE[ n + 1 ];
#ifdef Linked
link = new long[ n + 1 ];
#endif
}
#ifdef Custom
/** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor.
*
* @param expected the expected number of elements in the hash map.
* @param strategy the strategy.
*/
public OPEN_HASH_MAP( final int expected, final STRATEGY KEY_GENERIC strategy ) {
this( expected, DEFAULT_LOAD_FACTOR, strategy );
}
#else
/** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor.
*
* @param expected the expected number of elements in the hash map.
*/
public OPEN_HASH_MAP( final int expected ) {
this( expected, DEFAULT_LOAD_FACTOR );
}
#endif
#ifdef Custom
/** Creates a new hash map with initial expected {@link Hash#DEFAULT_INITIAL_SIZE} entries
* and {@link Hash#DEFAULT_LOAD_FACTOR} as load factor.
* @param strategy the strategy.
*/
public OPEN_HASH_MAP( final STRATEGY KEY_GENERIC strategy ) {
this( DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR, strategy );
}
#else
/** Creates a new hash map with initial expected {@link Hash#DEFAULT_INITIAL_SIZE} entries
* and {@link Hash#DEFAULT_LOAD_FACTOR} as load factor.
*/
public OPEN_HASH_MAP() {
this( DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR );
}
#endif
#ifdef Custom
/** Creates a new hash map copying a given one.
*
* @param m a {@link Map} to be copied into the new hash map.
* @param f the load factor.
* @param strategy the strategy.
*/
public OPEN_HASH_MAP( final Map extends KEY_GENERIC_CLASS, ? extends VALUE_GENERIC_CLASS> m, final float f, final STRATEGY KEY_GENERIC strategy ) {
this( m.size(), f, strategy );
putAll( m );
}
#else
/** Creates a new hash map copying a given one.
*
* @param m a {@link Map} to be copied into the new hash map.
* @param f the load factor.
*/
public OPEN_HASH_MAP( final Map extends KEY_GENERIC_CLASS, ? extends VALUE_GENERIC_CLASS> m, final float f ) {
this( m.size(), f );
putAll( m );
}
#endif
#ifdef Custom
/** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor copying a given one.
*
* @param m a {@link Map} to be copied into the new hash map.
* @param strategy the strategy.
*/
public OPEN_HASH_MAP( final Map extends KEY_GENERIC_CLASS, ? extends VALUE_GENERIC_CLASS> m, final STRATEGY KEY_GENERIC strategy ) {
this( m, DEFAULT_LOAD_FACTOR, strategy );
}
#else
/** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor copying a given one.
*
* @param m a {@link Map} to be copied into the new hash map.
*/
public OPEN_HASH_MAP( final Map extends KEY_GENERIC_CLASS, ? extends VALUE_GENERIC_CLASS> m ) {
this( m, DEFAULT_LOAD_FACTOR );
}
#endif
#ifdef Custom
/** Creates a new hash map copying a given type-specific one.
*
* @param m a type-specific map to be copied into the new hash map.
* @param f the load factor.
* @param strategy the strategy.
*/
public OPEN_HASH_MAP( final MAP KEY_VALUE_GENERIC m, final float f, final STRATEGY KEY_GENERIC strategy ) {
this( m.size(), f, strategy );
putAll( m );
}
#else
/** Creates a new hash map copying a given type-specific one.
*
* @param m a type-specific map to be copied into the new hash map.
* @param f the load factor.
*/
public OPEN_HASH_MAP( final MAP KEY_VALUE_GENERIC m, final float f ) {
this( m.size(), f );
putAll( m );
}
#endif
#ifdef Custom
/** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor copying a given type-specific one.
*
* @param m a type-specific map to be copied into the new hash map.
* @param strategy the strategy.
*/
public OPEN_HASH_MAP( final MAP KEY_VALUE_GENERIC m, final STRATEGY KEY_GENERIC strategy ) {
this( m, DEFAULT_LOAD_FACTOR, strategy );
}
#else
/** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor copying a given type-specific one.
*
* @param m a type-specific map to be copied into the new hash map.
*/
public OPEN_HASH_MAP( final MAP KEY_VALUE_GENERIC m ) {
this( m, DEFAULT_LOAD_FACTOR );
}
#endif
#ifdef Custom
/** Creates a new hash map using the elements of two parallel arrays.
*
* @param k the array of keys of the new hash map.
* @param v the array of corresponding values in the new hash map.
* @param f the load factor.
* @param strategy the strategy.
* @throws IllegalArgumentException if k
and v
have different lengths.
*/
public OPEN_HASH_MAP( final KEY_GENERIC_TYPE[] k, final VALUE_GENERIC_TYPE[] v, final float f, final STRATEGY KEY_GENERIC strategy ) {
this( k.length, f, strategy );
if ( k.length != v.length ) throw new IllegalArgumentException( "The key array and the value array have different lengths (" + k.length + " and " + v.length + ")" );
for( int i = 0; i < k.length; i++ ) this.put( k[ i ], v[ i ] );
}
#else
/** Creates a new hash map using the elements of two parallel arrays.
*
* @param k the array of keys of the new hash map.
* @param v the array of corresponding values in the new hash map.
* @param f the load factor.
* @throws IllegalArgumentException if k
and v
have different lengths.
*/
public OPEN_HASH_MAP( final KEY_GENERIC_TYPE[] k, final VALUE_GENERIC_TYPE[] v, final float f ) {
this( k.length, f );
if ( k.length != v.length ) throw new IllegalArgumentException( "The key array and the value array have different lengths (" + k.length + " and " + v.length + ")" );
for( int i = 0; i < k.length; i++ ) this.put( k[ i ], v[ i ] );
}
#endif
#ifdef Custom
/** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using the elements of two parallel arrays.
*
* @param k the array of keys of the new hash map.
* @param v the array of corresponding values in the new hash map.
* @param strategy the strategy.
* @throws IllegalArgumentException if k
and v
have different lengths.
*/
public OPEN_HASH_MAP( final KEY_GENERIC_TYPE[] k, final VALUE_GENERIC_TYPE[] v, final STRATEGY KEY_GENERIC strategy ) {
this( k, v, DEFAULT_LOAD_FACTOR, strategy );
}
#else
/** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using the elements of two parallel arrays.
*
* @param k the array of keys of the new hash map.
* @param v the array of corresponding values in the new hash map.
* @throws IllegalArgumentException if k
and v
have different lengths.
*/
public OPEN_HASH_MAP( final KEY_GENERIC_TYPE[] k, final VALUE_GENERIC_TYPE[] v ) {
this( k, v, DEFAULT_LOAD_FACTOR );
}
#endif
#ifdef Custom
/** Returns the hashing strategy.
*
* @return the hashing strategy of this custom hash map.
*/
public STRATEGY KEY_GENERIC strategy() {
return strategy;
}
#endif
private int realSize() {
return containsNullKey ? size - 1 : size;
}
private void ensureCapacity( final int capacity ) {
final int needed = arraySize( capacity, f );
if ( needed > n ) rehash( needed );
}
private void tryCapacity( final long capacity ) {
final int needed = (int)Math.min( 1 << 30, Math.max( 2, HashCommon.nextPowerOfTwo( (long)Math.ceil( capacity / f ) ) ) );
if ( needed > n ) rehash( needed );
}
private VALUE_GENERIC_TYPE removeEntry( final int pos ) {
final VALUE_GENERIC_TYPE oldValue = value[ pos ];
#if VALUES_REFERENCE
value[ pos ] = null;
#endif
size--;
#ifdef Linked
fixPointers( pos );
#endif
shiftKeys( pos );
if ( size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE ) rehash( n / 2 );
return oldValue;
}
private VALUE_GENERIC_TYPE removeNullEntry() {
containsNullKey = false;
#if KEYS_REFERENCE
key[ n ] = null;
#endif
final VALUE_GENERIC_TYPE oldValue = value[ n ];
#if VALUES_REFERENCE
value[ n ] = null;
#endif
size--;
#ifdef Linked
fixPointers( n );
#endif
if ( size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE ) rehash( n / 2 );
return oldValue;
}
/** {@inheritDoc} */
public void putAll(Map extends KEY_GENERIC_CLASS,? extends VALUE_GENERIC_CLASS> m) {
if ( f <= .5 ) ensureCapacity( m.size() ); // The resulting map will be sized for m.size() elements
else tryCapacity( size() + m.size() ); // The resulting map will be tentatively sized for size() + m.size() elements
super.putAll( m );
}
private int insert(final KEY_GENERIC_TYPE k, final VALUE_GENERIC_TYPE v) {
int pos;
if ( KEY_EQUALS_NULL( k ) ) {
if ( containsNullKey ) return n;
containsNullKey = true;
pos = n;
}
else {
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = this.key;
// The starting point.
