All Downloads are FREE. Search and download functionalities are using the official Maven repository.

it.unimi.dsi.fastutil.ints.IntBigArrays Maven / Gradle / Ivy

Go to download

fastutil extends the Java Collections Framework by providing type-specific maps, sets, lists and priority queues with a small memory footprint and fast access and insertion; provides also big (64-bit) arrays, sets and lists, and fast, practical I/O classes for binary and text files.

There is a newer version: 8.5.15
Show newest version
/* Copyright (C) 1991-2016 Free Software Foundation, Inc.
   This file is part of the GNU C Library.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   .  */
/* This header is separate from features.h so that the compiler can
   include it implicitly at the start of every compilation.  It must
   not itself include  or any other header that includes
    because the implicit include comes before any feature
   test macros that may be defined in a source file before it first
   explicitly includes a system header.  GCC knows the name of this
   header in order to preinclude it.  */
/* glibc's intent is to support the IEC 559 math functionality, real
   and complex.  If the GCC (4.9 and later) predefined macros
   specifying compiler intent are available, use them to determine
   whether the overall intent is to support these features; otherwise,
   presume an older compiler has intent to support these features and
   define these macros by default.  */
/* wchar_t uses Unicode 9.0.0.  Version 9.0 of the Unicode Standard is
   synchronized with ISO/IEC 10646:2014, fourth edition, plus
   Amd. 1  and Amd. 2 and 273 characters from forthcoming  10646, fifth edition.
   (Amd. 2 was published 2016-05-01,
   see https://www.iso.org/obp/ui/#iso:std:iso-iec:10646:ed-4:v1:amd:2:v1:en) */
/* We do not support C11 .  */
/* Generic definitions */
/* Assertions (useful to generate conditional code) */
/* Current type and class (and size, if applicable) */
/* Value methods */
/* Interfaces (keys) */
/* Interfaces (values) */
/* Abstract implementations (keys) */
/* Abstract implementations (values) */
/* Static containers (keys) */
/* Static containers (values) */
/* Implementations */
/* Synchronized wrappers */
/* Unmodifiable wrappers */
/* Other wrappers */
/* Methods (keys) */
/* Methods (values) */
/* Methods (keys/values) */
/* Methods that have special names depending on keys (but the special names depend on values) */
/* Equality */
/* Object/Reference-only definitions (keys) */
/* Primitive-type-only definitions (keys) */
/* Object/Reference-only definitions (values) */
/*		 
 * Copyright (C) 2009-2016 Sebastiano Vigna
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. 
 *
 *
 *
 * Copyright (C) 1999 CERN - European Organization for Nuclear Research.
 *
 *   Permission to use, copy, modify, distribute and sell this software and
 *   its documentation for any purpose is hereby granted without fee,
 *   provided that the above copyright notice appear in all copies and that
 *   both that copyright notice and this permission notice appear in
 *   supporting documentation. CERN makes no representations about the
 *   suitability of this software for any purpose. It is provided "as is"
 *   without expressed or implied warranty. 
 */
package it.unimi.dsi.fastutil.ints;

import java.util.Arrays;
import java.util.Random;
import it.unimi.dsi.fastutil.BigArrays;
import it.unimi.dsi.fastutil.Hash;
import static it.unimi.dsi.fastutil.BigArrays.ensureLength;
import static it.unimi.dsi.fastutil.BigArrays.start;
import static it.unimi.dsi.fastutil.BigArrays.segment;
import static it.unimi.dsi.fastutil.BigArrays.displacement;
import static it.unimi.dsi.fastutil.BigArrays.SEGMENT_MASK;
import static it.unimi.dsi.fastutil.BigArrays.SEGMENT_SHIFT;
import static it.unimi.dsi.fastutil.BigArrays.SEGMENT_SIZE;
import it.unimi.dsi.fastutil.bytes.ByteBigArrays;

/**
 * A class providing static methods and objects that do useful things with
 * {@linkplain BigArrays big arrays}.
 *
 * 

* In particular, the ensureCapacity(), grow(), * trim() and setLength() methods allow to handle big * arrays much like array lists. * *

