it.unimi.dsi.fastutil.doubles.Double2LongLinkedOpenHashMap Maven / Gradle / Ivy
Show all versions of fastutil Show documentation
/* Copyright (C) 1991-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
. */
/* This header is separate from features.h so that the compiler can
include it implicitly at the start of every compilation. It must
not itself include or any other header that includes
because the implicit include comes before any feature
test macros that may be defined in a source file before it first
explicitly includes a system header. GCC knows the name of this
header in order to preinclude it. */
/* glibc's intent is to support the IEC 559 math functionality, real
and complex. If the GCC (4.9 and later) predefined macros
specifying compiler intent are available, use them to determine
whether the overall intent is to support these features; otherwise,
presume an older compiler has intent to support these features and
define these macros by default. */
/* wchar_t uses Unicode 9.0.0. Version 9.0 of the Unicode Standard is
synchronized with ISO/IEC 10646:2014, fourth edition, plus
Amd. 1 and Amd. 2 and 273 characters from forthcoming 10646, fifth edition.
(Amd. 2 was published 2016-05-01,
see https://www.iso.org/obp/ui/#iso:std:iso-iec:10646:ed-4:v1:amd:2:v1:en) */
/* We do not support C11 . */
/* Generic definitions */
/* Assertions (useful to generate conditional code) */
/* Current type and class (and size, if applicable) */
/* Value methods */
/* Interfaces (keys) */
/* Interfaces (values) */
/* Abstract implementations (keys) */
/* Abstract implementations (values) */
/* Static containers (keys) */
/* Static containers (values) */
/* Implementations */
/* Synchronized wrappers */
/* Unmodifiable wrappers */
/* Other wrappers */
/* Methods (keys) */
/* Methods (values) */
/* Methods (keys/values) */
/* Methods that have special names depending on keys (but the special names depend on values) */
/* Equality */
/* Object/Reference-only definitions (keys) */
/* Primitive-type-only definitions (keys) */
/* Object/Reference-only definitions (values) */
/* Primitive-type-only definitions (values) */
/*
* Copyright (C) 2002-2016 Sebastiano Vigna
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package it.unimi.dsi.fastutil.doubles;
import it.unimi.dsi.fastutil.Hash;
import it.unimi.dsi.fastutil.HashCommon;
import static it.unimi.dsi.fastutil.HashCommon.arraySize;
import static it.unimi.dsi.fastutil.HashCommon.maxFill;
import java.util.Map;
import java.util.Arrays;
import java.util.NoSuchElementException;
import it.unimi.dsi.fastutil.longs.LongCollection;
import it.unimi.dsi.fastutil.longs.AbstractLongCollection;
import it.unimi.dsi.fastutil.longs.LongIterator;
import java.util.Comparator;
import it.unimi.dsi.fastutil.longs.LongListIterator;
import it.unimi.dsi.fastutil.objects.AbstractObjectSortedSet;
import it.unimi.dsi.fastutil.objects.ObjectListIterator;
import it.unimi.dsi.fastutil.objects.ObjectBidirectionalIterator;
import it.unimi.dsi.fastutil.objects.ObjectSortedSet;
/**
* A type-specific linked hash map with with a fast, small-footprint
* implementation.
*
*
* Instances of this class use a hash table to represent a map. The table is
* filled up to a specified load factor, and then doubled in size to
* accommodate new entries. If the table is emptied below one fourth of
* the load factor, it is halved in size. However, halving is not performed when
* deleting entries from an iterator, as it would interfere with the iteration
* process.
*
*
* Note that {@link #clear()} does not modify the hash table size. Rather, a
* family of {@linkplain #trim() trimming methods} lets you control the size of
* the table; this is particularly useful if you reuse instances of this class.
*
*
* Iterators generated by this map will enumerate pairs in the same order in
* which they have been added to the map (addition of pairs whose key is already
* present in the set does not change the iteration order). Note that this order
* has nothing in common with the natural order of the keys. The order is kept
* by means of a doubly linked list, represented via an array of longs
* parallel to the table.
*
*
* This class implements the interface of a sorted map, so to allow easy access
* of the iteration order: for instance, you can get the first key in iteration
* order with {@code firstKey()} without having to create an iterator; however,
* this class partially violates the {@link java.util.SortedMap} contract
* because all submap methods throw an exception and {@link #comparator()}
* returns always null
.
*
*
* Additional methods, such as getAndMoveToFirst()
, make it easy to
* use instances of this class as a cache (e.g., with LRU policy).
*
*
* The iterators provided by the views of this class using are type-specific
* {@linkplain java.util.ListIterator list iterators}, and can be started at any
* element which is a key of the map, or a
* {@link NoSuchElementException} exception will be thrown. If, however, the
* provided element is not the first or last key in the set, the first access to
* the list index will require linear time, as in the worst case the entire key
* set must be scanned in iteration order to retrieve the positional index of
* the starting key. If you use just the methods of a type-specific
* {@link it.unimi.dsi.fastutil.BidirectionalIterator}, however, all operations
* will be performed in constant time.
*
* @see Hash
* @see HashCommon
*/
public class Double2LongLinkedOpenHashMap extends AbstractDouble2LongSortedMap implements java.io.Serializable, Cloneable, Hash {
private static final long serialVersionUID = 0L;
private static final boolean ASSERTS = false;
/** The array of keys. */
protected transient double[] key;
/** The array of values. */
protected transient long[] value;
/** The mask for wrapping a position counter. */
protected transient int mask;
/** Whether this set contains the key zero. */
protected transient boolean containsNullKey;
/**
* The index of the first entry in iteration order. It is valid iff
* {@link #size} is nonzero; otherwise, it contains -1.
*/
protected transient int first = -1;
/**
* The index of the last entry in iteration order. It is valid iff
* {@link #size} is nonzero; otherwise, it contains -1.
*/
protected transient int last = -1;
/**
* For each entry, the next and the previous entry in iteration order,
* stored as
* ((prev & 0xFFFFFFFFL) << 32) | (next & 0xFFFFFFFFL)
. The
* first entry contains predecessor -1, and the last entry contains
* successor -1.
*/
protected transient long[] link;
/** The current table size. */
protected transient int n;
/**
* Threshold after which we rehash. It must be the table size times
* {@link #f}.
*/
protected transient int maxFill;
/** Number of entries in the set (including the key zero, if present). */
protected int size;
/** The acceptable load factor. */
protected final float f;
/** Cached set of entries. */
protected transient FastSortedEntrySet entries;
/** Cached set of keys. */
protected transient DoubleSortedSet keys;
/** Cached collection of values. */
protected transient LongCollection values;
/**
* Creates a new hash map.
*
*
* The actual table size will be the least power of two greater than
* expected
/f
.
*
* @param expected
* the expected number of elements in the hash set.
* @param f
* the load factor.