if ( ! KEY_IS_NULL( curr = key[ pos = KEY2INTHASH( k ) & mask ] ) ) {
if ( KEY_EQUALS_NOT_NULL( curr, k ) ) return pos;
while( ! KEY_IS_NULL( curr = key[ pos = ( pos + 1 ) & mask ] ) )
if ( KEY_EQUALS_NOT_NULL( curr, k ) ) return pos;
}
}
key[ pos ] = k;
value[ pos ] = v;
#ifdef Linked
if ( size == 0 ) {
first = last = pos;
// Special case of SET_UPPER_LOWER( link[ pos ], -1, -1 );
link[ pos ] = -1L;
}
else {
SET_NEXT( link[ last ], pos );
SET_UPPER_LOWER( link[ pos ], last, -1 );
last = pos;
}
#endif
if ( size++ >= maxFill ) rehash( arraySize( size + 1, f ) );
if ( ASSERTS ) checkTable();
return -1;
}
public VALUE_GENERIC_TYPE put(final KEY_GENERIC_TYPE k, final VALUE_GENERIC_TYPE v) {
final int pos = insert( k, v );
if ( pos < 0 ) return defRetValue;
final VALUE_GENERIC_TYPE oldValue = value[ pos ];
value[ pos ] = v;
return oldValue;
}
#if VALUES_PRIMITIVE || KEYS_PRIMITIVE
/** {@inheritDoc}
* @deprecated Please use the corresponding type-specific method instead. */
@Deprecated
@Override
public VALUE_GENERIC_CLASS put( final KEY_GENERIC_CLASS ok, final VALUE_GENERIC_CLASS ov ) {
final VALUE_GENERIC_TYPE v = VALUE_CLASS2TYPE( ov );
final int pos = insert( KEY_CLASS2TYPE( ok ), v );
if ( pos < 0 ) return OBJECT_DEFAULT_RETURN_VALUE;
final VALUE_GENERIC_TYPE oldValue = value[ pos ];
value[ pos ] = v;
return VALUE2OBJ( oldValue );
}
#endif
#if VALUE_CLASS_Byte || VALUE_CLASS_Short || VALUE_CLASS_Char || VALUE_CLASS_Integer || VALUE_CLASS_Long || VALUE_CLASS_Float || VALUE_CLASS_Double
private VALUE_GENERIC_TYPE addToValue( final int pos, final VALUE_GENERIC_TYPE incr ) {
final VALUE_GENERIC_TYPE oldValue = value[ pos ];
#if VALUE_CLASS_Byte || VALUE_CLASS_Short || VALUE_CLASS_Char
value[ pos ] = (VALUE_TYPE)(oldValue + incr);
#else
value[ pos ] = oldValue + incr;
#endif
return oldValue;
}
/** Adds an increment to value currently associated with a key.
*
*
Note that this method respects the {@linkplain #defaultReturnValue() default return value} semantics: when
* called with a key that does not currently appears in the map, the key
* will be associated with the default return value plus
* the given increment.
*
* @param k the key.
* @param incr the increment.
* @return the old value, or the {@linkplain #defaultReturnValue() default return value} if no value was present for the given key.
*/
public VALUE_GENERIC_TYPE addTo(final KEY_GENERIC_TYPE k, final VALUE_GENERIC_TYPE incr) {
int pos;
if ( KEY_EQUALS_NULL( k ) ) {
if ( containsNullKey ) return addToValue( n, incr );
pos = n;
containsNullKey = true;
}
else {
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = this.key;
// The starting point.
if ( ! KEY_IS_NULL( curr = key[ pos = KEY2INTHASH( k ) & mask ] ) ) {
if ( KEY_EQUALS_NOT_NULL( curr, k ) ) return addToValue( pos, incr );
while( ! KEY_IS_NULL( curr = key[ pos = ( pos + 1 ) & mask ] ) )
if ( KEY_EQUALS_NOT_NULL( curr, k ) ) return addToValue( pos, incr );
}
}
key[ pos ] = k;
#if VALUE_CLASS_Byte || VALUE_CLASS_Short || VALUE_CLASS_Char
value[ pos ] = (VALUE_TYPE)(defRetValue + incr);
#else
value[ pos ] = defRetValue + incr;
#endif
#ifdef Linked
if ( size == 0 ) {
first = last = pos;
// Special case of SET_UPPER_LOWER( link[ pos ], -1, -1 );
link[ pos ] = -1L;
}
else {
SET_NEXT( link[ last ], pos );
SET_UPPER_LOWER( link[ pos ], last, -1 );
last = pos;
}
#endif
if ( size++ >= maxFill ) rehash( arraySize( size + 1, f ) );
if ( ASSERTS ) checkTable();
return defRetValue;
}
#endif
/** Shifts left entries with the specified hash code, starting at the specified position,
* and empties the resulting free entry.
*
* @param pos a starting position.
*/
protected final void shiftKeys( int pos ) {
// Shift entries with the same hash.
int last, slot;
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = this.key;
for(;;) {
pos = ( ( last = pos ) + 1 ) & mask;
for(;;) {
if ( KEY_IS_NULL( curr = key[ pos ] ) ) {
key[ last ] = KEY_NULL;
#if VALUES_REFERENCE
value[ last ] = null;
#endif
return;
}
slot = KEY2INTHASH( curr ) & mask;
if ( last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos ) break;
pos = ( pos + 1 ) & mask;
}
key[ last ] = curr;
value[ last ] = value[ pos ];
#ifdef Linked
fixPointers( pos, last );
#endif
}
}
SUPPRESS_WARNINGS_KEY_UNCHECKED
public VALUE_GENERIC_TYPE REMOVE_VALUE( final KEY_TYPE k ) {
if ( KEY_EQUALS_NULL( KEY_GENERIC_CAST k ) ) {
if ( containsNullKey ) return removeNullEntry();
return defRetValue;
}
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = this.key;
int pos;
// The starting point.
if ( KEY_IS_NULL( curr = key[ pos = KEY2INTHASH_CAST( k ) & mask ] ) ) return defRetValue;
if ( KEY_EQUALS_NOT_NULL_CAST( k, curr ) ) return removeEntry( pos );
while( true ) {
if ( KEY_IS_NULL( curr = key[ pos = ( pos + 1 ) & mask ] ) ) return defRetValue;
if ( KEY_EQUALS_NOT_NULL_CAST( k, curr ) ) return removeEntry( pos );
}
}
#if KEYS_PRIMITIVE || VALUES_PRIMITIVE
/** {@inheritDoc}
* @deprecated Please use the corresponding type-specific method instead. */
@Deprecated
@Override
SUPPRESS_WARNINGS_KEY_UNCHECKED
public VALUE_GENERIC_CLASS remove( final Object ok ) {
final KEY_GENERIC_TYPE k = KEY_GENERIC_CAST KEY_OBJ2TYPE( ok );
if ( KEY_EQUALS_NULL( k ) ) {
if ( containsNullKey ) return VALUE2OBJ( removeNullEntry() );
return OBJECT_DEFAULT_RETURN_VALUE;
}
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = this.key;
int pos;
// The starting point.
if ( KEY_IS_NULL( curr = key[ pos = KEY2INTHASH( k ) & mask ] ) ) return OBJECT_DEFAULT_RETURN_VALUE;
if ( KEY_EQUALS_NOT_NULL( curr, k ) ) return VALUE2OBJ( removeEntry( pos ) );
while( true ) {
if ( KEY_IS_NULL( curr = key[ pos = ( pos + 1 ) & mask ] ) ) return OBJECT_DEFAULT_RETURN_VALUE;
if ( KEY_EQUALS_NOT_NULL( curr, k ) ) return VALUE2OBJ( removeEntry( pos ) );
}
}
#endif
#ifdef Linked
private VALUE_GENERIC_TYPE setValue( final int pos, final VALUE_GENERIC_TYPE v ) {
final VALUE_GENERIC_TYPE oldValue = value[ pos ];
value[ pos ] = v;
return oldValue;
}
/** Removes the mapping associated with the first key in iteration order.