* Note that {@link it.unimi.dsi.fastutil.io.BinIO} and * {@link it.unimi.dsi.fastutil.io.TextIO} contain several methods that make it * possible to load and save big arrays of primitive types as sequences of * elements in {@link java.io.DataInput} format (i.e., not as objects) or as * sequences of lines of text. * * @see BigArrays */ public class IntBigArrays { private IntBigArrays() { } /** A static, final, empty big array. */ public final static int[][] EMPTY_BIG_ARRAY = {}; /** * Returns the element of the given big array of specified index. * * @param array * a big array. * @param index * a position in the big array. * @return the element of the big array at the specified position. */ public static int get(final int[][] array, final long index) { return array[segment(index)][displacement(index)]; } /** * Sets the element of the given big array of specified index. * * @param array * a big array. * @param index * a position in the big array. * @param value * the new value for the array element at the specified position. */ public static void set(final int[][] array, final long index, int value) { array[segment(index)][displacement(index)] = value; } /** * Swaps the element of the given big array of specified indices. * * @param array * a big array. * @param first * a position in the big array. * @param second * a position in the big array. */ public static void swap(final int[][] array, final long first, final long second) { final int t = array[segment(first)][displacement(first)]; array[segment(first)][displacement(first)] = array[segment(second)][displacement(second)]; array[segment(second)][displacement(second)] = t; } /** * Adds the specified increment the element of the given big array of * specified index. * * @param array * a big array. * @param index * a position in the big array. * @param incr * the increment */ public static void add(final int[][] array, final long index, int incr) { array[segment(index)][displacement(index)] += incr; } /** * Multiplies by the specified factor the element of the given big array of * specified index. * * @param array * a big array. * @param index * a position in the big array. * @param factor * the factor */ public static void mul(final int[][] array, final long index, int factor) { array[segment(index)][displacement(index)] *= factor; } /** * Increments the element of the given big array of specified index. * * @param array * a big array. * @param index * a position in the big array. */ public static void incr(final int[][] array, final long index) { array[segment(index)][displacement(index)]++; } /** * Decrements the element of the given big array of specified index. * * @param array * a big array. * @param index * a position in the big array. */ public static void decr(final int[][] array, final long index) { array[segment(index)][displacement(index)]--; } /** * Returns the length of the given big array. * * @param array * a big array. * @return the length of the given big array. */ public static long length(final int[][] array) { final int length = array.length; return length == 0 ? 0 : start(length - 1) + array[length - 1].length; } /** * Copies a big array from the specified source big array, beginning at the * specified position, to the specified position of the destination big * array. Handles correctly overlapping regions of the same big array. * * @param srcArray * the source big array. * @param srcPos * the starting position in the source big array. * @param destArray * the destination big array. * @param destPos * the starting position in the destination data. * @param length * the number of elements to be copied. */ public static void copy(final int[][] srcArray, final long srcPos, final int[][] destArray, final long destPos, long length) { if (destPos <= srcPos) { int srcSegment = segment(srcPos); int destSegment = segment(destPos); int srcDispl = displacement(srcPos); int destDispl = displacement(destPos); int l; while (length > 0) { l = (int) Math.min(length, Math.min(srcArray[srcSegment].length - srcDispl, destArray[destSegment].length - destDispl)); System.arraycopy(srcArray[srcSegment], srcDispl, destArray[destSegment], destDispl, l); if ((srcDispl += l) == SEGMENT_SIZE) { srcDispl = 0; srcSegment++; } if ((destDispl += l) == SEGMENT_SIZE) { destDispl = 0; destSegment++; } length -= l; } } else { int srcSegment = segment(srcPos + length); int destSegment = segment(destPos + length); int srcDispl = displacement(srcPos + length); int destDispl = displacement(destPos + length); int l; while (length > 0) { if (srcDispl == 0) { srcDispl = SEGMENT_SIZE; srcSegment--; } if (destDispl == 0) { destDispl = SEGMENT_SIZE; destSegment--; } l = (int) Math.min(length, Math.min(srcDispl, destDispl)); System.arraycopy(srcArray[srcSegment], srcDispl - l, destArray[destSegment], destDispl - l, l); srcDispl -= l; destDispl -= l; length -= l; } } } /** * Copies a big array from the specified source big array, beginning at the * specified position, to the specified position of the destination array. * * @param srcArray * the source big array. * @param srcPos * the starting position in the source big array. * @param destArray * the destination array. * @param destPos * the starting position in the destination data. * @param length * the number of elements to be copied. */ public static void copyFromBig(final int[][] srcArray, final long srcPos, final int[] destArray, int destPos, int length) { int srcSegment = segment(srcPos); int srcDispl = displacement(srcPos); int l; while (length > 0) { l = Math.min(srcArray[srcSegment].length - srcDispl, length); System.arraycopy(srcArray[srcSegment], srcDispl, destArray, destPos, l); if ((srcDispl += l) == SEGMENT_SIZE) { srcDispl = 0; srcSegment++; } destPos += l; length -= l; } } /** * Copies an array from the specified source array, beginning at the * specified position, to the specified position of the destination big * array. * * @param srcArray * the source array. * @param srcPos * the starting position in the source array. * @param destArray * the destination big array. * @param destPos * the starting position in the destination data. * @param length * the number of elements to be copied. */ public static void copyToBig(final int[] srcArray, int srcPos, final int[][] destArray, final long destPos, long length) { int destSegment = segment(destPos); int destDispl = displacement(destPos); int l; while (length > 0) { l = (int) Math.min(destArray[destSegment].length - destDispl, length); System.arraycopy(srcArray, srcPos, destArray[destSegment], destDispl, l); if ((destDispl += l) == SEGMENT_SIZE) { destDispl = 0; destSegment++; } srcPos += l; length -= l; } } /** * Creates a new big array. * * @param length * the length of the new big array. * @return a new big array of given length. */ public static int[][] newBigArray(final long length) { if (length == 0) return EMPTY_BIG_ARRAY; ensureLength(length); final int baseLength = (int) ((length + SEGMENT_MASK) >>> SEGMENT_SHIFT); int[][] base = new int[baseLength][]; final int residual = (int) (length & SEGMENT_MASK); if (residual != 0) { for (int i = 0; i < baseLength - 1; i++) base[i] = new int[SEGMENT_SIZE]; base[baseLength - 1] = new int[residual]; } else for (int i = 0; i < baseLength; i++) base[i] = new int[SEGMENT_SIZE]; return base; } /** * Turns a standard array into a big array. * *

* Note that the returned big array might contain as a segment the original * array. * * @param array * an array. * @return a new big array with the same length and content of * array. */ public static int[][] wrap(final int[] array) { if (array.length == 0) return EMPTY_BIG_ARRAY; if (array.length <= SEGMENT_SIZE) return new int[][] { array }; final int[][] bigArray = newBigArray(array.length); for (int i = 0; i < bigArray.length; i++) System.arraycopy(array, (int) start(i), bigArray[i], 0, bigArray[i].length); return bigArray; } /** * Ensures that a big array can contain the given number of entries. * *