*/
public Double2LongLinkedOpenHashMap(final int expected, final float f) {
if (f <= 0 || f > 1) throw new IllegalArgumentException("Load factor must be greater than 0 and smaller than or equal to 1");
if (expected < 0) throw new IllegalArgumentException("The expected number of elements must be nonnegative");
this.f = f;
n = arraySize(expected, f);
mask = n - 1;
maxFill = maxFill(n, f);
key = new double[n + 1];
value = new long[n + 1];
link = new long[n + 1];
}
/**
* Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load
* factor.
*
* @param expected
* the expected number of elements in the hash map.
*/
public Double2LongLinkedOpenHashMap(final int expected) {
this(expected, DEFAULT_LOAD_FACTOR);
}
/**
* Creates a new hash map with initial expected
* {@link Hash#DEFAULT_INITIAL_SIZE} entries and
* {@link Hash#DEFAULT_LOAD_FACTOR} as load factor.
*/
public Double2LongLinkedOpenHashMap() {
this(DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR);
}
/**
* Creates a new hash map copying a given one.
*
* @param m
* a {@link Map} to be copied into the new hash map.
* @param f
* the load factor.
*/
public Double2LongLinkedOpenHashMap(final Map extends Double, ? extends Long> m, final float f) {
this(m.size(), f);
putAll(m);
}
/**
* Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load
* factor copying a given one.
*
* @param m
* a {@link Map} to be copied into the new hash map.
*/
public Double2LongLinkedOpenHashMap(final Map extends Double, ? extends Long> m) {
this(m, DEFAULT_LOAD_FACTOR);
}
/**
* Creates a new hash map copying a given type-specific one.
*
* @param m
* a type-specific map to be copied into the new hash map.
* @param f
* the load factor.
*/
public Double2LongLinkedOpenHashMap(final Double2LongMap m, final float f) {
this(m.size(), f);
putAll(m);
}
/**
* Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load
* factor copying a given type-specific one.
*
* @param m
* a type-specific map to be copied into the new hash map.
*/
public Double2LongLinkedOpenHashMap(final Double2LongMap m) {
this(m, DEFAULT_LOAD_FACTOR);
}
/**
* Creates a new hash map using the elements of two parallel arrays.
*
* @param k
* the array of keys of the new hash map.
* @param v
* the array of corresponding values in the new hash map.
* @param f
* the load factor.
* @throws IllegalArgumentException
* if k
and v
have different lengths.
*/
public Double2LongLinkedOpenHashMap(final double[] k, final long[] v, final float f) {
this(k.length, f);
if (k.length != v.length) throw new IllegalArgumentException("The key array and the value array have different lengths (" + k.length + " and " + v.length + ")");
for (int i = 0; i < k.length; i++)
this.put(k[i], v[i]);
}
/**
* Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load
* factor using the elements of two parallel arrays.
*
* @param k
* the array of keys of the new hash map.
* @param v
* the array of corresponding values in the new hash map.
* @throws IllegalArgumentException
* if k
and v
have different lengths.
*/
public Double2LongLinkedOpenHashMap(final double[] k, final long[] v) {
this(k, v, DEFAULT_LOAD_FACTOR);
}
private int realSize() {
return containsNullKey ? size - 1 : size;
}
private void ensureCapacity(final int capacity) {
final int needed = arraySize(capacity, f);
if (needed > n) rehash(needed);
}
private void tryCapacity(final long capacity) {
final int needed = (int) Math.min(1 << 30, Math.max(2, HashCommon.nextPowerOfTwo((long) Math.ceil(capacity / f))));
if (needed > n) rehash(needed);
}
private long removeEntry(final int pos) {
final long oldValue = value[pos];
size--;
fixPointers(pos);
shiftKeys(pos);
if (size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2);
return oldValue;
}
private long removeNullEntry() {
containsNullKey = false;
final long oldValue = value[n];
size--;
fixPointers(n);
if (size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2);
return oldValue;
}
/** {@inheritDoc} */
public void putAll(Map extends Double, ? extends Long> m) {
if (f <= .5) ensureCapacity(m.size()); // The resulting map will be
// sized for m.size() elements
else tryCapacity(size() + m.size()); // The resulting map will be
// tentatively sized for size()
// + m.size() elements
super.putAll(m);
}
private int insert(final double k, final long v) {
int pos;
if ((Double.doubleToLongBits(k) == 0)) {
if (containsNullKey) return n;
containsNullKey = true;
pos = n;
} else {
double curr;
final double[] key = this.key;
// The starting point.
if (!(Double.doubleToLongBits(curr = key[pos = (int) it.unimi.dsi.fastutil.HashCommon.mix(Double.doubleToRawLongBits(k)) & mask]) == 0)) {
if ((Double.doubleToLongBits(curr) == Double.doubleToLongBits(k))) return pos;
while (!(Double.doubleToLongBits(curr = key[pos = (pos + 1) & mask]) == 0))
if ((Double.doubleToLongBits(curr) == Double.doubleToLongBits(k))) return pos;
}
}
key[pos] = k;
value[pos] = v;
if (size == 0) {
first = last = pos;
// Special case of SET_UPPER_LOWER( link[ pos ], -1, -1 );
link[pos] = -1L;
} else {
link[last] ^= ((link[last] ^ (pos & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
link[pos] = ((last & 0xFFFFFFFFL) << 32) | (-1 & 0xFFFFFFFFL);
last = pos;
}
if (size++ >= maxFill) rehash(arraySize(size + 1, f));
if (ASSERTS) checkTable();
return -1;
}
public long put(final double k, final long v) {
final int pos = insert(k, v);
if (pos < 0) return defRetValue;
final long oldValue = value[pos];
value[pos] = v;
return oldValue;
}
/**
* {@inheritDoc}
*
* @deprecated Please use the corresponding type-specific method instead.
*/
@Deprecated
@Override
public Long put(final Double ok, final Long ov) {
final long v = ((ov).longValue());
final int pos = insert(((ok).doubleValue()), v);
if (pos < 0) return (null);
final long oldValue = value[pos];
value[pos] = v;
return (Long.valueOf(oldValue));
}
private long addToValue(final int pos, final long incr) {
final long oldValue = value[pos];
value[pos] = oldValue + incr;
return oldValue;
}
/**
* Adds an increment to value currently associated with a key.
*
*
* Note that this method respects the {@linkplain #defaultReturnValue()
* default return value} semantics: when called with a key that does not
* currently appears in the map, the key will be associated with the default
* return value plus the given increment.
*
* @param k
* the key.
* @param incr
* the increment.
* @return the old value, or the {@linkplain #defaultReturnValue() default
* return value} if no value was present for the given key.