* @return the value previously associated with the first key in iteration order.
* @throws NoSuchElementException is this map is empty.
*/
public VALUE_GENERIC_TYPE REMOVE_FIRST_VALUE() {
if ( size == 0 ) throw new NoSuchElementException();
final int pos = first;
// Abbreviated version of fixPointers(pos)
first = GET_NEXT(link[ pos ]);
if ( 0 <= first ) {
// Special case of SET_PREV( link[ first ], -1 )
link[ first ] |= (-1 & 0xFFFFFFFFL) << 32;
}
size--;
final VALUE_GENERIC_TYPE v = value[ pos ];
if ( pos == n ) {
containsNullKey = false;
#if KEYS_REFERENCE
key[ n ] = null;
#endif
#if VALUES_REFERENCE
value[ n ] = null;
#endif
}
else shiftKeys( pos );
if ( size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE ) rehash( n / 2 );
return v;
}
/** Removes the mapping associated with the last key in iteration order.
* @return the value previously associated with the last key in iteration order.
* @throws NoSuchElementException is this map is empty.
*/
public VALUE_GENERIC_TYPE REMOVE_LAST_VALUE() {
if ( size == 0 ) throw new NoSuchElementException();
final int pos = last;
// Abbreviated version of fixPointers(pos)
last = GET_PREV(link[ pos ]);
if ( 0 <= last ) {
// Special case of SET_NEXT( link[ last ], -1 )
link[ last ] |= -1 & 0xFFFFFFFFL;
}
size--;
final VALUE_GENERIC_TYPE v = value[ pos ];
if ( pos == n ) {
containsNullKey = false;
#if KEYS_REFERENCE
key[ n ] = null;
#endif
#if VALUES_REFERENCE
value[ n ] = null;
#endif
}
else shiftKeys( pos );
if ( size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE ) rehash( n / 2 );
return v;
}
private void moveIndexToFirst( final int i ) {
if ( size == 1 || first == i ) return;
if ( last == i ) {
last = GET_PREV(link[ i ]);
// Special case of SET_NEXT( link[ last ], -1 );
link[ last ] |= -1 & 0xFFFFFFFFL;
}
else {
final long linki = link[ i ];
final int prev = GET_PREV(linki);
final int next = GET_NEXT(linki);
COPY_NEXT(link[ prev ], linki);
COPY_PREV(link[ next ], linki);
}
SET_PREV( link[ first ], i );
SET_UPPER_LOWER( link[ i ], -1, first );
first = i;
}
private void moveIndexToLast( final int i ) {
if ( size == 1 || last == i ) return;
if ( first == i ) {
first = GET_NEXT(link[ i ]);
// Special case of SET_PREV( link[ first ], -1 );
link[ first ] |= (-1 & 0xFFFFFFFFL) << 32;
}
else {
final long linki = link[ i ];
final int prev = GET_PREV(linki);
final int next = GET_NEXT(linki);
COPY_NEXT(link[ prev ], linki);
COPY_PREV(link[ next ], linki);
}
SET_NEXT( link[ last ], i );
SET_UPPER_LOWER( link[ i ], last, -1 );
last = i;
}
/** Returns the value to which the given key is mapped; if the key is present, it is moved to the first position of the iteration order.
*
* @param k the key.
* @return the corresponding value, or the {@linkplain #defaultReturnValue() default return value} if no value was present for the given key.
*/
public VALUE_GENERIC_TYPE getAndMoveToFirst( final KEY_GENERIC_TYPE k ) {
if ( KEY_EQUALS_NULL( k ) ) {
if ( containsNullKey ) {
moveIndexToFirst( n );
return value[ n ];
}
return defRetValue;
}
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = this.key;
int pos;
// The starting point.
if ( KEY_IS_NULL( curr = key[ pos = KEY2INTHASH( k ) & mask ] ) ) return defRetValue;
if ( KEY_EQUALS_NOT_NULL( k, curr ) ) {
moveIndexToFirst( pos );
return value[ pos ];
}
// There's always an unused entry.
while( true ) {
if ( KEY_IS_NULL( curr = key[ pos = ( pos + 1 ) & mask ] ) ) return defRetValue;
if ( KEY_EQUALS_NOT_NULL( k, curr ) ) {
moveIndexToFirst( pos );
return value[ pos ];
}
}
}
/** Returns the value to which the given key is mapped; if the key is present, it is moved to the last position of the iteration order.
*
* @param k the key.
* @return the corresponding value, or the {@linkplain #defaultReturnValue() default return value} if no value was present for the given key.
*/
public VALUE_GENERIC_TYPE getAndMoveToLast( final KEY_GENERIC_TYPE k ) {
if ( KEY_EQUALS_NULL( k ) ) {
if ( containsNullKey ) {
moveIndexToLast( n );
return value[ n ];
}
return defRetValue;
}
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = this.key;
int pos;
// The starting point.
if ( KEY_IS_NULL( curr = key[ pos = KEY2INTHASH( k ) & mask ] ) ) return defRetValue;
if ( KEY_EQUALS_NOT_NULL( k, curr ) ) {
moveIndexToLast( pos );
return value[ pos ];
}
// There's always an unused entry.
while( true ) {
if ( KEY_IS_NULL( curr = key[ pos = ( pos + 1 ) & mask ] ) ) return defRetValue;
if ( KEY_EQUALS_NOT_NULL( k, curr ) ) {
moveIndexToLast( pos );
return value[ pos ];
}
}
}
/** Adds a pair to the map; if the key is already present, it is moved to the first position of the iteration order.
*
* @param k the key.
* @param v the value.
* @return the old value, or the {@linkplain #defaultReturnValue() default return value} if no value was present for the given key.
*/
public VALUE_GENERIC_TYPE putAndMoveToFirst( final KEY_GENERIC_TYPE k, final VALUE_GENERIC_TYPE v ) {
int pos;
if ( KEY_EQUALS_NULL( k ) ) {
if ( containsNullKey ) {
moveIndexToFirst( n );
return setValue( n, v );
}
containsNullKey = true;
pos = n;
}
else {
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = this.key;
// The starting point.
if ( ! KEY_IS_NULL( curr = key[ pos = KEY2INTHASH( k ) & mask ] ) ) {
if ( KEY_EQUALS_NOT_NULL( curr, k ) ) {
moveIndexToFirst( pos );
return setValue( pos, v );
}
while( ! KEY_IS_NULL( curr = key[ pos = ( pos + 1 ) & mask ] ) )
if ( KEY_EQUALS_NOT_NULL( curr, k ) ) {
moveIndexToFirst( pos );
return setValue( pos, v );
}
}
}
key[ pos ] = k;
value[ pos ] = v;
if ( size == 0 ) {
first = last = pos;
// Special case of SET_UPPER_LOWER( link[ pos ], -1, -1 );
link[ pos ] = -1L;
}
else {
SET_PREV( link[ first ], pos );
SET_UPPER_LOWER( link[ pos ], -1, first );
first = pos;
}
if ( size++ >= maxFill ) rehash( arraySize( size, f ) );
if ( ASSERTS ) checkTable();
return defRetValue;
}
/** Adds a pair to the map; if the key is already present, it is moved to the last position of the iteration order.
*
* @param k the key.
* @param v the value.
* @return the old value, or the {@linkplain #defaultReturnValue() default return value} if no value was present for the given key.