* If you cannot foresee whether this big array will need again to be * enlarged, you should probably use grow() instead. * *

* Warning: the returned array might use part of the * segments of the original array, which must be considered read-only after * calling this method. * * @param array * a big array. * @param length * the new minimum length for this big array. * @return array, if it contains length entries or * more; otherwise, a big array with length entries * whose first length(array) entries are the same as * those of array. */ public static int[][] ensureCapacity(final int[][] array, final long length) { return ensureCapacity(array, length, length(array)); } /** * Ensures that a big array can contain the given number of entries, * preserving just a part of the big array. * *

* Warning: the returned array might use part of the * segments of the original array, which must be considered read-only after * calling this method. * * @param array * a big array. * @param length * the new minimum length for this big array. * @param preserve * the number of elements of the big array that must be preserved * in case a new allocation is necessary. * @return array, if it can contain length entries * or more; otherwise, a big array with length entries * whose first preserve entries are the same as those * of array. */ public static int[][] ensureCapacity(final int[][] array, final long length, final long preserve) { final long oldLength = length(array); if (length > oldLength) { ensureLength(length); final int valid = array.length - (array.length == 0 || array.length > 0 && array[array.length - 1].length == SEGMENT_SIZE ? 0 : 1); final int baseLength = (int) ((length + SEGMENT_MASK) >>> SEGMENT_SHIFT); final int[][] base = Arrays.copyOf(array, baseLength); final int residual = (int) (length & SEGMENT_MASK); if (residual != 0) { for (int i = valid; i < baseLength - 1; i++) base[i] = new int[SEGMENT_SIZE]; base[baseLength - 1] = new int[residual]; } else for (int i = valid; i < baseLength; i++) base[i] = new int[SEGMENT_SIZE]; if (preserve - (valid * (long) SEGMENT_SIZE) > 0) copy(array, valid * (long) SEGMENT_SIZE, base, valid * (long) SEGMENT_SIZE, preserve - (valid * (long) SEGMENT_SIZE)); return base; } return array; } /** * Grows the given big array to the maximum between the given length and the * current length multiplied by two, provided that the given length is * larger than the current length. * *

* If you want complete control on the big array growth, you should probably * use ensureCapacity() instead. * *

* Warning: the returned array might use part of the * segments of the original array, which must be considered read-only after * calling this method. * * @param array * a big array. * @param length * the new minimum length for this big array. * @return array, if it can contain length * entries; otherwise, a big array with * max(length,length(array)/φ) entries * whose first length(array) entries are the same as * those of array. */ public static int[][] grow(final int[][] array, final long length) { final long oldLength = length(array); return length > oldLength ? grow(array, length, oldLength) : array; } /** * Grows the given big array to the maximum between the given length and the * current length multiplied by two, provided that the given length is * larger than the current length, preserving just a part of the big array. * *

* If you want complete control on the big array growth, you should probably * use ensureCapacity() instead. * *

* Warning: the returned array might use part of the * segments of the original array, which must be considered read-only after * calling this method. * * @param array * a big array. * @param length * the new minimum length for this big array. * @param preserve * the number of elements of the big array that must be preserved * in case a new allocation is necessary. * @return array, if it can contain length * entries; otherwise, a big array with * max(length,length(array)/φ) entries * whose first preserve entries are the same as those * of array. */ public static int[][] grow(final int[][] array, final long length, final long preserve) { final long oldLength = length(array); return length > oldLength ? ensureCapacity(array, Math.max(2 * oldLength, length), preserve) : array; } /** * Trims the given big array to the given length. * *

* Warning: the returned array might use part of the * segments of the original array, which must be considered read-only after * calling this method. * * @param array * a big array. * @param length * the new maximum length for the big array. * @return array, if it contains length entries or * less; otherwise, a big array with length entries * whose entries are the same as the first length * entries of array. * */ public static int[][] trim(final int[][] array, final long length) { ensureLength(length); final long oldLength = length(array); if (length >= oldLength) return array; final int baseLength = (int) ((length + SEGMENT_MASK) >>> SEGMENT_SHIFT); final int[][] base = Arrays.copyOf(array, baseLength); final int residual = (int) (length & SEGMENT_MASK); if (residual != 0) base[baseLength - 1] = IntArrays.trim(base[baseLength - 1], residual); return base; } /** * Sets the length of the given big array. * *

* Warning: the returned array might use part of the * segments of the original array, which must be considered read-only after * calling this method. * * @param array * a big array. * @param length * the new length for the big array. * @return array, if it contains exactly length * entries; otherwise, if it contains more than * length entries, a big array with length * entries whose entries are the same as the first * length entries of array; otherwise, a * big array with length entries whose first * length(array) entries are the same as those of * array. * */ public static int[][] setLength(final int[][] array, final long length) { final long oldLength = length(array); if (length == oldLength) return array; if (length < oldLength) return trim(array, length); return ensureCapacity(array, length); } /** * Returns a copy of a portion of a big array. * * @param array * a big array. * @param offset * the first element to copy. * @param length * the number of elements to copy. * @return a new big array containing length elements of * array starting at offset. */ public static int[][] copy(final int[][] array, final long offset, final long length) { ensureOffsetLength(array, offset, length); final int[][] a = newBigArray(length); copy(array, offset, a, 0, length); return a; } /** * Returns a copy of a big array. * * @param array * a big array. * @return a copy of array. */ public static int[][] copy(final int[][] array) { final int[][] base = array.clone(); for (int i = base.length; i-- != 0;) base[i] = array[i].clone(); return base; } /** * Fills the given big array with the given value. * *