*/
public long addTo(final double k, final long incr) {
int pos;
if ((Double.doubleToLongBits(k) == 0)) {
if (containsNullKey) return addToValue(n, incr);
pos = n;
containsNullKey = true;
} else {
double curr;
final double[] key = this.key;
// The starting point.
if (!(Double.doubleToLongBits(curr = key[pos = (int) it.unimi.dsi.fastutil.HashCommon.mix(Double.doubleToRawLongBits(k)) & mask]) == 0)) {
if ((Double.doubleToLongBits(curr) == Double.doubleToLongBits(k))) return addToValue(pos, incr);
while (!(Double.doubleToLongBits(curr = key[pos = (pos + 1) & mask]) == 0))
if ((Double.doubleToLongBits(curr) == Double.doubleToLongBits(k))) return addToValue(pos, incr);
}
}
key[pos] = k;
value[pos] = defRetValue + incr;
if (size == 0) {
first = last = pos;
// Special case of SET_UPPER_LOWER( link[ pos ], -1, -1 );
link[pos] = -1L;
} else {
link[last] ^= ((link[last] ^ (pos & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
link[pos] = ((last & 0xFFFFFFFFL) << 32) | (-1 & 0xFFFFFFFFL);
last = pos;
}
if (size++ >= maxFill) rehash(arraySize(size + 1, f));
if (ASSERTS) checkTable();
return defRetValue;
}
/**
* Shifts left entries with the specified hash code, starting at the
* specified position, and empties the resulting free entry.
*
* @param pos
* a starting position.
*/
protected final void shiftKeys(int pos) {
// Shift entries with the same hash.
int last, slot;
double curr;
final double[] key = this.key;
for (;;) {
pos = ((last = pos) + 1) & mask;
for (;;) {
if ((Double.doubleToLongBits(curr = key[pos]) == 0)) {
key[last] = (0);
return;
}
slot = (int) it.unimi.dsi.fastutil.HashCommon.mix(Double.doubleToRawLongBits(curr)) & mask;
if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break;
pos = (pos + 1) & mask;
}
key[last] = curr;
value[last] = value[pos];
fixPointers(pos, last);
}
}
public long remove(final double k) {
if ((Double.doubleToLongBits(k) == 0)) {
if (containsNullKey) return removeNullEntry();
return defRetValue;
}
double curr;
final double[] key = this.key;
int pos;
// The starting point.
if ((Double.doubleToLongBits(curr = key[pos = (int) it.unimi.dsi.fastutil.HashCommon.mix(Double.doubleToRawLongBits(k)) & mask]) == 0)) return defRetValue;
if ((Double.doubleToLongBits(k) == Double.doubleToLongBits(curr))) return removeEntry(pos);
while (true) {
if ((Double.doubleToLongBits(curr = key[pos = (pos + 1) & mask]) == 0)) return defRetValue;
if ((Double.doubleToLongBits(k) == Double.doubleToLongBits(curr))) return removeEntry(pos);
}
}
/**
* {@inheritDoc}
*
* @deprecated Please use the corresponding type-specific method instead.
*/
@Deprecated
@Override
public Long remove(final Object ok) {
final double k = ((((Double) (ok)).doubleValue()));
if ((Double.doubleToLongBits(k) == 0)) {
if (containsNullKey) return (Long.valueOf(removeNullEntry()));
return (null);
}
double curr;
final double[] key = this.key;
int pos;
// The starting point.
if ((Double.doubleToLongBits(curr = key[pos = (int) it.unimi.dsi.fastutil.HashCommon.mix(Double.doubleToRawLongBits(k)) & mask]) == 0)) return (null);
if ((Double.doubleToLongBits(curr) == Double.doubleToLongBits(k))) return (Long.valueOf(removeEntry(pos)));
while (true) {
if ((Double.doubleToLongBits(curr = key[pos = (pos + 1) & mask]) == 0)) return (null);
if ((Double.doubleToLongBits(curr) == Double.doubleToLongBits(k))) return (Long.valueOf(removeEntry(pos)));
}
}
private long setValue(final int pos, final long v) {
final long oldValue = value[pos];
value[pos] = v;
return oldValue;
}
/**
* Removes the mapping associated with the first key in iteration order.
*
* @return the value previously associated with the first key in iteration
* order.
* @throws NoSuchElementException
* is this map is empty.
*/
public long removeFirstLong() {
if (size == 0) throw new NoSuchElementException();
final int pos = first;
// Abbreviated version of fixPointers(pos)
first = (int) link[pos];
if (0 <= first) {
// Special case of SET_PREV( link[ first ], -1 )
link[first] |= (-1 & 0xFFFFFFFFL) << 32;
}
size--;
final long v = value[pos];
if (pos == n) {
containsNullKey = false;
} else shiftKeys(pos);
if (size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2);
return v;
}
/**
* Removes the mapping associated with the last key in iteration order.
*
* @return the value previously associated with the last key in iteration
* order.
* @throws NoSuchElementException
* is this map is empty.
*/
public long removeLastLong() {
if (size == 0) throw new NoSuchElementException();
final int pos = last;
// Abbreviated version of fixPointers(pos)
last = (int) (link[pos] >>> 32);
if (0 <= last) {
// Special case of SET_NEXT( link[ last ], -1 )
link[last] |= -1 & 0xFFFFFFFFL;
}
size--;
final long v = value[pos];
if (pos == n) {
containsNullKey = false;
} else shiftKeys(pos);
if (size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2);
return v;
}
private void moveIndexToFirst(final int i) {
if (size == 1 || first == i) return;
if (last == i) {
last = (int) (link[i] >>> 32);
// Special case of SET_NEXT( link[ last ], -1 );
link[last] |= -1 & 0xFFFFFFFFL;
} else {
final long linki = link[i];
final int prev = (int) (linki >>> 32);
final int next = (int) linki;
link[prev] ^= ((link[prev] ^ (linki & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
link[next] ^= ((link[next] ^ (linki & 0xFFFFFFFF00000000L)) & 0xFFFFFFFF00000000L);
}
link[first] ^= ((link[first] ^ ((i & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L);
link[i] = ((-1 & 0xFFFFFFFFL) << 32) | (first & 0xFFFFFFFFL);
first = i;
}
private void moveIndexToLast(final int i) {
if (size == 1 || last == i) return;
if (first == i) {
first = (int) link[i];
// Special case of SET_PREV( link[ first ], -1 );
link[first] |= (-1 & 0xFFFFFFFFL) << 32;
} else {
final long linki = link[i];
final int prev = (int) (linki >>> 32);
final int next = (int) linki;
link[prev] ^= ((link[prev] ^ (linki & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
link[next] ^= ((link[next] ^ (linki & 0xFFFFFFFF00000000L)) & 0xFFFFFFFF00000000L);
}
link[last] ^= ((link[last] ^ (i & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
link[i] = ((last & 0xFFFFFFFFL) << 32) | (-1 & 0xFFFFFFFFL);
last = i;
}
/**
* Returns the value to which the given key is mapped; if the key is
* present, it is moved to the first position of the iteration order.