*/
public VALUE_GENERIC_TYPE putAndMoveToLast( final KEY_GENERIC_TYPE k, final VALUE_GENERIC_TYPE v ) {
int pos;
if ( KEY_EQUALS_NULL( k ) ) {
if ( containsNullKey ) {
moveIndexToLast( n );
return setValue( n, v );
}
containsNullKey = true;
pos = n;
}
else {
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = this.key;
// The starting point.
if ( ! KEY_IS_NULL( curr = key[ pos = KEY2INTHASH( k ) & mask ] ) ) {
if ( KEY_EQUALS_NOT_NULL( curr, k ) ) {
moveIndexToLast( pos );
return setValue( pos, v );
}
while( ! KEY_IS_NULL( curr = key[ pos = ( pos + 1 ) & mask ] ) )
if ( KEY_EQUALS_NOT_NULL( curr, k ) ) {
moveIndexToLast( pos );
return setValue( pos, v );
}
}
}
key[ pos ] = k;
value[ pos ] = v;
if ( size == 0 ) {
first = last = pos;
// Special case of SET_UPPER_LOWER( link[ pos ], -1, -1 );
link[ pos ] = -1L;
}
else {
SET_NEXT( link[ last ], pos );
SET_UPPER_LOWER( link[ pos ], last, -1 );
last = pos;
}
if ( size++ >= maxFill ) rehash( arraySize( size, f ) );
if ( ASSERTS ) checkTable();
return defRetValue;
}
#endif
#if KEYS_PRIMITIVE
/** @deprecated Please use the corresponding type-specific method instead. */
@Deprecated
public VALUE_GENERIC_CLASS get( final KEY_CLASS ok ) {
if ( ok == null ) return null;
final KEY_GENERIC_TYPE k = KEY_CLASS2TYPE( ok );
if ( KEY_EQUALS_NULL( k ) ) return containsNullKey ? VALUE2OBJ( value[ n ] ) : OBJECT_DEFAULT_RETURN_VALUE;
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = this.key;
int pos;
// The starting point.
if ( KEY_IS_NULL( curr = key[ pos = KEY2INTHASH( k ) & mask ] ) ) return OBJECT_DEFAULT_RETURN_VALUE;
if ( KEY_EQUALS_NOT_NULL( k, curr ) ) return VALUE2OBJ( value[ pos ] );
// There's always an unused entry.
while( true ) {
if ( KEY_IS_NULL( curr = key[ pos = ( pos + 1 ) & mask ] ) ) return OBJECT_DEFAULT_RETURN_VALUE;
if ( KEY_EQUALS_NOT_NULL( k, curr ) ) return VALUE2OBJ( value[ pos ] );
}
}
#endif
SUPPRESS_WARNINGS_KEY_UNCHECKED
public VALUE_GENERIC_TYPE GET_VALUE( final KEY_TYPE k ) {
if ( KEY_EQUALS_NULL( KEY_GENERIC_CAST k ) ) return containsNullKey ? value[ n ] : defRetValue;
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = this.key;
int pos;
// The starting point.
if ( KEY_IS_NULL( curr = key[ pos = KEY2INTHASH_CAST( k ) & mask ] ) ) return defRetValue;
if ( KEY_EQUALS_NOT_NULL_CAST( k, curr ) ) return value[ pos ];
// There's always an unused entry.
while( true ) {
if ( KEY_IS_NULL( curr = key[ pos = ( pos + 1 ) & mask ] ) ) return defRetValue;
if ( KEY_EQUALS_NOT_NULL_CAST( k, curr ) ) return value[ pos ];
}
}
SUPPRESS_WARNINGS_KEY_UNCHECKED
public boolean containsKey( final KEY_TYPE k ) {
if ( KEY_EQUALS_NULL( KEY_GENERIC_CAST k ) ) return containsNullKey;
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = this.key;
int pos;
// The starting point.
if ( KEY_IS_NULL( curr = key[ pos = KEY2INTHASH_CAST( k ) & mask ] ) ) return false;
if ( KEY_EQUALS_NOT_NULL_CAST( k, curr ) ) return true;
// There's always an unused entry.
while( true ) {
if ( KEY_IS_NULL( curr = key[ pos = ( pos + 1 ) & mask ] ) ) return false;
if ( KEY_EQUALS_NOT_NULL_CAST( k, curr ) ) return true;
}
}
public boolean containsValue( final VALUE_TYPE v ) {
final VALUE_GENERIC_TYPE value[] = this.value;
final KEY_GENERIC_TYPE key[] = this.key;
if ( containsNullKey && VALUE_EQUALS( value[ n ], v ) ) return true;
for( int i = n; i-- != 0; ) if ( ! KEY_IS_NULL( key[ i ] ) && VALUE_EQUALS( value[ i ], v ) ) return true;
return false;
}
/* Removes all elements from this map.
*
*
To increase object reuse, this method does not change the table size.
* If you want to reduce the table size, you must use {@link #trim()}.
*
*/
public void clear() {
if ( size == 0 ) return;
size = 0;
containsNullKey = false;
Arrays.fill( key, KEY_NULL );
#if VALUES_REFERENCE
Arrays.fill( value, null );
#endif
#ifdef Linked
first = last = -1;
#endif
}
public int size() {
return size;
}
public boolean isEmpty() {
return size == 0;
}
/** A no-op for backward compatibility.
*
* @param growthFactor unused.
* @deprecated Since fastutil
6.1.0, hash tables are doubled when they are too full.
*/
@Deprecated
public void growthFactor( int growthFactor ) {}
/** Gets the growth factor (2).
*
* @return the growth factor of this set, which is fixed (2).
* @see #growthFactor(int)
* @deprecated Since fastutil
6.1.0, hash tables are doubled when they are too full.
*/
@Deprecated
public int growthFactor() {
return 16;
}
/** The entry class for a hash map does not record key and value, but
* rather the position in the hash table of the corresponding entry. This
* is necessary so that calls to {@link java.util.Map.Entry#setValue(Object)} are reflected in
* the map */
final class MapEntry implements MAP.Entry KEY_VALUE_GENERIC, Map.Entry {
// The table index this entry refers to, or -1 if this entry has been deleted.
int index;
MapEntry( final int index ) {
this.index = index;
}
MapEntry() {}
#if KEYS_PRIMITIVE
/** {@inheritDoc}
* @deprecated Please use the corresponding type-specific method instead. */
@Deprecated
#endif
public KEY_GENERIC_CLASS getKey() {
return KEY2OBJ( key[ index ] );
}
#if KEYS_PRIMITIVE
public KEY_TYPE ENTRY_GET_KEY() {
return key[ index ];
}
#endif
#if VALUES_PRIMITIVE
/** {@inheritDoc}
* @deprecated Please use the corresponding type-specific method instead. */
@Deprecated
#endif
public VALUE_GENERIC_CLASS getValue() {
return VALUE2OBJ( value[ index ] );
}
#if VALUES_PRIMITIVE
public VALUE_GENERIC_TYPE ENTRY_GET_VALUE() {
return value[ index ];
}
#endif
public VALUE_GENERIC_TYPE setValue( final VALUE_GENERIC_TYPE v ) {
final VALUE_GENERIC_TYPE oldValue = value[ index ];
value[ index ] = v;
return oldValue;
}
#if VALUES_PRIMITIVE
public VALUE_GENERIC_CLASS setValue( final VALUE_GENERIC_CLASS v ) {
return VALUE2OBJ( setValue( VALUE_CLASS2TYPE( v ) ) );
}
#endif
@SuppressWarnings("unchecked")
public boolean equals( final Object o ) {
if (!(o instanceof Map.Entry)) return false;
Map.Entry e = (Map.Entry)o;
return KEY_EQUALS( key[ index ], KEY_CLASS2TYPE( e.getKey() ) ) && VALUE_EQUALS( value[ index ], VALUE_CLASS2TYPE( e.getValue() ) );
}
public int hashCode() {
return KEY2JAVAHASH( key[ index ] ) ^ VALUE2JAVAHASH( value[ index ] );
}
public String toString() {
return key[ index ] + "=>" + value[ index ];
}
}
#ifdef Linked
/** Modifies the {@link #link} vector so that the given entry is removed.
* This method will complete in constant time.
*
* @param i the index of an entry.