* This method uses a backward loop. It is significantly faster than the * corresponding method in {@link java.util.Arrays}. * * @param array * a big array. * @param value * the new value for all elements of the big array. */ public static void fill(final int[][] array, final int value) { for (int i = array.length; i-- != 0;) Arrays.fill(array[i], value); } /** * Fills a portion of the given big array with the given value. * *

* If possible (i.e., from is 0) this method uses a backward * loop. In this case, it is significantly faster than the corresponding * method in {@link java.util.Arrays}. * * @param array * a big array. * @param from * the starting index of the portion to fill. * @param to * the end index of the portion to fill. * @param value * the new value for all elements of the specified portion of the * big array. */ public static void fill(final int[][] array, final long from, long to, final int value) { final long length = length(array); BigArrays.ensureFromTo(length, from, to); int fromSegment = segment(from); int toSegment = segment(to); int fromDispl = displacement(from); int toDispl = displacement(to); if (fromSegment == toSegment) { Arrays.fill(array[fromSegment], fromDispl, toDispl, value); return; } if (toDispl != 0) Arrays.fill(array[toSegment], 0, toDispl, value); while (--toSegment > fromSegment) Arrays.fill(array[toSegment], value); Arrays.fill(array[fromSegment], fromDispl, SEGMENT_SIZE, value); } /** * Returns true if the two big arrays are elementwise equal. * *

* This method uses a backward loop. It is significantly faster than the * corresponding method in {@link java.util.Arrays}. * * @param a1 * a big array. * @param a2 * another big array. * @return true if the two big arrays are of the same length, and their * elements are equal. */ public static boolean equals(final int[][] a1, final int a2[][]) { if (length(a1) != length(a2)) return false; int i = a1.length, j; int[] t, u; while (i-- != 0) { t = a1[i]; u = a2[i]; j = t.length; while (j-- != 0) if (!((t[j]) == (u[j]))) return false; } return true; } /* * Returns a string representation of the contents of the specified big * array. * * The string representation consists of a list of the big array's elements, * enclosed in square brackets ("[]"). Adjacent elements are separated by * the characters ", " (a comma followed by a space). Returns "null" if * a is null. * * @param a the big array whose string representation to return. * * @return the string representation of a. */ public static String toString(final int[][] a) { if (a == null) return "null"; final long last = length(a) - 1; if (last == -1) return "[]"; final StringBuilder b = new StringBuilder(); b.append('['); for (long i = 0;; i++) { b.append(String.valueOf(get(a, i))); if (i == last) return b.append(']').toString(); b.append(", "); } } /** * Ensures that a range given by its first (inclusive) and last (exclusive) * elements fits a big array. * *

* This method may be used whenever a big array range check is needed. * * @param a * a big array. * @param from * a start index (inclusive). * @param to * an end index (inclusive). * @throws IllegalArgumentException * if from is greater than to. * @throws ArrayIndexOutOfBoundsException * if from or to are greater than the * big array length or negative. */ public static void ensureFromTo(final int[][] a, final long from, final long to) { BigArrays.ensureFromTo(length(a), from, to); } /** * Ensures that a range given by an offset and a length fits a big array. * *

* This method may be used whenever a big array range check is needed. * * @param a * a big array. * @param offset * a start index. * @param length * a length (the number of elements in the range). * @throws IllegalArgumentException * if length is negative. * @throws ArrayIndexOutOfBoundsException * if offset is negative or * offset+length is greater than the * big array length. */ public static void ensureOffsetLength(final int[][] a, final long offset, final long length) { BigArrays.ensureOffsetLength(length(a), offset, length); } /** A type-specific content-based hash strategy for big arrays. */ private static final class BigArrayHashStrategy implements Hash.Strategy, java.io.Serializable { private static final long serialVersionUID = -7046029254386353129L; public int hashCode(final int[][] o) { return java.util.Arrays.deepHashCode(o); } public boolean equals(final int[][] a, final int[][] b) { return IntBigArrays.equals(a, b); } } /** * A type-specific content-based hash strategy for big arrays. * *