*
* @param k
* the key.
* @return the corresponding value, or the {@linkplain #defaultReturnValue()
* default return value} if no value was present for the given key.
*/
public long getAndMoveToFirst(final double k) {
if ((Double.doubleToLongBits(k) == 0)) {
if (containsNullKey) {
moveIndexToFirst(n);
return value[n];
}
return defRetValue;
}
double curr;
final double[] key = this.key;
int pos;
// The starting point.
if ((Double.doubleToLongBits(curr = key[pos = (int) it.unimi.dsi.fastutil.HashCommon.mix(Double.doubleToRawLongBits(k)) & mask]) == 0)) return defRetValue;
if ((Double.doubleToLongBits(k) == Double.doubleToLongBits(curr))) {
moveIndexToFirst(pos);
return value[pos];
}
// There's always an unused entry.
while (true) {
if ((Double.doubleToLongBits(curr = key[pos = (pos + 1) & mask]) == 0)) return defRetValue;
if ((Double.doubleToLongBits(k) == Double.doubleToLongBits(curr))) {
moveIndexToFirst(pos);
return value[pos];
}
}
}
/**
* Returns the value to which the given key is mapped; if the key is
* present, it is moved to the last position of the iteration order.
*
* @param k
* the key.
* @return the corresponding value, or the {@linkplain #defaultReturnValue()
* default return value} if no value was present for the given key.
*/
public long getAndMoveToLast(final double k) {
if ((Double.doubleToLongBits(k) == 0)) {
if (containsNullKey) {
moveIndexToLast(n);
return value[n];
}
return defRetValue;
}
double curr;
final double[] key = this.key;
int pos;
// The starting point.
if ((Double.doubleToLongBits(curr = key[pos = (int) it.unimi.dsi.fastutil.HashCommon.mix(Double.doubleToRawLongBits(k)) & mask]) == 0)) return defRetValue;
if ((Double.doubleToLongBits(k) == Double.doubleToLongBits(curr))) {
moveIndexToLast(pos);
return value[pos];
}
// There's always an unused entry.
while (true) {
if ((Double.doubleToLongBits(curr = key[pos = (pos + 1) & mask]) == 0)) return defRetValue;
if ((Double.doubleToLongBits(k) == Double.doubleToLongBits(curr))) {
moveIndexToLast(pos);
return value[pos];
}
}
}
/**
* Adds a pair to the map; if the key is already present, it is moved to the
* first position of the iteration order.
*
* @param k
* the key.
* @param v
* the value.
* @return the old value, or the {@linkplain #defaultReturnValue() default
* return value} if no value was present for the given key.
*/
public long putAndMoveToFirst(final double k, final long v) {
int pos;
if ((Double.doubleToLongBits(k) == 0)) {
if (containsNullKey) {
moveIndexToFirst(n);
return setValue(n, v);
}
containsNullKey = true;
pos = n;
} else {
double curr;
final double[] key = this.key;
// The starting point.
if (!(Double.doubleToLongBits(curr = key[pos = (int) it.unimi.dsi.fastutil.HashCommon.mix(Double.doubleToRawLongBits(k)) & mask]) == 0)) {
if ((Double.doubleToLongBits(curr) == Double.doubleToLongBits(k))) {
moveIndexToFirst(pos);
return setValue(pos, v);
}
while (!(Double.doubleToLongBits(curr = key[pos = (pos + 1) & mask]) == 0))
if ((Double.doubleToLongBits(curr) == Double.doubleToLongBits(k))) {
moveIndexToFirst(pos);
return setValue(pos, v);
}
}
}
key[pos] = k;
value[pos] = v;
if (size == 0) {
first = last = pos;
// Special case of SET_UPPER_LOWER( link[ pos ], -1, -1 );
link[pos] = -1L;
} else {
link[first] ^= ((link[first] ^ ((pos & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L);
link[pos] = ((-1 & 0xFFFFFFFFL) << 32) | (first & 0xFFFFFFFFL);
first = pos;
}
if (size++ >= maxFill) rehash(arraySize(size, f));
if (ASSERTS) checkTable();
return defRetValue;
}
/**
* Adds a pair to the map; if the key is already present, it is moved to the
* last position of the iteration order.
*
* @param k
* the key.
* @param v
* the value.
* @return the old value, or the {@linkplain #defaultReturnValue() default
* return value} if no value was present for the given key.
*/
public long putAndMoveToLast(final double k, final long v) {
int pos;
if ((Double.doubleToLongBits(k) == 0)) {
if (containsNullKey) {
moveIndexToLast(n);
return setValue(n, v);
}
containsNullKey = true;
pos = n;
} else {
double curr;
final double[] key = this.key;
// The starting point.
if (!(Double.doubleToLongBits(curr = key[pos = (int) it.unimi.dsi.fastutil.HashCommon.mix(Double.doubleToRawLongBits(k)) & mask]) == 0)) {
if ((Double.doubleToLongBits(curr) == Double.doubleToLongBits(k))) {
moveIndexToLast(pos);
return setValue(pos, v);
}
while (!(Double.doubleToLongBits(curr = key[pos = (pos + 1) & mask]) == 0))
if ((Double.doubleToLongBits(curr) == Double.doubleToLongBits(k))) {
moveIndexToLast(pos);
return setValue(pos, v);
}
}
}
key[pos] = k;
value[pos] = v;
if (size == 0) {
first = last = pos;
// Special case of SET_UPPER_LOWER( link[ pos ], -1, -1 );
link[pos] = -1L;
} else {
link[last] ^= ((link[last] ^ (pos & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
link[pos] = ((last & 0xFFFFFFFFL) << 32) | (-1 & 0xFFFFFFFFL);
last = pos;
}
if (size++ >= maxFill) rehash(arraySize(size, f));
if (ASSERTS) checkTable();
return defRetValue;
}
/**
* @deprecated Please use the corresponding type-specific method instead.