*/
protected void fixPointers( final int i ) {
if ( size == 0 ) {
first = last = -1;
return;
}
if ( first == i ) {
first = GET_NEXT(link[ i ]);
if (0 <= first) {
// Special case of SET_PREV( link[ first ], -1 )
link[ first ] |= (-1 & 0xFFFFFFFFL) << 32;
}
return;
}
if ( last == i ) {
last = GET_PREV(link[ i ]);
if (0 <= last) {
// Special case of SET_NEXT( link[ last ], -1 )
link[ last ] |= -1 & 0xFFFFFFFFL;
}
return;
}
final long linki = link[ i ];
final int prev = GET_PREV(linki);
final int next = GET_NEXT(linki);
COPY_NEXT(link[ prev ], linki);
COPY_PREV(link[ next ], linki);
}
/** Modifies the {@link #link} vector for a shift from s to d.
* This method will complete in constant time.
*
* @param s the source position.
* @param d the destination position.
*/
protected void fixPointers( int s, int d ) {
if ( size == 1 ) {
first = last = d;
// Special case of SET_UPPER_LOWER( link[ d ], -1, -1 )
link[ d ] = -1L;
return;
}
if ( first == s ) {
first = d;
SET_PREV( link[ GET_NEXT(link[ s ]) ], d );
link[ d ] = link[ s ];
return;
}
if ( last == s ) {
last = d;
SET_NEXT( link[ GET_PREV(link[ s ])], d );
link[ d ] = link[ s ];
return;
}
final long links = link[ s ];
final int prev = GET_PREV(links);
final int next = GET_NEXT(links);
SET_NEXT( link[ prev ], d );
SET_PREV( link[ next ], d );
link[ d ] = links;
}
/** Returns the first key of this map in iteration order.
*
* @return the first key in iteration order.
*/
public KEY_GENERIC_TYPE FIRST_KEY() {
if ( size == 0 ) throw new NoSuchElementException();
return key[ first ];
}
/** Returns the last key of this map in iteration order.
*
* @return the last key in iteration order.
*/
public KEY_GENERIC_TYPE LAST_KEY() {
if ( size == 0 ) throw new NoSuchElementException();
return key[ last ];
}
public KEY_COMPARATOR KEY_SUPER_GENERIC comparator() { return null; }
public SORTED_MAP KEY_VALUE_GENERIC tailMap( KEY_GENERIC_TYPE from ) { throw new UnsupportedOperationException(); }
public SORTED_MAP KEY_VALUE_GENERIC headMap( KEY_GENERIC_TYPE to ) { throw new UnsupportedOperationException(); }
public SORTED_MAP KEY_VALUE_GENERIC subMap( KEY_GENERIC_TYPE from, KEY_GENERIC_TYPE to ) { throw new UnsupportedOperationException(); }
/** A list iterator over a linked map.
*
*
This class provides a list iterator over a linked hash map. The constructor runs in constant time.
*/
private class MapIterator {
/** The entry that will be returned by the next call to {@link java.util.ListIterator#previous()} (or null
if no previous entry exists). */
int prev = -1;
/** The entry that will be returned by the next call to {@link java.util.ListIterator#next()} (or null
if no next entry exists). */
int next = -1;
/** The last entry that was returned (or -1 if we did not iterate or used {@link java.util.Iterator#remove()}). */
int curr = -1;
/** The current index (in the sense of a {@link java.util.ListIterator}). Note that this value is not meaningful when this iterator has been created using the nonempty constructor.*/
int index = -1;
private MapIterator() {
next = first;
index = 0;
}
private MapIterator( final KEY_GENERIC_TYPE from ) {
if ( KEY_EQUALS_NULL( from ) ) {
if ( OPEN_HASH_MAP.this.containsNullKey ) {
next = GET_NEXT( link[ n ] );
prev = n;
return;
}
else throw new NoSuchElementException( "The key " + from + " does not belong to this map." );
}
if ( KEY_EQUALS( key[ last ], from ) ) {
prev = last;
index = size;
return;
}
// The starting point.
int pos = KEY2INTHASH( from ) & mask;
// There's always an unused entry.
while( ! KEY_IS_NULL( key[ pos ] ) ) {
if ( KEY_EQUALS_NOT_NULL( key[ pos ], from ) ) {
// Note: no valid index known.
next = GET_NEXT( link[ pos ] );
prev = pos;
return;
}
pos = ( pos + 1 ) & mask;
}
throw new NoSuchElementException( "The key " + from + " does not belong to this map." );
}
public boolean hasNext() { return next != -1; }
public boolean hasPrevious() { return prev != -1; }
private final void ensureIndexKnown() {
if ( index >= 0 ) return;
if ( prev == -1 ) {
index = 0;
return;
}
if ( next == -1 ) {
index = size;
return;
}
int pos = first;
index = 1;
while( pos != prev ) {
pos = GET_NEXT( link[ pos ] );
index++;
}
}
public int nextIndex() {
ensureIndexKnown();
return index;
}
public int previousIndex() {
ensureIndexKnown();
return index - 1;
}
public int nextEntry() {
if ( ! hasNext() ) throw new NoSuchElementException();
curr = next;
next = GET_NEXT(link[ curr ]);
prev = curr;
if ( index >= 0 ) index++;
return curr;
}
public int previousEntry() {
if ( ! hasPrevious() ) throw new NoSuchElementException();
curr = prev;
prev = GET_PREV(link[ curr ]);
next = curr;
if ( index >= 0 ) index--;
return curr;
}
public void remove() {
ensureIndexKnown();
if ( curr == -1 ) throw new IllegalStateException();
if ( curr == prev ) {
/* If the last operation was a next(), we are removing an entry that preceeds
the current index, and thus we must decrement it. */
index--;
prev = GET_PREV(link[ curr ]);
}
else
next = GET_NEXT(link[ curr ]);
size--;
/* Now we manually fix the pointers. Because of our knowledge of next
and prev, this is going to be faster than calling fixPointers(). */
if ( prev == -1 ) first = next;
else
SET_NEXT( link[ prev ], next );
if ( next == -1 ) last = prev;
else
SET_PREV( link[ next ], prev );
int last, slot, pos = curr;
curr = -1;
if ( pos == n ) {
OPEN_HASH_MAP.this.containsNullKey = false;
#if KEYS_REFERENCE
key[ n ] = null;
#endif
#if VALUES_REFERENCE
value[ n ] = null;
#endif
}
else {
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = OPEN_HASH_MAP.this.key;
// We have to horribly duplicate the shiftKeys() code because we need to update next/prev.
for(;;) {
pos = ( ( last = pos ) + 1 ) & mask;
for(;;) {
if ( KEY_IS_NULL( curr = key[ pos ] ) ) {
key[ last ] = KEY_NULL;
#if VALUES_REFERENCE
value[ last ] = null;
#endif
return;
}
slot = KEY2INTHASH( curr ) & mask;
if ( last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos ) break;
pos = ( pos + 1 ) & mask;
}
key[ last ] = curr;
value[ last ] = value[ pos ];
if ( next == pos ) next = last;
if ( prev == pos ) prev = last;
fixPointers( pos, last );
}
}
}
public int skip( final int n ) {
int i = n;
while( i-- != 0 && hasNext() ) nextEntry();
return n - i - 1;
}
public int back( final int n ) {
int i = n;
while( i-- != 0 && hasPrevious() ) previousEntry();
return n - i - 1;
}
}
private class EntryIterator extends MapIterator implements ObjectListIterator {
private MapEntry entry;
public EntryIterator() {}
public EntryIterator( KEY_GENERIC_TYPE from ) {
super( from );
}
public MapEntry next() {
return entry = new MapEntry( nextEntry() );
}
public MapEntry previous() {
return entry = new MapEntry( previousEntry() );
}
@Override
public void remove() {
super.remove();
entry.index = -1; // You cannot use a deleted entry.