* This hash strategy may be used in custom hash collections whenever keys * are big arrays, and they must be considered equal by content. This * strategy will handle null correctly, and it is serializable. */ @SuppressWarnings({ "rawtypes" }) public final static Hash.Strategy HASH_STRATEGY = new BigArrayHashStrategy(); private static final int SMALL = 7; private static final int MEDIUM = 40; private static void vecSwap(final int[][] x, long a, long b, final long n) { for (int i = 0; i < n; i++, a++, b++) swap(x, a, b); } private static long med3(final int x[][], final long a, final long b, final long c, IntComparator comp) { int ab = comp.compare(get(x, a), get(x, b)); int ac = comp.compare(get(x, a), get(x, c)); int bc = comp.compare(get(x, b), get(x, c)); return (ab < 0 ? (bc < 0 ? b : ac < 0 ? c : a) : (bc > 0 ? b : ac > 0 ? c : a)); } private static void selectionSort(final int[][] a, final long from, final long to, final IntComparator comp) { for (long i = from; i < to - 1; i++) { long m = i; for (long j = i + 1; j < to; j++) if (comp.compare(IntBigArrays.get(a, j), IntBigArrays.get(a, m)) < 0) m = j; if (m != i) swap(a, i, m); } } /** * Sorts the specified range of elements according to the order induced by * the specified comparator using quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley * and M. Douglas McIlroy, “Engineering a Sort Function”, * Software: Practice and Experience, 23(11), pages 1249−1265, * 1993. * * @param x * the big array to be sorted. * @param from * the index of the first element (inclusive) to be sorted. * @param to * the index of the last element (exclusive) to be sorted. * @param comp * the comparator to determine the sorting order. */ public static void quickSort(final int[][] x, final long from, final long to, final IntComparator comp) { final long len = to - from; // Selection sort on smallest arrays if (len < SMALL) { selectionSort(x, from, to, comp); return; } // Choose a partition element, v long m = from + len / 2; // Small arrays, middle element if (len > SMALL) { long l = from; long n = to - 1; if (len > MEDIUM) { // Big arrays, pseudomedian of 9 long s = len / 8; l = med3(x, l, l + s, l + 2 * s, comp); m = med3(x, m - s, m, m + s, comp); n = med3(x, n - 2 * s, n - s, n, comp); } m = med3(x, l, m, n, comp); // Mid-size, med of 3 } final int v = get(x, m); // Establish Invariant: v* (v)* v* long a = from, b = a, c = to - 1, d = c; while (true) { int comparison; while (b <= c && (comparison = comp.compare(get(x, b), v)) <= 0) { if (comparison == 0) swap(x, a++, b); b++; } while (c >= b && (comparison = comp.compare(get(x, c), v)) >= 0) { if (comparison == 0) swap(x, c, d--); c--; } if (b > c) break; swap(x, b++, c--); } // Swap partition elements back to middle long s, n = to; s = Math.min(a - from, b - a); vecSwap(x, from, b - s, s); s = Math.min(d - c, n - d - 1); vecSwap(x, b, n - s, s); // Recursively sort non-partition-elements if ((s = b - a) > 1) quickSort(x, from, from + s, comp); if ((s = d - c) > 1) quickSort(x, n - s, n, comp); } private static long med3(final int x[][], final long a, final long b, final long c) { int ab = (Integer.compare((get(x, a)), (get(x, b)))); int ac = (Integer.compare((get(x, a)), (get(x, c)))); int bc = (Integer.compare((get(x, b)), (get(x, c)))); return (ab < 0 ? (bc < 0 ? b : ac < 0 ? c : a) : (bc > 0 ? b : ac > 0 ? c : a)); } private static void selectionSort(final int[][] a, final long from, final long to) { for (long i = from; i < to - 1; i++) { long m = i; for (long j = i + 1; j < to; j++) if (((IntBigArrays.get(a, j)) < (IntBigArrays.get(a, m)))) m = j; if (m != i) swap(a, i, m); } } /** * Sorts the specified big array according to the order induced by the * specified comparator using quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley * and M. Douglas McIlroy, “Engineering a Sort Function”, * Software: Practice and Experience, 23(11), pages 1249−1265, * 1993. * * @param x * the big array to be sorted. * @param comp * the comparator to determine the sorting order. * */ public static void quickSort(final int[][] x, final IntComparator comp) { quickSort(x, 0, IntBigArrays.length(x), comp); } /** * Sorts the specified range of elements according to the natural ascending * order using quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley * and M. Douglas McIlroy, “Engineering a Sort Function”, * Software: Practice and Experience, 23(11), pages 1249−1265, * 1993. * * @param x * the big array to be sorted. * @param from * the index of the first element (inclusive) to be sorted. * @param to * the index of the last element (exclusive) to be sorted. */ public static void quickSort(final int[][] x, final long from, final long to) { final long len = to - from; // Selection sort on smallest arrays if (len < SMALL) { selectionSort(x, from, to); return; } // Choose a partition element, v long m = from + len / 2; // Small arrays, middle element if (len > SMALL) { long l = from; long n = to - 1; if (len > MEDIUM) { // Big arrays, pseudomedian of 9 long s = len / 8; l = med3(x, l, l + s, l + 2 * s); m = med3(x, m - s, m, m + s); n = med3(x, n - 2 * s, n - s, n); } m = med3(x, l, m, n); // Mid-size, med of 3 } final int v = get(x, m); // Establish Invariant: v* (v)* v* long a = from, b = a, c = to - 1, d = c; while (true) { int comparison; while (b <= c && (comparison = (Integer.compare((get(x, b)), (v)))) <= 0) { if (comparison == 0) swap(x, a++, b); b++; } while (c >= b && (comparison = (Integer.compare((get(x, c)), (v)))) >= 0) { if (comparison == 0) swap(x, c, d--); c--; } if (b > c) break; swap(x, b++, c--); } // Swap partition elements back to middle long s, n = to; s = Math.min(a - from, b - a); vecSwap(x, from, b - s, s); s = Math.min(d - c, n - d - 1); vecSwap(x, b, n - s, s); // Recursively sort non-partition-elements if ((s = b - a) > 1) quickSort(x, from, from + s); if ((s = d - c) > 1) quickSort(x, n - s, n); } /** * Sorts the specified big array according to the natural ascending order * using quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley * and M. Douglas McIlroy, “Engineering a Sort Function”, * Software: Practice and Experience, 23(11), pages 1249−1265, * 1993. * * @param x * the big array to be sorted. */ public static void quickSort(final int[][] x) { quickSort(x, 0, IntBigArrays.length(x)); } /** * Searches a range of the specified big array for the specified value using * the binary search algorithm. The range must be sorted prior to making * this call. If it is not sorted, the results are undefined. If the range * contains multiple elements with the specified value, there is no * guarantee which one will be found. * * @param a * the big array to be searched. * @param from * the index of the first element (inclusive) to be searched. * @param to * the index of the last element (exclusive) to be searched. * @param key * the value to be searched for. * @return index of the search key, if it is contained in the big array; * otherwise, (-(insertion point) - 1). The * insertion point is defined as the the point at which the * value would be inserted into the big array: the index of the * first element greater than the key, or the length of the big * array, if all elements in the big array are less than the * specified key. Note that this guarantees that the return value * will be >= 0 if and only if the key is found. * @see java.util.Arrays */ public static long binarySearch(final int[][] a, long from, long to, final int key) { int midVal; to--; while (from <= to) { final long mid = (from + to) >>> 1; midVal = get(a, mid); if (midVal < key) from = mid + 1; else if (midVal > key) to = mid - 1; else return mid; } return -(from + 1); } /** * Searches a big array for the specified value using the binary search * algorithm. The range must be sorted prior to making this call. If it is * not sorted, the results are undefined. If the range contains multiple * elements with the specified value, there is no guarantee which one will * be found. * * @param a * the big array to be searched. * @param key * the value to be searched for. * @return index of the search key, if it is contained in the big array; * otherwise, (-(insertion point) - 1). The * insertion point is defined as the the point at which the * value would be inserted into the big array: the index of the * first element greater than the key, or the length of the big * array, if all elements in the big array are less than the * specified key. Note that this guarantees that the return value * will be >= 0 if and only if the key is found. * @see java.util.Arrays */ public static long binarySearch(final int[][] a, final int key) { return binarySearch(a, 0, IntBigArrays.length(a), key); } /** * Searches a range of the specified big array for the specified value using * the binary search algorithm and a specified comparator. The range must be * sorted following the comparator prior to making this call. If it is not * sorted, the results are undefined. If the range contains multiple * elements with the specified value, there is no guarantee which one will * be found. * * @param a * the big array to be searched. * @param from * the index of the first element (inclusive) to be searched. * @param to * the index of the last element (exclusive) to be searched. * @param key * the value to be searched for. * @param c * a comparator. * @return index of the search key, if it is contained in the big array; * otherwise, (-(insertion point) - 1). The * insertion point is defined as the the point at which the * value would be inserted into the big array: the index of the * first element greater than the key, or the length of the big * array, if all elements in the big array are less than the * specified key. Note that this guarantees that the return value * will be >= 0 if and only if the key is found. * @see java.util.Arrays */ public static long binarySearch(final int[][] a, long from, long to, final int key, final IntComparator c) { int midVal; to--; while (from <= to) { final long mid = (from + to) >>> 1; midVal = get(a, mid); final int cmp = c.compare(midVal, key); if (cmp < 0) from = mid + 1; else if (cmp > 0) to = mid - 1; else return mid; // key found } return -(from + 1); } /** * Searches a big array for the specified value using the binary search * algorithm and a specified comparator. The range must be sorted following * the comparator prior to making this call. If it is not sorted, the * results are undefined. If the range contains multiple elements with the * specified value, there is no guarantee which one will be found. * * @param a * the big array to be searched. * @param key * the value to be searched for. * @param c * a comparator. * @return index of the search key, if it is contained in the big array; * otherwise, (-(insertion point) - 1). The * insertion point is defined as the the point at which the * value would be inserted into the big array: the index of the * first element greater than the key, or the length of the big * array, if all elements in the big array are less than the * specified key. Note that this guarantees that the return value * will be >= 0 if and only if the key is found. * @see java.util.Arrays */ public static long binarySearch(final int[][] a, final int key, final IntComparator c) { return binarySearch(a, 0, IntBigArrays.length(a), key, c); } /** The size of a digit used during radix sort (must be a power of 2). */ private static final int DIGIT_BITS = 8; /** The mask to extract a digit of {@link #DIGIT_BITS} bits. */ private static final int DIGIT_MASK = (1 << DIGIT_BITS) - 1; /** The number of digits per element. */ private static final int DIGITS_PER_ELEMENT = Integer.SIZE / DIGIT_BITS; /** * This method fixes negative numbers so that the combination * exponent/significand is lexicographically sorted. */ /** * Sorts the specified big array using radix sort. * *