*/
@Deprecated
public Long get(final Double ok) {
if (ok == null) return null;
final double k = ((ok).doubleValue());
if ((Double.doubleToLongBits(k) == 0)) return containsNullKey ? (Long.valueOf(value[n])) : (null);
double curr;
final double[] key = this.key;
int pos;
// The starting point.
if ((Double.doubleToLongBits(curr = key[pos = (int) it.unimi.dsi.fastutil.HashCommon.mix(Double.doubleToRawLongBits(k)) & mask]) == 0)) return (null);
if ((Double.doubleToLongBits(k) == Double.doubleToLongBits(curr))) return (Long.valueOf(value[pos]));
// There's always an unused entry.
while (true) {
if ((Double.doubleToLongBits(curr = key[pos = (pos + 1) & mask]) == 0)) return (null);
if ((Double.doubleToLongBits(k) == Double.doubleToLongBits(curr))) return (Long.valueOf(value[pos]));
}
}
public long get(final double k) {
if ((Double.doubleToLongBits(k) == 0)) return containsNullKey ? value[n] : defRetValue;
double curr;
final double[] key = this.key;
int pos;
// The starting point.
if ((Double.doubleToLongBits(curr = key[pos = (int) it.unimi.dsi.fastutil.HashCommon.mix(Double.doubleToRawLongBits(k)) & mask]) == 0)) return defRetValue;
if ((Double.doubleToLongBits(k) == Double.doubleToLongBits(curr))) return value[pos];
// There's always an unused entry.
while (true) {
if ((Double.doubleToLongBits(curr = key[pos = (pos + 1) & mask]) == 0)) return defRetValue;
if ((Double.doubleToLongBits(k) == Double.doubleToLongBits(curr))) return value[pos];
}
}
public boolean containsKey(final double k) {
if ((Double.doubleToLongBits(k) == 0)) return containsNullKey;
double curr;
final double[] key = this.key;
int pos;
// The starting point.
if ((Double.doubleToLongBits(curr = key[pos = (int) it.unimi.dsi.fastutil.HashCommon.mix(Double.doubleToRawLongBits(k)) & mask]) == 0)) return false;
if ((Double.doubleToLongBits(k) == Double.doubleToLongBits(curr))) return true;
// There's always an unused entry.
while (true) {
if ((Double.doubleToLongBits(curr = key[pos = (pos + 1) & mask]) == 0)) return false;
if ((Double.doubleToLongBits(k) == Double.doubleToLongBits(curr))) return true;
}
}
public boolean containsValue(final long v) {
final long value[] = this.value;
final double key[] = this.key;
if (containsNullKey && ((value[n]) == (v))) return true;
for (int i = n; i-- != 0;)
if (!(Double.doubleToLongBits(key[i]) == 0) && ((value[i]) == (v))) return true;
return false;
}
/*
* Removes all elements from this map.
*
*
To increase object reuse, this method does not change the table size.
* If you want to reduce the table size, you must use {@link #trim()}.
*
*/
public void clear() {
if (size == 0) return;
size = 0;
containsNullKey = false;
Arrays.fill(key, (0));
first = last = -1;
}
public int size() {
return size;
}
public boolean isEmpty() {
return size == 0;
}
/**
* A no-op for backward compatibility.
*
* @param growthFactor
* unused.
* @deprecated Since fastutil
6.1.0, hash tables are doubled
* when they are too full.
*/
@Deprecated
public void growthFactor(int growthFactor) {
}
/**
* Gets the growth factor (2).
*
* @return the growth factor of this set, which is fixed (2).
* @see #growthFactor(int)
* @deprecated Since fastutil
6.1.0, hash tables are doubled
* when they are too full.
*/
@Deprecated
public int growthFactor() {
return 16;
}
/**
* The entry class for a hash map does not record key and value, but rather
* the position in the hash table of the corresponding entry. This is
* necessary so that calls to {@link java.util.Map.Entry#setValue(Object)}
* are reflected in the map
*/
final class MapEntry implements Double2LongMap.Entry, Map.Entry {
// The table index this entry refers to, or -1 if this entry has been
// deleted.
int index;
MapEntry(final int index) {
this.index = index;
}
MapEntry() {
}
/**
* {@inheritDoc}
*
* @deprecated Please use the corresponding type-specific method
* instead.
*/
@Deprecated
public Double getKey() {
return (Double.valueOf(key[index]));
}
public double getDoubleKey() {
return key[index];
}
/**
* {@inheritDoc}
*
* @deprecated Please use the corresponding type-specific method
* instead.
*/
@Deprecated
public Long getValue() {
return (Long.valueOf(value[index]));
}
public long getLongValue() {
return value[index];
}
public long setValue(final long v) {
final long oldValue = value[index];
value[index] = v;
return oldValue;
}
public Long setValue(final Long v) {
return (Long.valueOf(setValue(((v).longValue()))));
}
@SuppressWarnings("unchecked")
public boolean equals(final Object o) {
if (!(o instanceof Map.Entry)) return false;
Map.Entry e = (Map.Entry) o;
return (Double.doubleToLongBits(key[index]) == Double.doubleToLongBits(((e.getKey()).doubleValue()))) && ((value[index]) == (((e.getValue()).longValue())));
}
public int hashCode() {
return it.unimi.dsi.fastutil.HashCommon.double2int(key[index]) ^ it.unimi.dsi.fastutil.HashCommon.long2int(value[index]);
}
public String toString() {
return key[index] + "=>" + value[index];
}
}
/**
* Modifies the {@link #link} vector so that the given entry is removed.
* This method will complete in constant time.
*
* @param i
* the index of an entry.
*/
protected void fixPointers(final int i) {
if (size == 0) {
first = last = -1;
return;
}
if (first == i) {
first = (int) link[i];
if (0 <= first) {
// Special case of SET_PREV( link[ first ], -1 )
link[first] |= (-1 & 0xFFFFFFFFL) << 32;
}
return;
}
if (last == i) {
last = (int) (link[i] >>> 32);
if (0 <= last) {
// Special case of SET_NEXT( link[ last ], -1 )
link[last] |= -1 & 0xFFFFFFFFL;
}
return;
}
final long linki = link[i];
final int prev = (int) (linki >>> 32);
final int next = (int) linki;
link[prev] ^= ((link[prev] ^ (linki & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
link[next] ^= ((link[next] ^ (linki & 0xFFFFFFFF00000000L)) & 0xFFFFFFFF00000000L);
}
/**
* Modifies the {@link #link} vector for a shift from s to d.
*
* This method will complete in constant time.
*
* @param s
* the source position.
* @param d
* the destination position.
*/
protected void fixPointers(int s, int d) {
if (size == 1) {
first = last = d;
// Special case of SET_UPPER_LOWER( link[ d ], -1, -1 )
link[d] = -1L;
return;
}
if (first == s) {
first = d;
link[(int) link[s]] ^= ((link[(int) link[s]] ^ ((d & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L);
link[d] = link[s];
return;
}
if (last == s) {
last = d;
link[(int) (link[s] >>> 32)] ^= ((link[(int) (link[s] >>> 32)] ^ (d & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
link[d] = link[s];
return;
}
final long links = link[s];
final int prev = (int) (links >>> 32);
final int next = (int) links;
link[prev] ^= ((link[prev] ^ (d & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
link[next] ^= ((link[next] ^ ((d & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L);
link[d] = links;
}
/**
* Returns the first key of this map in iteration order.
*
* @return the first key in iteration order.
*/
public double firstDoubleKey() {
if (size == 0) throw new NoSuchElementException();
return key[first];
}
/**
* Returns the last key of this map in iteration order.
*
* @return the last key in iteration order.