}
public void set( MAP.Entry KEY_VALUE_GENERIC ok ) { throw new UnsupportedOperationException(); }
public void add( MAP.Entry KEY_VALUE_GENERIC ok ) { throw new UnsupportedOperationException(); }
}
private class FastEntryIterator extends MapIterator implements ObjectListIterator {
final MapEntry entry = new MapEntry();
public FastEntryIterator() {}
public FastEntryIterator( KEY_GENERIC_TYPE from ) {
super( from );
}
public MapEntry next() {
entry.index = nextEntry();
return entry;
}
public MapEntry previous() {
entry.index = previousEntry();
return entry;
}
public void set( MAP.Entry KEY_VALUE_GENERIC ok ) { throw new UnsupportedOperationException(); }
public void add( MAP.Entry KEY_VALUE_GENERIC ok ) { throw new UnsupportedOperationException(); }
}
#else
/** An iterator over a hash map. */
private class MapIterator {
/** The index of the last entry returned, if positive or zero; initially, {@link #n}. If negative, the last
entry returned was that of the key of index {@code - pos - 1} from the {@link #wrapped} list. */
int pos = n;
/** The index of the last entry that has been returned (more precisely, the value of {@link #pos} if {@link #pos} is positive,
or {@link Integer#MIN_VALUE} if {@link #pos} is negative). It is -1 if either
we did not return an entry yet, or the last returned entry has been removed. */
int last = -1;
/** A downward counter measuring how many entries must still be returned. */
int c = size;
/** A boolean telling us whether we should return the entry with the null key. */
boolean mustReturnNullKey = OPEN_HASH_MAP.this.containsNullKey;
/** A lazily allocated list containing keys of entries that have wrapped around the table because of removals. */
ARRAY_LIST KEY_GENERIC wrapped;
public boolean hasNext() {
return c != 0;
}
public int nextEntry() {
if ( ! hasNext() ) throw new NoSuchElementException();
c--;
if ( mustReturnNullKey ) {
mustReturnNullKey = false;
return last = n;
}
final KEY_GENERIC_TYPE key[] = OPEN_HASH_MAP.this.key;
for(;;) {
if ( --pos < 0 ) {
// We are just enumerating elements from the wrapped list.
last = Integer.MIN_VALUE;
final KEY_GENERIC_TYPE k = wrapped.GET_KEY( - pos - 1 );
int p = KEY2INTHASH( k ) & mask;
while ( ! KEY_EQUALS_NOT_NULL( k, key[ p ] ) ) p = ( p + 1 ) & mask;
return p;
}
if ( ! KEY_IS_NULL( key[ pos ] ) ) return last = pos;
}
}
/** Shifts left entries with the specified hash code, starting at the specified position,
* and empties the resulting free entry.
*
* @param pos a starting position.
*/
private final void shiftKeys( int pos ) {
// Shift entries with the same hash.
int last, slot;
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = OPEN_HASH_MAP.this.key;
for(;;) {
pos = ( ( last = pos ) + 1 ) & mask;
for(;;) {
if ( KEY_IS_NULL( curr = key[ pos ] ) ) {
key[ last ] = KEY_NULL;
#if VALUES_REFERENCE
value[ last ] = null;
#endif
return;
}
slot = KEY2INTHASH( curr ) & mask;
if ( last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos ) break;
pos = ( pos + 1 ) & mask;
}
if ( pos < last ) { // Wrapped entry.
if ( wrapped == null ) wrapped = new ARRAY_LIST KEY_GENERIC( 2 );
wrapped.add( key[ pos ] );
}
key[ last ] = curr;
value[ last ] = value[ pos ];
}
}
public void remove() {
if ( last == -1 ) throw new IllegalStateException();
if ( last == n ) {
containsNullKey = false;
#if KEYS_REFERENCE
key[ n ] = null;
#endif
#if VALUES_REFERENCE
value[ n ] = null;
#endif
}
else if ( pos >= 0 ) shiftKeys( last );
else {
// We're removing wrapped entries.
#if KEYS_REFERENCE
OPEN_HASH_MAP.this.remove( wrapped.set( - pos - 1, null ) );
#else
OPEN_HASH_MAP.this.remove( wrapped.GET_KEY( - pos - 1 ) );
#endif
last = -1; // Note that we must not decrement size
return;
}
size--;
last = -1; // You can no longer remove this entry.
if ( ASSERTS ) checkTable();
}
public int skip( final int n ) {
int i = n;
while( i-- != 0 && hasNext() ) nextEntry();
return n - i - 1;
}
}
private class EntryIterator extends MapIterator implements ObjectIterator {
private MapEntry entry;
public MAP.Entry KEY_VALUE_GENERIC next() {
return entry = new MapEntry( nextEntry() );
}
@Override
public void remove() {
super.remove();
entry.index = -1; // You cannot use a deleted entry.
}
}
private class FastEntryIterator extends MapIterator implements ObjectIterator {
private final MapEntry entry = new MapEntry();
public MapEntry next() {
entry.index = nextEntry();
return entry;
}
}
#endif
#ifdef Linked
private final class MapEntrySet extends AbstractObjectSortedSet implements FastSortedEntrySet KEY_VALUE_GENERIC {
public ObjectBidirectionalIterator iterator() {
return new EntryIterator();
}
public Comparator super MAP.Entry KEY_VALUE_GENERIC> comparator() { return null; }
public ObjectSortedSet subSet( MAP.Entry KEY_VALUE_GENERIC fromElement, MAP.Entry KEY_VALUE_GENERIC toElement) { throw new UnsupportedOperationException(); }
public ObjectSortedSet headSet( MAP.Entry KEY_VALUE_GENERIC toElement ) { throw new UnsupportedOperationException(); }
public ObjectSortedSet tailSet( MAP.Entry KEY_VALUE_GENERIC fromElement ) { throw new UnsupportedOperationException(); }
public MAP.Entry KEY_VALUE_GENERIC first() {
if ( size == 0 ) throw new NoSuchElementException();
return new MapEntry( OPEN_HASH_MAP.this.first );
}
public MAP.Entry KEY_VALUE_GENERIC last() {
if ( size == 0 ) throw new NoSuchElementException();
return new MapEntry( OPEN_HASH_MAP.this.last );
}
#else
private final class MapEntrySet extends AbstractObjectSet implements FastEntrySet KEY_VALUE_GENERIC {
public ObjectIterator iterator() {
return new EntryIterator();
}
public ObjectIterator fastIterator() {
return new FastEntryIterator();
}
#endif
SUPPRESS_WARNINGS_KEY_VALUE_UNCHECKED
public boolean contains( final Object o ) {
if ( !( o instanceof Map.Entry ) ) return false;
final Map.Entry,?> e = (Map.Entry,?>)o;
#if KEYS_PRIMITIVE
if (e.getKey() == null || ! (e.getKey() instanceof KEY_CLASS)) return false;
#endif
#if VALUES_PRIMITIVE
if (e.getValue() == null || ! (e.getValue() instanceof VALUE_CLASS)) return false;
#endif
final KEY_GENERIC_TYPE k = KEY_OBJ2TYPE( KEY_GENERIC_CAST e.getKey() );
final VALUE_GENERIC_TYPE v = VALUE_OBJ2TYPE( VALUE_GENERIC_CAST e.getValue() );
if ( KEY_EQUALS_NULL( k ) ) return OPEN_HASH_MAP.this.containsNullKey && VALUE_EQUALS( value[ n ], v );
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = OPEN_HASH_MAP.this.key;
int pos;
// The starting point.
if ( KEY_IS_NULL( curr = key[ pos = KEY2INTHASH( k ) & mask ] ) ) return false;
if ( KEY_EQUALS_NOT_NULL( k, curr ) ) return VALUE_EQUALS( value[ pos ], v );
// There's always an unused entry.
while( true ) {
if ( KEY_IS_NULL( curr = key[ pos = ( pos + 1 ) & mask ] ) ) return false;
if ( KEY_EQUALS_NOT_NULL( k, curr ) ) return VALUE_EQUALS( value[ pos ], v );
}
}
SUPPRESS_WARNINGS_KEY_VALUE_UNCHECKED
@Override
public boolean rem( final Object o ) {
if ( !( o instanceof Map.Entry ) ) return false;
final Map.Entry,?> e = (Map.Entry,?>)o;
#if KEYS_PRIMITIVE
if (e.getKey() == null || ! (e.getKey() instanceof KEY_CLASS)) return false;
#endif
#if VALUES_PRIMITIVE
if (e.getValue() == null || ! (e.getValue() instanceof VALUE_CLASS)) return false;
#endif
final KEY_GENERIC_TYPE k = KEY_OBJ2TYPE( KEY_GENERIC_CAST e.getKey() );
final VALUE_GENERIC_TYPE v = VALUE_OBJ2TYPE( VALUE_GENERIC_CAST e.getValue() );
if ( KEY_EQUALS_NULL( k ) ) {
if ( containsNullKey && VALUE_EQUALS( value[ n ], v ) ) {
removeNullEntry();
return true;
}
return false;
}
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = OPEN_HASH_MAP.this.key;
int pos;
// The starting point.