* The sorting algorithm is a tuned radix sort adapted from Peter M. * McIlroy, Keith Bostic and M. Douglas McIlroy, “Engineering radix * sort”, Computing Systems, 6(1), pages 5−27 (1993), and * further improved using the digit-oracle idea described by Juha * Kärkkäinen and Tommi Rantala in “Engineering radix sort * for strings”, String Processing and Information Retrieval, 15th * International Symposium, volume 5280 of Lecture Notes in Computer * Science, pages 3−14, Springer (2008). * *

* This implementation is significantly faster than quicksort already at * small sizes (say, more than 10000 elements), but it can only sort in * ascending order. It will allocate a support array of bytes with the same * number of elements as the array to be sorted. * * @param a * the big array to be sorted. */ public static void radixSort(final int[][] a) { radixSort(a, 0, IntBigArrays.length(a)); } /** * Sorts the specified big array using radix sort. * *

* The sorting algorithm is a tuned radix sort adapted from Peter M. * McIlroy, Keith Bostic and M. Douglas McIlroy, “Engineering radix * sort”, Computing Systems, 6(1), pages 5−27 (1993), and * further improved using the digit-oracle idea described by Juha * Kärkkäinen and Tommi Rantala in “Engineering radix sort * for strings”, String Processing and Information Retrieval, 15th * International Symposium, volume 5280 of Lecture Notes in Computer * Science, pages 3−14, Springer (2008). * *