*/
public double lastDoubleKey() {
if (size == 0) throw new NoSuchElementException();
return key[last];
}
public DoubleComparator comparator() {
return null;
}
public Double2LongSortedMap tailMap(double from) {
throw new UnsupportedOperationException();
}
public Double2LongSortedMap headMap(double to) {
throw new UnsupportedOperationException();
}
public Double2LongSortedMap subMap(double from, double to) {
throw new UnsupportedOperationException();
}
/**
* A list iterator over a linked map.
*
*
* This class provides a list iterator over a linked hash map. The
* constructor runs in constant time.
*/
private class MapIterator {
/**
* The entry that will be returned by the next call to
* {@link java.util.ListIterator#previous()} (or null
if no
* previous entry exists).
*/
int prev = -1;
/**
* The entry that will be returned by the next call to
* {@link java.util.ListIterator#next()} (or null
if no
* next entry exists).
*/
int next = -1;
/**
* The last entry that was returned (or -1 if we did not iterate or used
* {@link java.util.Iterator#remove()}).
*/
int curr = -1;
/**
* The current index (in the sense of a {@link java.util.ListIterator}).
* Note that this value is not meaningful when this iterator has been
* created using the nonempty constructor.
*/
int index = -1;
private MapIterator() {
next = first;
index = 0;
}
private MapIterator(final double from) {
if ((Double.doubleToLongBits(from) == 0)) {
if (Double2LongLinkedOpenHashMap.this.containsNullKey) {
next = (int) link[n];
prev = n;
return;
} else throw new NoSuchElementException("The key " + from + " does not belong to this map.");
}
if ((Double.doubleToLongBits(key[last]) == Double.doubleToLongBits(from))) {
prev = last;
index = size;
return;
}
// The starting point.
int pos = (int) it.unimi.dsi.fastutil.HashCommon.mix(Double.doubleToRawLongBits(from)) & mask;
// There's always an unused entry.
while (!(Double.doubleToLongBits(key[pos]) == 0)) {
if ((Double.doubleToLongBits(key[pos]) == Double.doubleToLongBits(from))) {
// Note: no valid index known.
next = (int) link[pos];
prev = pos;
return;
}
pos = (pos + 1) & mask;
}
throw new NoSuchElementException("The key " + from + " does not belong to this map.");
}
public boolean hasNext() {
return next != -1;
}
public boolean hasPrevious() {
return prev != -1;
}
private final void ensureIndexKnown() {
if (index >= 0) return;
if (prev == -1) {
index = 0;
return;
}
if (next == -1) {
index = size;
return;
}
int pos = first;
index = 1;
while (pos != prev) {
pos = (int) link[pos];
index++;
}
}
public int nextIndex() {
ensureIndexKnown();
return index;
}
public int previousIndex() {
ensureIndexKnown();
return index - 1;
}
public int nextEntry() {
if (!hasNext()) throw new NoSuchElementException();
curr = next;
next = (int) link[curr];
prev = curr;
if (index >= 0) index++;
return curr;
}
public int previousEntry() {
if (!hasPrevious()) throw new NoSuchElementException();
curr = prev;
prev = (int) (link[curr] >>> 32);
next = curr;
if (index >= 0) index--;
return curr;
}
public void remove() {
ensureIndexKnown();
if (curr == -1) throw new IllegalStateException();
if (curr == prev) {
/*
* If the last operation was a next(), we are removing an entry
* that preceeds the current index, and thus we must decrement
* it.
*/
index--;
prev = (int) (link[curr] >>> 32);
} else next = (int) link[curr];
size--;
/*
* Now we manually fix the pointers. Because of our knowledge of
* next and prev, this is going to be faster than calling
* fixPointers().
*/
if (prev == -1) first = next;
else link[prev] ^= ((link[prev] ^ (next & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
if (next == -1) last = prev;
else link[next] ^= ((link[next] ^ ((prev & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L);
int last, slot, pos = curr;
curr = -1;
if (pos == n) {
Double2LongLinkedOpenHashMap.this.containsNullKey = false;
} else {
double curr;
final double[] key = Double2LongLinkedOpenHashMap.this.key;
// We have to horribly duplicate the shiftKeys() code because we
// need to update next/prev.
for (;;) {
pos = ((last = pos) + 1) & mask;
for (;;) {
if ((Double.doubleToLongBits(curr = key[pos]) == 0)) {
key[last] = (0);
return;
}
slot = (int) it.unimi.dsi.fastutil.HashCommon.mix(Double.doubleToRawLongBits(curr)) & mask;
if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break;
pos = (pos + 1) & mask;
}
key[last] = curr;
value[last] = value[pos];
if (next == pos) next = last;
if (prev == pos) prev = last;
fixPointers(pos, last);
}
}
}
public int skip(final int n) {
int i = n;
while (i-- != 0 && hasNext())
nextEntry();
return n - i - 1;
}
public int back(final int n) {
int i = n;
while (i-- != 0 && hasPrevious())
previousEntry();
return n - i - 1;
}
}
private class EntryIterator extends MapIterator implements ObjectListIterator {
private MapEntry entry;
public EntryIterator() {
}
public EntryIterator(double from) {
super(from);
}
public MapEntry next() {
return entry = new MapEntry(nextEntry());
}
public MapEntry previous() {
return entry = new MapEntry(previousEntry());
}
@Override
public void remove() {
super.remove();
entry.index = -1; // You cannot use a deleted entry.
}
public void set(Double2LongMap.Entry ok) {
throw new UnsupportedOperationException();
}
public void add(Double2LongMap.Entry ok) {
throw new UnsupportedOperationException();
}
}
private class FastEntryIterator extends MapIterator implements ObjectListIterator {
final MapEntry entry = new MapEntry();
public FastEntryIterator() {
}
public FastEntryIterator(double from) {
super(from);
}
public MapEntry next() {
entry.index = nextEntry();
return entry;
}
public MapEntry previous() {
entry.index = previousEntry();
return entry;
}
public void set(Double2LongMap.Entry ok) {
throw new UnsupportedOperationException();
}
public void add(Double2LongMap.Entry ok) {
throw new UnsupportedOperationException();
}
}
private final class MapEntrySet extends AbstractObjectSortedSet implements FastSortedEntrySet {
public ObjectBidirectionalIterator iterator() {
return new EntryIterator();
}
public Comparator super Double2LongMap.Entry> comparator() {
return null;
}
public ObjectSortedSet subSet(Double2LongMap.Entry fromElement, Double2LongMap.Entry toElement) {
throw new UnsupportedOperationException();
}
public ObjectSortedSet headSet(Double2LongMap.Entry toElement) {
throw new UnsupportedOperationException();
}
public ObjectSortedSet tailSet(Double2LongMap.Entry fromElement) {
throw new UnsupportedOperationException();
}
public Double2LongMap.Entry first() {
if (size == 0) throw new NoSuchElementException();
return new MapEntry(Double2LongLinkedOpenHashMap.this.first);
}
public Double2LongMap.Entry last() {
if (size == 0) throw new NoSuchElementException();
return new MapEntry(Double2LongLinkedOpenHashMap.this.last);
}
public boolean contains(final Object o) {
if (!(o instanceof Map.Entry)) return false;
final Map.Entry, ?> e = (Map.Entry, ?>) o;
if (e.getKey() == null || !(e.getKey() instanceof Double)) return false;
if (e.getValue() == null || !(e.getValue() instanceof Long)) return false;
final double k = ((((Double) (e.getKey())).doubleValue()));
final long v = ((((Long) (e.getValue())).longValue()));
if ((Double.doubleToLongBits(k) == 0)) return Double2LongLinkedOpenHashMap.this.containsNullKey && ((value[n]) == (v));
double curr;
final double[] key = Double2LongLinkedOpenHashMap.this.key;
int pos;
// The starting point.