if ( KEY_IS_NULL( curr = key[ pos = KEY2INTHASH( k ) & mask ] ) ) return false;
if ( KEY_EQUALS_NOT_NULL( curr, k ) ) {
if ( VALUE_EQUALS( value[ pos ], v ) ) {
removeEntry( pos );
return true;
}
return false;
}
while( true ) {
if ( KEY_IS_NULL( curr = key[ pos = ( pos + 1 ) & mask ] ) ) return false;
if ( KEY_EQUALS_NOT_NULL( curr, k ) ) {
if ( VALUE_EQUALS( value[ pos ], v ) ) {
removeEntry( pos );
return true;
}
}
}
}
public int size() {
return size;
}
public void clear() {
OPEN_HASH_MAP.this.clear();
}
#ifdef Linked
public ObjectBidirectionalIterator iterator( final MAP.Entry KEY_VALUE_GENERIC from ) {
#if KEYS_PRIMITIVE
return new EntryIterator( from.ENTRY_GET_KEY() );
#else
return new EntryIterator( KEY_CLASS2TYPE( from.getKey() ) );
#endif
}
public ObjectBidirectionalIterator fastIterator() {
return new FastEntryIterator();
}
public ObjectBidirectionalIterator fastIterator( final MAP.Entry KEY_VALUE_GENERIC from ) {
#if KEYS_PRIMITIVE
return new FastEntryIterator( from.ENTRY_GET_KEY() );
#else
return new FastEntryIterator( KEY_CLASS2TYPE( from.getKey() ) );
#endif
}
#endif
}
#ifdef Linked
public FastSortedEntrySet KEY_VALUE_GENERIC ENTRYSET() {
if ( entries == null ) entries = new MapEntrySet();
#else
public FastEntrySet KEY_VALUE_GENERIC ENTRYSET() {
if ( entries == null ) entries = new MapEntrySet();
#endif
return entries;
}
/** An iterator on keys.
*
* We simply override the {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods
* (and possibly their type-specific counterparts) so that they return keys
* instead of entries.
*/
#ifdef Linked
private final class KeyIterator extends MapIterator implements KEY_LIST_ITERATOR KEY_GENERIC {
public KeyIterator( final KEY_GENERIC_TYPE k ) { super( k ); }
public KEY_GENERIC_TYPE PREV_KEY() { return key[ previousEntry() ]; }
public void set( KEY_GENERIC_TYPE k ) { throw new UnsupportedOperationException(); }
public void add( KEY_GENERIC_TYPE k ) { throw new UnsupportedOperationException(); }
#if ! KEYS_REFERENCE
public KEY_GENERIC_CLASS previous() { return KEY2OBJ( key[ previousEntry() ] ); }
public void set( KEY_CLASS ok ) { throw new UnsupportedOperationException(); }
public void add( KEY_CLASS ok ) { throw new UnsupportedOperationException(); }
#endif
#else
private final class KeyIterator extends MapIterator implements KEY_ITERATOR KEY_GENERIC {
#endif
public KeyIterator() { super(); }
public KEY_GENERIC_TYPE NEXT_KEY() { return key[ nextEntry() ]; }
#if ! KEYS_REFERENCE
public KEY_GENERIC_CLASS next() { return KEY2OBJ( key[ nextEntry() ] ); }
#endif
}
#ifdef Linked
private final class KeySet extends ABSTRACT_SORTED_SET KEY_GENERIC {
public KEY_LIST_ITERATOR KEY_GENERIC iterator( final KEY_GENERIC_TYPE from ) {
return new KeyIterator( from );
}
public KEY_LIST_ITERATOR KEY_GENERIC iterator() {
return new KeyIterator();
}
#else
private final class KeySet extends ABSTRACT_SET KEY_GENERIC {
public KEY_ITERATOR KEY_GENERIC iterator() {
return new KeyIterator();
}
#endif
public int size() {
return size;
}
public boolean contains( KEY_TYPE k ) {
return containsKey( k );
}
public boolean rem( KEY_TYPE k ) {
final int oldSize = size;
OPEN_HASH_MAP.this.remove( k );
return size != oldSize;
}
public void clear() {
OPEN_HASH_MAP.this.clear();
}
#ifdef Linked
public KEY_GENERIC_TYPE FIRST() {
if ( size == 0 ) throw new NoSuchElementException();
return key[ first ];
}
public KEY_GENERIC_TYPE LAST() {
if ( size == 0 ) throw new NoSuchElementException();
return key[ last ];
}
public KEY_COMPARATOR KEY_SUPER_GENERIC comparator() { return null; }
final public SORTED_SET KEY_GENERIC tailSet( KEY_GENERIC_TYPE from ) { throw new UnsupportedOperationException(); }
final public SORTED_SET KEY_GENERIC headSet( KEY_GENERIC_TYPE to ) { throw new UnsupportedOperationException(); }
final public SORTED_SET KEY_GENERIC subSet( KEY_GENERIC_TYPE from, KEY_GENERIC_TYPE to ) { throw new UnsupportedOperationException(); }
#endif
}
#ifdef Linked
public SORTED_SET KEY_GENERIC keySet() {
#else
public SET KEY_GENERIC keySet() {
#endif
if ( keys == null ) keys = new KeySet();
return keys;
}
/** An iterator on values.
*
*
We simply override the {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods
* (and possibly their type-specific counterparts) so that they return values
* instead of entries.
*/
#ifdef Linked
private final class ValueIterator extends MapIterator implements VALUE_LIST_ITERATOR VALUE_GENERIC {
public VALUE_GENERIC_TYPE PREV_VALUE() { return value[ previousEntry() ]; }
#if ! VALUES_REFERENCE
public VALUE_GENERIC_CLASS previous() { return VALUE2OBJ( value[ previousEntry() ] ); }
public void set( VALUE_CLASS ok ) { throw new UnsupportedOperationException(); }
public void add( VALUE_CLASS ok ) { throw new UnsupportedOperationException(); }
#endif
public void set( VALUE_GENERIC_TYPE v ) { throw new UnsupportedOperationException(); }
public void add( VALUE_GENERIC_TYPE v ) { throw new UnsupportedOperationException(); }
#else
private final class ValueIterator extends MapIterator implements VALUE_ITERATOR VALUE_GENERIC {
#endif
public ValueIterator() { super(); }
public VALUE_GENERIC_TYPE NEXT_VALUE() { return value[ nextEntry() ]; }
#if ! VALUES_REFERENCE
/** {@inheritDoc}
* @deprecated Please use the corresponding type-specific method instead. */
@Deprecated
@Override
public VALUE_GENERIC_CLASS next() { return VALUE2OBJ( value[ nextEntry() ] ); }
#endif
}
public VALUE_COLLECTION VALUE_GENERIC values() {
if ( values == null ) values = new VALUE_ABSTRACT_COLLECTION VALUE_GENERIC() {
public VALUE_ITERATOR VALUE_GENERIC iterator() {
return new ValueIterator();
}
public int size() {
return size;
}
public boolean contains( VALUE_TYPE v ) {
return containsValue( v );
}
public void clear() {
OPEN_HASH_MAP.this.clear();
}
};
return values;
}
/** A no-op for backward compatibility. The kind of tables implemented by
* this class never need rehashing.
*
*
If you need to reduce the table size to fit exactly
* this set, use {@link #trim()}.
*
* @return true.
* @see #trim()
* @deprecated A no-op.
*/
@Deprecated
public boolean rehash() {
return true;
}
/** Rehashes the map, making the table as small as possible.
*
*
This method rehashes the table to the smallest size satisfying the
* load factor. It can be used when the set will not be changed anymore, so
* to optimize access speed and size.
*
*
If the table size is already the minimum possible, this method
* does nothing.
*
* @return true if there was enough memory to trim the map.
* @see #trim(int)
*/
public boolean trim() {
final int l = arraySize( size, f );
if ( l >= n || size > maxFill( l, f ) ) return true;
try {
rehash( l );
}
catch(OutOfMemoryError cantDoIt) { return false; }
return true;
}
/** Rehashes this map if the table is too large.