* This implementation is significantly faster than quicksort already at * small sizes (say, more than 10000 elements), but it can only sort in * ascending order. It will allocate a support array of bytes with the same * number of elements as the array to be sorted. * * @param a * the big array to be sorted. * @param from * the index of the first element (inclusive) to be sorted. * @param to * the index of the last element (exclusive) to be sorted. */ public static void radixSort(final int[][] a, final long from, final long to) { final int maxLevel = DIGITS_PER_ELEMENT - 1; final int stackSize = ((1 << DIGIT_BITS) - 1) * (DIGITS_PER_ELEMENT - 1) + 1; final long[] offsetStack = new long[stackSize]; int offsetPos = 0; final long[] lengthStack = new long[stackSize]; int lengthPos = 0; final int[] levelStack = new int[stackSize]; int levelPos = 0; offsetStack[offsetPos++] = from; lengthStack[lengthPos++] = to - from; levelStack[levelPos++] = 0; final long[] count = new long[1 << DIGIT_BITS]; final long[] pos = new long[1 << DIGIT_BITS]; final byte[][] digit = ByteBigArrays.newBigArray(to - from); while (offsetPos > 0) { final long first = offsetStack[--offsetPos]; final long length = lengthStack[--lengthPos]; final int level = levelStack[--levelPos]; final int signMask = level % DIGITS_PER_ELEMENT == 0 ? 1 << DIGIT_BITS - 1 : 0; if (length < MEDIUM) { selectionSort(a, first, first + length); continue; } final int shift = (DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT) * DIGIT_BITS; // This // is // the // shift // that // extract // the // right // byte // from // a // key // Count keys. for (long i = length; i-- != 0;) ByteBigArrays.set(digit, i, (byte) ((((IntBigArrays.get(a, first + i)) >>> shift) & DIGIT_MASK) ^ signMask)); for (long i = length; i-- != 0;) count[ByteBigArrays.get(digit, i) & 0xFF]++; // Compute cumulative distribution and push non-singleton keys on // stack. int lastUsed = -1; long p = 0; for (int i = 0; i < 1 << DIGIT_BITS; i++) { if (count[i] != 0) { lastUsed = i; if (level < maxLevel && count[i] > 1) { // System.err.println( " Pushing " + new StackEntry( // first + pos[ i - 1 ], first + pos[ i ], level + 1 ) // ); offsetStack[offsetPos++] = p + first; lengthStack[lengthPos++] = count[i]; levelStack[levelPos++] = level + 1; } } pos[i] = (p += count[i]); } // When all slots are OK, the last slot is necessarily OK. final long end = length - count[lastUsed]; count[lastUsed] = 0; // i moves through the start of each block int c = -1; for (long i = 0, d; i < end; i += count[c], count[c] = 0) { int t = IntBigArrays.get(a, i + first); c = ByteBigArrays.get(digit, i) & 0xFF; while ((d = --pos[c]) > i) { final int z = t; final int zz = c; t = IntBigArrays.get(a, d + first); c = ByteBigArrays.get(digit, d) & 0xFF; IntBigArrays.set(a, d + first, z); ByteBigArrays.set(digit, d, (byte) zz); } IntBigArrays.set(a, i + first, t); } } } private static void selectionSort(final int[][] a, final int[][] b, final long from, final long to) { for (long i = from; i < to - 1; i++) { long m = i; for (long j = i + 1; j < to; j++) if (((IntBigArrays.get(a, j)) < (IntBigArrays.get(a, m))) || ((IntBigArrays.get(a, j)) == (IntBigArrays.get(a, m))) && ((IntBigArrays.get(b, j)) < (IntBigArrays.get(b, m)))) m = j; if (m != i) { int t = IntBigArrays.get(a, i); IntBigArrays.set(a, i, IntBigArrays.get(a, m)); IntBigArrays.set(a, m, t); t = IntBigArrays.get(b, i); IntBigArrays.set(b, i, IntBigArrays.get(b, m)); IntBigArrays.set(b, m, t); } } } /** * Sorts the specified pair of big arrays lexicographically using radix * sort. *

* The sorting algorithm is a tuned radix sort adapted from Peter M. * McIlroy, Keith Bostic and M. Douglas McIlroy, “Engineering radix * sort”, Computing Systems, 6(1), pages 5−27 (1993), and * further improved using the digit-oracle idea described by Juha * Kärkkäinen and Tommi Rantala in “Engineering radix sort * for strings”, String Processing and Information Retrieval, 15th * International Symposium, volume 5280 of Lecture Notes in Computer * Science, pages 3−14, Springer (2008). * *

* This method implements a lexicographical sorting of the * arguments. Pairs of elements in the same position in the two provided * arrays will be considered a single key, and permuted accordingly. In the * end, either a[ i ] < a[ i + 1 ] or * a[ i ] == a[ i + 1 ] and * b[ i ] <= b[ i + 1 ]. * *

* This implementation is significantly faster than quicksort already at * small sizes (say, more than 10000 elements), but it can only sort in * ascending order. It will allocate a support array of bytes with the same * number of elements as the arrays to be sorted. * * @param a * the first big array to be sorted. * @param b * the second big array to be sorted. */ public static void radixSort(final int[][] a, final int[][] b) { radixSort(a, b, 0, IntBigArrays.length(a)); } /** * Sorts the specified pair of big arrays lexicographically using radix * sort. * *