if ((Double.doubleToLongBits(curr = key[pos = (int) it.unimi.dsi.fastutil.HashCommon.mix(Double.doubleToRawLongBits(k)) & mask]) == 0)) return false;
if ((Double.doubleToLongBits(k) == Double.doubleToLongBits(curr))) return ((value[pos]) == (v));
// There's always an unused entry.
while (true) {
if ((Double.doubleToLongBits(curr = key[pos = (pos + 1) & mask]) == 0)) return false;
if ((Double.doubleToLongBits(k) == Double.doubleToLongBits(curr))) return ((value[pos]) == (v));
}
}
@Override
public boolean rem(final Object o) {
if (!(o instanceof Map.Entry)) return false;
final Map.Entry, ?> e = (Map.Entry, ?>) o;
if (e.getKey() == null || !(e.getKey() instanceof Double)) return false;
if (e.getValue() == null || !(e.getValue() instanceof Long)) return false;
final double k = ((((Double) (e.getKey())).doubleValue()));
final long v = ((((Long) (e.getValue())).longValue()));
if ((Double.doubleToLongBits(k) == 0)) {
if (containsNullKey && ((value[n]) == (v))) {
removeNullEntry();
return true;
}
return false;
}
double curr;
final double[] key = Double2LongLinkedOpenHashMap.this.key;
int pos;
// The starting point.
if ((Double.doubleToLongBits(curr = key[pos = (int) it.unimi.dsi.fastutil.HashCommon.mix(Double.doubleToRawLongBits(k)) & mask]) == 0)) return false;
if ((Double.doubleToLongBits(curr) == Double.doubleToLongBits(k))) {
if (((value[pos]) == (v))) {
removeEntry(pos);
return true;
}
return false;
}
while (true) {
if ((Double.doubleToLongBits(curr = key[pos = (pos + 1) & mask]) == 0)) return false;
if ((Double.doubleToLongBits(curr) == Double.doubleToLongBits(k))) {
if (((value[pos]) == (v))) {
removeEntry(pos);
return true;
}
}
}
}
public int size() {
return size;
}
public void clear() {
Double2LongLinkedOpenHashMap.this.clear();
}
public ObjectBidirectionalIterator iterator(final Double2LongMap.Entry from) {
return new EntryIterator(from.getDoubleKey());
}
public ObjectBidirectionalIterator fastIterator() {
return new FastEntryIterator();
}
public ObjectBidirectionalIterator fastIterator(final Double2LongMap.Entry from) {
return new FastEntryIterator(from.getDoubleKey());
}
}
public FastSortedEntrySet double2LongEntrySet() {
if (entries == null) entries = new MapEntrySet();
return entries;
}
/**
* An iterator on keys.
*
*
* We simply override the
* {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()}
* methods (and possibly their type-specific counterparts) so that they
* return keys instead of entries.
*/
private final class KeyIterator extends MapIterator implements DoubleListIterator {
public KeyIterator(final double k) {
super(k);
}
public double previousDouble() {
return key[previousEntry()];
}
public void set(double k) {
throw new UnsupportedOperationException();
}
public void add(double k) {
throw new UnsupportedOperationException();
}
public Double previous() {
return (Double.valueOf(key[previousEntry()]));
}
public void set(Double ok) {
throw new UnsupportedOperationException();
}
public void add(Double ok) {
throw new UnsupportedOperationException();
}
public KeyIterator() {
super();
}
public double nextDouble() {
return key[nextEntry()];
}
public Double next() {
return (Double.valueOf(key[nextEntry()]));
}
}
private final class KeySet extends AbstractDoubleSortedSet {
public DoubleListIterator iterator(final double from) {
return new KeyIterator(from);
}
public DoubleListIterator iterator() {
return new KeyIterator();
}
public int size() {
return size;
}
public boolean contains(double k) {
return containsKey(k);
}
public boolean rem(double k) {
final int oldSize = size;
Double2LongLinkedOpenHashMap.this.remove(k);
return size != oldSize;
}
public void clear() {
Double2LongLinkedOpenHashMap.this.clear();
}
public double firstDouble() {
if (size == 0) throw new NoSuchElementException();
return key[first];
}
public double lastDouble() {
if (size == 0) throw new NoSuchElementException();
return key[last];
}
public DoubleComparator comparator() {
return null;
}
final public DoubleSortedSet tailSet(double from) {
throw new UnsupportedOperationException();
}
final public DoubleSortedSet headSet(double to) {
throw new UnsupportedOperationException();
}
final public DoubleSortedSet subSet(double from, double to) {
throw new UnsupportedOperationException();
}
}
public DoubleSortedSet keySet() {
if (keys == null) keys = new KeySet();
return keys;
}
/**
* An iterator on values.
*
*
* We simply override the
* {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()}
* methods (and possibly their type-specific counterparts) so that they
* return values instead of entries.
*/
private final class ValueIterator extends MapIterator implements LongListIterator {
public long previousLong() {
return value[previousEntry()];
}
public Long previous() {
return (Long.valueOf(value[previousEntry()]));
}
public void set(Long ok) {
throw new UnsupportedOperationException();
}
public void add(Long ok) {
throw new UnsupportedOperationException();
}
public void set(long v) {
throw new UnsupportedOperationException();
}
public void add(long v) {
throw new UnsupportedOperationException();
}
public ValueIterator() {
super();
}
public long nextLong() {
return value[nextEntry()];
}
/**
* {@inheritDoc}
*
* @deprecated Please use the corresponding type-specific method
* instead.
*/
@Deprecated
@Override
public Long next() {
return (Long.valueOf(value[nextEntry()]));
}
}
public LongCollection values() {
if (values == null) values = new AbstractLongCollection() {
public LongIterator iterator() {
return new ValueIterator();
}
public int size() {
return size;
}
public boolean contains(long v) {
return containsValue(v);
}
public void clear() {
Double2LongLinkedOpenHashMap.this.clear();
}
};
return values;
}
/**
* A no-op for backward compatibility. The kind of tables implemented by
* this class never need rehashing.
*
*
* If you need to reduce the table size to fit exactly this set, use
* {@link #trim()}.
*
* @return true.
* @see #trim()
* @deprecated A no-op.
*/
@Deprecated
public boolean rehash() {
return true;
}
/**
* Rehashes the map, making the table as small as possible.
*
*
* This method rehashes the table to the smallest size satisfying the load
* factor. It can be used when the set will not be changed anymore, so to
* optimize access speed and size.
*
*
* If the table size is already the minimum possible, this method does
* nothing.
*
* @return true if there was enough memory to trim the map.
* @see #trim(int)
*/
public boolean trim() {
final int l = arraySize(size, f);
if (l >= n || size > maxFill(l, f)) return true;
try {
rehash(l);
} catch (OutOfMemoryError cantDoIt) {
return false;
}
return true;
}
/**
* Rehashes this map if the table is too large.
*
*
* Let N be the smallest table size that can hold
* max(n,{@link #size()})
entries, still satisfying the load
* factor. If the current table size is smaller than or equal to
* N, this method does nothing. Otherwise, it rehashes this map
* in a table of size N.
*
*
* This method is useful when reusing maps. {@linkplain #clear() Clearing a
* map} leaves the table size untouched. If you are reusing a map many
* times, you can call this method with a typical size to avoid keeping
* around a very large table just because of a few large transient maps.
*
* @param n
* the threshold for the trimming.
* @return true if there was enough memory to trim the map.
* @see #trim()
*/
public boolean trim(final int n) {
final int l = HashCommon.nextPowerOfTwo((int) Math.ceil(n / f));
if (l >= n || size > maxFill(l, f)) return true;
try {
rehash(l);
} catch (OutOfMemoryError cantDoIt) {
return false;
}
return true;
}
/**
* Rehashes the map.
*
*
* This method implements the basic rehashing strategy, and may be overriden
* by subclasses implementing different rehashing strategies (e.g.,
* disk-based rehashing). However, you should not override this method
* unless you understand the internal workings of this class.
*
* @param newN
* the new size
*/
protected void rehash(final int newN) {
final double key[] = this.key;
final long value[] = this.value;
final int mask = newN - 1; // Note that this is used by the hashing
// macro
final double newKey[] = new double[newN + 1];
final long newValue[] = new long[newN + 1];
int i = first, prev = -1, newPrev = -1, t, pos;
final long link[] = this.link;
final long newLink[] = new long[newN + 1];
first = -1;
for (int j = size; j-- != 0;) {
if ((Double.doubleToLongBits(key[i]) == 0)) pos = newN;
else {
pos = (int) it.unimi.dsi.fastutil.HashCommon.mix(Double.doubleToRawLongBits(key[i])) & mask;
while (!(Double.doubleToLongBits(newKey[pos]) == 0))
pos = (pos + 1) & mask;
}
newKey[pos] = key[i];
newValue[pos] = value[i];
if (prev != -1) {
newLink[newPrev] ^= ((newLink[newPrev] ^ (pos & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
newLink[pos] ^= ((newLink[pos] ^ ((newPrev & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L);
newPrev = pos;
} else {
newPrev = first = pos;
// Special case of SET(newLink[ pos ], -1, -1);
newLink[pos] = -1L;
}
t = i;
i = (int) link[i];
prev = t;
}
this.link = newLink;
this.last = newPrev;
if (newPrev != -1)
// Special case of SET_NEXT( newLink[ newPrev ], -1 );
newLink[newPrev] |= -1 & 0xFFFFFFFFL;
n = newN;
this.mask = mask;
maxFill = maxFill(n, f);
this.key = newKey;
this.value = newValue;
}
/**
* Returns a deep copy of this map.
*
*
* This method performs a deep copy of this hash map; the data stored in the
* map, however, is not cloned. Note that this makes a difference only for
* object keys.
*
* @return a deep copy of this map.
*/
public Double2LongLinkedOpenHashMap clone() {
Double2LongLinkedOpenHashMap c;
try {
c = (Double2LongLinkedOpenHashMap) super.clone();
} catch (CloneNotSupportedException cantHappen) {
throw new InternalError();
}
c.keys = null;
c.values = null;
c.entries = null;
c.containsNullKey = containsNullKey;
c.key = key.clone();
c.value = value.clone();
c.link = link.clone();
return c;
}
/**
* Returns a hash code for this map.
*
* This method overrides the generic method provided by the superclass.
* Since equals()
is not overriden, it is important that the
* value returned by this method is the same value as the one returned by
* the overriden method.
*
* @return a hash code for this map.
*/
public int hashCode() {
int h = 0;
for (int j = realSize(), i = 0, t = 0; j-- != 0;) {
while ((Double.doubleToLongBits(key[i]) == 0))
i++;
t = it.unimi.dsi.fastutil.HashCommon.double2int(key[i]);
t ^= it.unimi.dsi.fastutil.HashCommon.long2int(value[i]);
h += t;
i++;
}
// Zero / null keys have hash zero.
if (containsNullKey) h += it.unimi.dsi.fastutil.HashCommon.long2int(value[n]);
return h;
}
private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException {
final double key[] = this.key;
final long value[] = this.value;
final MapIterator i = new MapIterator();
s.defaultWriteObject();
for (int j = size, e; j-- != 0;) {
e = i.nextEntry();
s.writeDouble(key[e]);
s.writeLong(value[e]);
}
}
private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
n = arraySize(size, f);
maxFill = maxFill(n, f);
mask = n - 1;
final double key[] = this.key = new double[n + 1];
final long value[] = this.value = new long[n + 1];
final long link[] = this.link = new long[n + 1];
int prev = -1;
first = last = -1;
double k;
long v;
for (int i = size, pos; i-- != 0;) {
k = s.readDouble();
v = s.readLong();
if ((Double.doubleToLongBits(k) == 0)) {
pos = n;
containsNullKey = true;
} else {
pos = (int) it.unimi.dsi.fastutil.HashCommon.mix(Double.doubleToRawLongBits(k)) & mask;
while (!(Double.doubleToLongBits(key[pos]) == 0))
pos = (pos + 1) & mask;
}
key[pos] = k;
value[pos] = v;
if (first != -1) {
link[prev] ^= ((link[prev] ^ (pos & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
link[pos] ^= ((link[pos] ^ ((prev & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L);
prev = pos;
} else {
prev = first = pos;
// Special case of SET_PREV( newLink[ pos ], -1 );
link[pos] |= (-1L & 0xFFFFFFFFL) << 32;
}
}
last = prev;
if (prev != -1)
// Special case of SET_NEXT( link[ prev ], -1 );
link[prev] |= -1 & 0xFFFFFFFFL;
if (ASSERTS) checkTable();
}
private void checkTable() {
}
}