*
*
Let N be the smallest table size that can hold
* max(n,{@link #size()})
entries, still satisfying the load factor. If the current
* table size is smaller than or equal to N, this method does
* nothing. Otherwise, it rehashes this map in a table of size
* N.
*
*
This method is useful when reusing maps. {@linkplain #clear() Clearing a
* map} leaves the table size untouched. If you are reusing a map
* many times, you can call this method with a typical
* size to avoid keeping around a very large table just
* because of a few large transient maps.
*
* @param n the threshold for the trimming.
* @return true if there was enough memory to trim the map.
* @see #trim()
*/
public boolean trim( final int n ) {
final int l = HashCommon.nextPowerOfTwo( (int)Math.ceil( n / f ) );
if ( l >= n || size > maxFill( l, f ) ) return true;
try {
rehash( l );
}
catch( OutOfMemoryError cantDoIt ) { return false; }
return true;
}
/** Rehashes the map.
*
*
This method implements the basic rehashing strategy, and may be
* overriden by subclasses implementing different rehashing strategies (e.g.,
* disk-based rehashing). However, you should not override this method
* unless you understand the internal workings of this class.
*
* @param newN the new size
*/
SUPPRESS_WARNINGS_KEY_VALUE_UNCHECKED
protected void rehash( final int newN ) {
final KEY_GENERIC_TYPE key[] = this.key;
final VALUE_GENERIC_TYPE value[] = this.value;
final int mask = newN - 1; // Note that this is used by the hashing macro
final KEY_GENERIC_TYPE newKey[] = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[ newN + 1 ];
final VALUE_GENERIC_TYPE newValue[] = VALUE_GENERIC_ARRAY_CAST new VALUE_TYPE[ newN + 1 ];
#ifdef Linked
int i = first, prev = -1, newPrev = -1, t, pos;
final long link[] = this.link;
final long newLink[] = new long[ newN + 1 ];
first = -1;
for( int j = size; j-- != 0; ) {
if ( KEY_EQUALS_NULL( key[ i ] ) ) pos = newN;
else {
pos = KEY2INTHASH( key[ i ] ) & mask;
while ( ! KEY_IS_NULL( newKey[ pos ] ) ) pos = ( pos + 1 ) & mask;
}
newKey[ pos ] = key[ i ];
newValue[ pos ] = value[ i ];
if ( prev != -1 ) {
SET_NEXT( newLink[ newPrev ], pos );
SET_PREV( newLink[ pos ], newPrev );
newPrev = pos;
}
else {
newPrev = first = pos;
// Special case of SET(newLink[ pos ], -1, -1);
newLink[ pos ] = -1L;
}
t = i;
i = GET_NEXT(link[ i ]);
prev = t;
}
this.link = newLink;
this.last = newPrev;
if ( newPrev != -1 )
// Special case of SET_NEXT( newLink[ newPrev ], -1 );
newLink[ newPrev ] |= -1 & 0xFFFFFFFFL;
#else
int i = n, pos;
for( int j = realSize(); j-- != 0; ) {
while( KEY_IS_NULL( key[ --i ] ) );
if ( ! KEY_IS_NULL( newKey[ pos = KEY2INTHASH( key[ i ] ) & mask ] ) )
while ( ! KEY_IS_NULL( newKey[ pos = ( pos + 1 ) & mask ] ) );
newKey[ pos ] = key[ i ];
newValue[ pos ] = value[ i ];
}
newValue[ newN ] = value[ n ];
#endif
n = newN;
this.mask = mask;
maxFill = maxFill( n, f );
this.key = newKey;
this.value = newValue;
}
/** Returns a deep copy of this map.
*
*
This method performs a deep copy of this hash map; the data stored in the
* map, however, is not cloned. Note that this makes a difference only for object keys.
*
* @return a deep copy of this map.
*/
SUPPRESS_WARNINGS_KEY_VALUE_UNCHECKED
public OPEN_HASH_MAP KEY_VALUE_GENERIC clone() {
OPEN_HASH_MAP KEY_VALUE_GENERIC c;
try {
c = (OPEN_HASH_MAP KEY_VALUE_GENERIC)super.clone();
}
catch(CloneNotSupportedException cantHappen) {
throw new InternalError();
}
c.keys = null;
c.values = null;
c.entries = null;
c.containsNullKey = containsNullKey;
c.key = key.clone();
c.value = value.clone();
#ifdef Linked
c.link = link.clone();
#endif
#ifdef Custom
c.strategy = strategy;
#endif
return c;
}
/** Returns a hash code for this map.
*
* This method overrides the generic method provided by the superclass.
* Since equals()
is not overriden, it is important
* that the value returned by this method is the same value as
* the one returned by the overriden method.
*
* @return a hash code for this map.
*/
public int hashCode() {
int h = 0;
for( int j = realSize(), i = 0, t = 0; j-- != 0; ) {
while( KEY_IS_NULL( key[ i ] ) ) i++;
#if KEYS_REFERENCE
if ( this != key[ i ] )
#endif
t = KEY2JAVAHASH_NOT_NULL( key[ i ] );
#if VALUES_REFERENCE
if ( this != value[ i ] )
#endif
t ^= VALUE2JAVAHASH( value[ i ] );
h += t;
i++;
}
// Zero / null keys have hash zero.
if ( containsNullKey ) h += VALUE2JAVAHASH( value[ n ] );
return h;
}
private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException {
final KEY_GENERIC_TYPE key[] = this.key;
final VALUE_GENERIC_TYPE value[] = this.value;
final MapIterator i = new MapIterator();
s.defaultWriteObject();
for( int j = size, e; j-- != 0; ) {
e = i.nextEntry();
s.WRITE_KEY( key[ e ] );
s.WRITE_VALUE( value[ e ] );
}
}
SUPPRESS_WARNINGS_KEY_VALUE_UNCHECKED
private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
n = arraySize( size, f );
maxFill = maxFill( n, f );
mask = n - 1;
final KEY_GENERIC_TYPE key[] = this.key = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[ n + 1 ];
final VALUE_GENERIC_TYPE value[] = this.value = VALUE_GENERIC_ARRAY_CAST new VALUE_TYPE[ n + 1 ];
#ifdef Linked
final long link[] = this.link = new long[ n + 1 ];
int prev = -1;
first = last = -1;
#endif
KEY_GENERIC_TYPE k;
VALUE_GENERIC_TYPE v;
for( int i = size, pos; i-- != 0; ) {
k = KEY_GENERIC_CAST s.READ_KEY();
v = VALUE_GENERIC_CAST s.READ_VALUE();
if ( KEY_EQUALS_NULL( k ) ) {
pos = n;
containsNullKey = true;
}
else {
pos = KEY2INTHASH( k ) & mask;
while ( ! KEY_IS_NULL( key[ pos ] ) ) pos = ( pos + 1 ) & mask;
}
key[ pos ] = k;
value[ pos ] = v;
#ifdef Linked
if ( first != -1 ) {
SET_NEXT( link[ prev ], pos );
SET_PREV( link[ pos ], prev );
prev = pos;
}
else {
prev = first = pos;
// Special case of SET_PREV( newLink[ pos ], -1 );
link[ pos ] |= (-1L & 0xFFFFFFFFL) << 32;
}
#endif
}
#ifdef Linked
last = prev;
if ( prev != -1 )
// Special case of SET_NEXT( link[ prev ], -1 );
link[ prev ] |= -1 & 0xFFFFFFFFL;
#endif
if ( ASSERTS ) checkTable();
}
#ifdef ASSERTS_CODE
private void checkTable() {
assert ( n & -n ) == n : "Table length is not a power of two: " + n;
assert n == key.length - 1;
int n = key.length - 1;
while( n-- != 0 )
if ( ! KEY_IS_NULL( key[ n ] ) && ! containsKey( key[ n ] ) )
throw new AssertionError( "Hash table has key " + key[ n ] + " marked as occupied, but the key does not belong to the table" );
#if KEYS_PRIMITIVE
java.util.HashSet s = new java.util.HashSet ();
#else
java.util.HashSet