* The sorting algorithm is a tuned radix sort adapted from Peter M. * McIlroy, Keith Bostic and M. Douglas McIlroy, “Engineering radix * sort”, Computing Systems, 6(1), pages 5−27 (1993), and * further improved using the digit-oracle idea described by Juha * Kärkkäinen and Tommi Rantala in “Engineering radix sort * for strings”, String Processing and Information Retrieval, 15th * International Symposium, volume 5280 of Lecture Notes in Computer * Science, pages 3−14, Springer (2008). * *

* This method implements a lexicographical sorting of the * arguments. Pairs of elements in the same position in the two provided * arrays will be considered a single key, and permuted accordingly. In the * end, either a[ i ] < a[ i + 1 ] or * a[ i ] == a[ i + 1 ] and * b[ i ] <= b[ i + 1 ]. * *

* This implementation is significantly faster than quicksort already at * small sizes (say, more than 10000 elements), but it can only sort in * ascending order. It will allocate a support array of bytes with the same * number of elements as the arrays to be sorted. * * @param a * the first big array to be sorted. * @param b * the second big array to be sorted. * @param from * the index of the first element (inclusive) to be sorted. * @param to * the index of the last element (exclusive) to be sorted. */ public static void radixSort(final int[][] a, final int[][] b, final long from, final long to) { final int layers = 2; if (IntBigArrays.length(a) != IntBigArrays.length(b)) throw new IllegalArgumentException("Array size mismatch."); final int maxLevel = DIGITS_PER_ELEMENT * layers - 1; final int stackSize = ((1 << DIGIT_BITS) - 1) * (layers * DIGITS_PER_ELEMENT - 1) + 1; final long[] offsetStack = new long[stackSize]; int offsetPos = 0; final long[] lengthStack = new long[stackSize]; int lengthPos = 0; final int[] levelStack = new int[stackSize]; int levelPos = 0; offsetStack[offsetPos++] = from; lengthStack[lengthPos++] = to - from; levelStack[levelPos++] = 0; final long[] count = new long[1 << DIGIT_BITS]; final long[] pos = new long[1 << DIGIT_BITS]; final byte[][] digit = ByteBigArrays.newBigArray(to - from); while (offsetPos > 0) { final long first = offsetStack[--offsetPos]; final long length = lengthStack[--lengthPos]; final int level = levelStack[--levelPos]; final int signMask = level % DIGITS_PER_ELEMENT == 0 ? 1 << DIGIT_BITS - 1 : 0; if (length < MEDIUM) { selectionSort(a, b, first, first + length); continue; } final int[][] k = level < DIGITS_PER_ELEMENT ? a : b; // This is the // key array final int shift = (DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT) * DIGIT_BITS; // This // is // the // shift // that // extract // the // right // byte // from // a // key // Count keys. for (long i = length; i-- != 0;) ByteBigArrays.set(digit, i, (byte) ((((IntBigArrays.get(k, first + i)) >>> shift) & DIGIT_MASK) ^ signMask)); for (long i = length; i-- != 0;) count[ByteBigArrays.get(digit, i) & 0xFF]++; // Compute cumulative distribution and push non-singleton keys on // stack. int lastUsed = -1; long p = 0; for (int i = 0; i < 1 << DIGIT_BITS; i++) { if (count[i] != 0) { lastUsed = i; if (level < maxLevel && count[i] > 1) { offsetStack[offsetPos++] = p + first; lengthStack[lengthPos++] = count[i]; levelStack[levelPos++] = level + 1; } } pos[i] = (p += count[i]); } // When all slots are OK, the last slot is necessarily OK. final long end = length - count[lastUsed]; count[lastUsed] = 0; // i moves through the start of each block int c = -1; for (long i = 0, d; i < end; i += count[c], count[c] = 0) { int t = IntBigArrays.get(a, i + first); int u = IntBigArrays.get(b, i + first); c = ByteBigArrays.get(digit, i) & 0xFF; while ((d = --pos[c]) > i) { int z = t; final int zz = c; t = IntBigArrays.get(a, d + first); IntBigArrays.set(a, d + first, z); z = u; u = IntBigArrays.get(b, d + first); IntBigArrays.set(b, d + first, z); c = ByteBigArrays.get(digit, d) & 0xFF; ByteBigArrays.set(digit, d, (byte) zz); } IntBigArrays.set(a, i + first, t); IntBigArrays.set(b, i + first, u); } } } /** * Shuffles the specified big array fragment using the specified * pseudorandom number generator. * * @param a * the big array to be shuffled. * @param from * the index of the first element (inclusive) to be shuffled. * @param to * the index of the last element (exclusive) to be shuffled. * @param random * a pseudorandom number generator (please use a XorShift* * generator). * @return a. */ public static int[][] shuffle(final int[][] a, final long from, final long to, final Random random) { for (long i = to - from; i-- != 0;) { final long p = (random.nextLong() & 0x7FFFFFFFFFFFFFFFL) % (i + 1); final int t = get(a, from + i); set(a, from + i, get(a, from + p)); set(a, from + p, t); } return a; } /** * Shuffles the specified big array using the specified pseudorandom number * generator. * * @param a * the big array to be shuffled. * @param random * a pseudorandom number generator (please use a XorShift* * generator). * @return a. */ public static int[][] shuffle(final int[][] a, final Random random) { for (long i = length(a); i-- != 0;) { final long p = (random.nextLong() & 0x7FFFFFFFFFFFFFFFL) % (i + 1); final int t = get(a, i); set(a, i, get(a, p)); set(a, p, t); } return a; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy