All Downloads are FREE. Search and download functionalities are using the official Maven repository.

drv.RBTreeMap.drv Maven / Gradle / Ivy

Go to download

fastutil extends the Java Collections Framework by providing type-specific maps, sets, lists and priority queues with a small memory footprint and fast access and insertion; provides also big (64-bit) arrays, sets and lists, and fast, practical I/O classes for binary and text files.

There is a newer version: 8.5.15
Show newest version
/*
 * Copyright (C) 2002-2017 Sebastiano Vigna
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */


package PACKAGE;

import it.unimi.dsi.fastutil.objects.AbstractObjectSortedSet;
import it.unimi.dsi.fastutil.objects.ObjectBidirectionalIterator;
import it.unimi.dsi.fastutil.objects.ObjectListIterator;
import it.unimi.dsi.fastutil.objects.ObjectSortedSet;

import VALUE_PACKAGE.VALUE_COLLECTION;
import VALUE_PACKAGE.VALUE_ABSTRACT_COLLECTION;
import VALUE_PACKAGE.VALUE_ITERATOR;

import java.util.Comparator;
import java.util.Iterator;
import java.util.Map;
import java.util.SortedMap;
import java.util.NoSuchElementException;

#if VALUES_PRIMITIVE
import VALUE_PACKAGE.VALUE_LIST_ITERATOR;
#endif

/** A type-specific red-black tree map with a fast, small-footprint implementation.
 *
 * 

The iterators provided by the views of this class are type-specific {@linkplain * it.unimi.dsi.fastutil.BidirectionalIterator bidirectional iterators}. * Moreover, the iterator returned by iterator() can be safely cast * to a type-specific {@linkplain java.util.ListIterator list iterator}. * */ public class RB_TREE_MAP KEY_VALUE_GENERIC extends ABSTRACT_SORTED_MAP KEY_VALUE_GENERIC implements java.io.Serializable, Cloneable { /** A reference to the root entry. */ protected transient Entry KEY_VALUE_GENERIC tree; /** Number of entries in this map. */ protected int count; /** The first key in this map. */ protected transient Entry KEY_VALUE_GENERIC firstEntry; /** The last key in this map. */ protected transient Entry KEY_VALUE_GENERIC lastEntry; /** Cached set of entries. */ protected transient ObjectSortedSet entries; /** Cached set of keys. */ protected transient SORTED_SET KEY_GENERIC keys; /** Cached collection of values. */ protected transient VALUE_COLLECTION VALUE_GENERIC values; /** The value of this variable remembers, after a put() * or a remove(), whether the domain of the map * has been modified. */ protected transient boolean modified; /** This map's comparator, as provided in the constructor. */ protected Comparator storedComparator; /** This map's actual comparator; it may differ from {@link #storedComparator} because it is always a type-specific comparator, so it could be derived from the former by wrapping. */ protected transient KEY_COMPARATOR KEY_SUPER_GENERIC actualComparator; private static final long serialVersionUID = -7046029254386353129L; private static final boolean ASSERTS = ASSERTS_VALUE; { allocatePaths(); } /** Creates a new empty tree map. */ public RB_TREE_MAP() { tree = null; count = 0; } /** Generates the comparator that will be actually used. * *

When a specific {@link Comparator} is specified and stored in {@link * #storedComparator}, we must check whether it is type-specific. If it is * so, we can used directly, and we store it in {@link #actualComparator}. Otherwise, * we generate on-the-fly an anonymous class that wraps the non-specific {@link Comparator} * and makes it into a type-specific one. */ private void setActualComparator() { #if KEY_CLASS_Object actualComparator = storedComparator; #else /* If the provided comparator is already type-specific, we use it. Otherwise, we use a wrapper anonymous class to fake that it is type-specific. */ if (storedComparator == null || storedComparator instanceof KEY_COMPARATOR) actualComparator = (KEY_COMPARATOR)storedComparator; else actualComparator = new KEY_COMPARATOR KEY_SUPER_GENERIC() { public int compare(KEY_GENERIC_TYPE k1, KEY_GENERIC_TYPE k2) { return storedComparator.compare(KEY2OBJ(k1), KEY2OBJ(k2)); } public int compare(KEY_GENERIC_CLASS ok1, KEY_GENERIC_CLASS ok2) { return storedComparator.compare(ok1, ok2); } }; #endif } /** Creates a new empty tree map with the given comparator. * * @param c a (possibly type-specific) comparator. */ public RB_TREE_MAP(final Comparator c) { this(); storedComparator = c; setActualComparator(); } /** Creates a new tree map copying a given map. * * @param m a {@link Map} to be copied into the new tree map. */ public RB_TREE_MAP(final Map m) { this(); putAll(m); } /** Creates a new tree map copying a given sorted map (and its {@link Comparator}). * * @param m a {@link SortedMap} to be copied into the new tree map. */ public RB_TREE_MAP(final SortedMap m) { this(m.comparator()); putAll(m); } /** Creates a new tree map copying a given map. * * @param m a type-specific map to be copied into the new tree map. */ public RB_TREE_MAP(final MAP KEY_VALUE_EXTENDS_GENERIC m) { this(); putAll(m); } /** Creates a new tree map copying a given sorted map (and its {@link Comparator}). * * @param m a type-specific sorted map to be copied into the new tree map. */ public RB_TREE_MAP(final SORTED_MAP KEY_VALUE_GENERIC m) { this(m.comparator()); putAll(m); } /** Creates a new tree map using the elements of two parallel arrays and the given comparator. * * @param k the array of keys of the new tree map. * @param v the array of corresponding values in the new tree map. * @param c a (possibly type-specific) comparator. * @throws IllegalArgumentException if k and v have different lengths. */ public RB_TREE_MAP(final KEY_GENERIC_TYPE[] k, final VALUE_GENERIC_TYPE v[], final Comparator c) { this(c); if (k.length != v.length) throw new IllegalArgumentException("The key array and the value array have different lengths (" + k.length + " and " + v.length + ")"); for(int i = 0; i < k.length; i++) this.put(k[i], v[i]); } /** Creates a new tree map using the elements of two parallel arrays. * * @param k the array of keys of the new tree map. * @param v the array of corresponding values in the new tree map. * @throws IllegalArgumentException if k and v have different lengths. */ public RB_TREE_MAP(final KEY_GENERIC_TYPE[] k, final VALUE_GENERIC_TYPE v[]) { this(k, v, null); } /* * The following methods implements some basic building blocks used by * all accessors. They are (and should be maintained) identical to those used in RBTreeSet.drv. * * The put()/remove() code is derived from Ben Pfaff's GNU libavl * (http://www.msu.edu/~pfaffben/avl/). If you want to understand what's * going on, you should have a look at the literate code contained therein * first. */ /** Compares two keys in the right way. * *

This method uses the {@link #actualComparator} if it is non-{@code null}. * Otherwise, it resorts to primitive type comparisons or to {@link Comparable#compareTo(Object) compareTo()}. * * @param k1 the first key. * @param k2 the second key. * @return a number smaller than, equal to or greater than 0, as usual * (i.e., when k1 < k2, k1 = k2 or k1 > k2, respectively). */ SUPPRESS_WARNINGS_KEY_UNCHECKED final int compare(final KEY_GENERIC_TYPE k1, final KEY_GENERIC_TYPE k2) { return actualComparator == null ? KEY_CMP(k1, k2) : actualComparator.compare(k1, k2); } /** Returns the entry corresponding to the given key, if it is in the tree; {@code null}, otherwise. * * @param k the key to search for. * @return the corresponding entry, or {@code null} if no entry with the given key exists. */ final Entry KEY_VALUE_GENERIC findKey(final KEY_GENERIC_TYPE k) { Entry KEY_VALUE_GENERIC e = tree; int cmp; while (e != null && (cmp = compare(k, e.key)) != 0) e = cmp < 0 ? e.left() : e.right(); return e; } /** Locates a key. * * @param k a key. * @return the last entry on a search for the given key; this will be * the given key, if it present; otherwise, it will be either the smallest greater key or the greatest smaller key. */ final Entry KEY_VALUE_GENERIC locateKey(final KEY_GENERIC_TYPE k) { Entry KEY_VALUE_GENERIC e = tree, last = tree; int cmp = 0; while (e != null && (cmp = compare(k, e.key)) != 0) { last = e; e = cmp < 0 ? e.left() : e.right(); } return cmp == 0 ? e : last; } /** This vector remembers the path and the direction followed during the * current insertion. It suffices for about 232 entries. */ private transient boolean dirPath[]; private transient Entry KEY_VALUE_GENERIC nodePath[]; SUPPRESS_WARNINGS_KEY_VALUE_UNCHECKED private void allocatePaths() { dirPath = new boolean[64]; nodePath = new Entry[64]; } #if VALUES_PRIMITIVE && !VALUE_CLASS_Boolean /** Adds an increment to value currently associated with a key. * *

Note that this method respects the {@linkplain #defaultReturnValue() default return value} semantics: when * called with a key that does not currently appears in the map, the key * will be associated with the default return value plus * the given increment. * * @param k the key. * @param incr the increment. * @return the old value, or the {@linkplain #defaultReturnValue() default return value} if no value was present for the given key. */ public VALUE_GENERIC_TYPE addTo(final KEY_GENERIC_TYPE k, final VALUE_GENERIC_TYPE incr) { Entry KEY_VALUE_GENERIC e = add(k); final VALUE_GENERIC_TYPE oldValue = e.value; e.value += incr; return oldValue; } #endif @Override public VALUE_GENERIC_TYPE put(final KEY_GENERIC_TYPE k, final VALUE_GENERIC_TYPE v) { Entry KEY_VALUE_GENERIC e = add(k); final VALUE_GENERIC_TYPE oldValue = e.value; e.value = v; return oldValue; } /** Returns a node with key k in the balanced tree, creating one with defRetValue if necessary. * * @param k the key * @return a node with key k. If a node with key k already exists, then that node is returned, * otherwise a new node with defRetValue is created ensuring that the tree is balanced * after creation of the node. */ private Entry KEY_VALUE_GENERIC add(final KEY_GENERIC_TYPE k) { /* After execution of this method, modified is true iff a new entry has been inserted. */ modified = false; int maxDepth = 0; Entry KEY_VALUE_GENERIC e; if (tree == null) { // The case of the empty tree is treated separately. count++; e = tree = lastEntry = firstEntry = new Entry KEY_VALUE_GENERIC(k, defRetValue); } else { Entry KEY_VALUE_GENERIC p = tree; int cmp, i = 0; while(true) { if ((cmp = compare(k, p.key)) == 0) { // We clean up the node path, or we could have stale references later. while(i-- != 0) nodePath[i] = null; return p; } nodePath[i] = p; if (dirPath[i++] = cmp > 0) { if (p.succ()) { count++; e = new Entry KEY_VALUE_GENERIC(k, defRetValue); if (p.right == null) lastEntry = e; e.left = p; e.right = p.right; p.right(e); break; } p = p.right; } else { if (p.pred()) { count++; e = new Entry KEY_VALUE_GENERIC(k, defRetValue); if (p.left == null) firstEntry = e; e.right = p; e.left = p.left; p.left(e); break; } p = p.left; } } modified = true; maxDepth = i--; while(i > 0 && ! nodePath[i].black()) { if (! dirPath[i - 1]) { Entry KEY_VALUE_GENERIC y = nodePath[i - 1].right; if (! nodePath[i - 1].succ() && ! y.black()) { nodePath[i].black(true); y.black(true); nodePath[i - 1].black(false); i -= 2; } else { Entry KEY_VALUE_GENERIC x; if (! dirPath[i]) y = nodePath[i]; else { x = nodePath[i]; y = x.right; x.right = y.left; y.left = x; nodePath[i - 1].left = y; if (y.pred()) { y.pred(false); x.succ(y); } } x = nodePath[i - 1]; x.black(false); y.black(true); x.left = y.right; y.right = x; if (i < 2) tree = y; else { if (dirPath[i - 2]) nodePath[i - 2].right = y; else nodePath[i - 2].left = y; } if (y.succ()) { y.succ(false); x.pred(y); } break; } } else { Entry KEY_VALUE_GENERIC y = nodePath[i - 1].left; if (! nodePath[i - 1].pred() && ! y.black()) { nodePath[i].black(true); y.black(true); nodePath[i - 1].black(false); i -= 2; } else { Entry KEY_VALUE_GENERIC x; if (dirPath[i]) y = nodePath[i]; else { x = nodePath[i]; y = x.left; x.left = y.right; y.right = x; nodePath[i - 1].right = y; if (y.succ()) { y.succ(false); x.pred(y); } } x = nodePath[i - 1]; x.black(false); y.black(true); x.right = y.left; y.left = x; if (i < 2) tree = y; else { if (dirPath[i - 2]) nodePath[i - 2].right = y; else nodePath[i - 2].left = y; } if (y.pred()){ y.pred(false); x.succ(y); } break; } } } } tree.black(true); // We clean up the node path, or we could have stale references later. while(maxDepth-- != 0) nodePath[maxDepth] = null; if (ASSERTS) { checkNodePath(); checkTree(tree, 0, -1); } return e; } /* After execution of this method, {@link #modified} is true iff an entry has been deleted. */ SUPPRESS_WARNINGS_KEY_UNCHECKED @Override public VALUE_GENERIC_TYPE REMOVE_VALUE(final KEY_TYPE k) { modified = false; if (tree == null) return defRetValue; Entry KEY_VALUE_GENERIC p = tree; int cmp; int i = 0; final KEY_GENERIC_TYPE kk = KEY_GENERIC_CAST k; while(true) { if ((cmp = compare(kk, p.key)) == 0) break; dirPath[i] = cmp > 0; nodePath[i] = p; if (dirPath[i++]) { if ((p = p.right()) == null) { // We clean up the node path, or we could have stale references later. while(i-- != 0) nodePath[i] = null; return defRetValue; } } else { if ((p = p.left()) == null) { // We clean up the node path, or we could have stale references later. while(i-- != 0) nodePath[i] = null; return defRetValue; } } } if (p.left == null) firstEntry = p.next(); if (p.right == null) lastEntry = p.prev(); if (p.succ()) { if (p.pred()) { if (i == 0) tree = p.left; else { if (dirPath[i - 1]) nodePath[i - 1].succ(p.right); else nodePath[i - 1].pred(p.left); } } else { p.prev().right = p.right; if (i == 0) tree = p.left; else { if (dirPath[i - 1]) nodePath[i - 1].right = p.left; else nodePath[i - 1].left = p.left; } } } else { boolean color; Entry KEY_VALUE_GENERIC r = p.right; if (r.pred()) { r.left = p.left; r.pred(p.pred()); if (! r.pred()) r.prev().right = r; if (i == 0) tree = r; else { if (dirPath[i - 1]) nodePath[i - 1].right = r; else nodePath[i - 1].left = r; } color = r.black(); r.black(p.black()); p.black(color); dirPath[i] = true; nodePath[i++] = r; } else { Entry KEY_VALUE_GENERIC s; int j = i++; while(true) { dirPath[i] = false; nodePath[i++] = r; s = r.left; if (s.pred()) break; r = s; } dirPath[j] = true; nodePath[j] = s; if (s.succ()) r.pred(s); else r.left = s.right; s.left = p.left; if (! p.pred()) { p.prev().right = s; s.pred(false); } s.right(p.right); color = s.black(); s.black(p.black()); p.black(color); if (j == 0) tree = s; else { if (dirPath[j - 1]) nodePath[j - 1].right = s; else nodePath[j - 1].left = s; } } } int maxDepth = i; if (p.black()) { for(; i > 0; i--) { if (dirPath[i - 1] && ! nodePath[i - 1].succ() || ! dirPath[i - 1] && ! nodePath[i - 1].pred()) { Entry KEY_VALUE_GENERIC x = dirPath[i - 1] ? nodePath[i - 1].right : nodePath[i - 1].left; if (! x.black()) { x.black(true); break; } } if (! dirPath[i - 1]) { Entry KEY_VALUE_GENERIC w = nodePath[i - 1].right; if (! w.black()) { w.black(true); nodePath[i - 1].black(false); nodePath[i - 1].right = w.left; w.left = nodePath[i - 1]; if (i < 2) tree = w; else { if (dirPath[i - 2]) nodePath[i - 2].right = w; else nodePath[i - 2].left = w; } nodePath[i] = nodePath[i - 1]; dirPath[i] = false; nodePath[i - 1] = w; if (maxDepth == i++) maxDepth++; w = nodePath[i - 1].right; } if ((w.pred() || w.left.black()) && (w.succ() || w.right.black())) { w.black(false); } else { if (w.succ() || w.right.black()) { Entry KEY_VALUE_GENERIC y = w.left; y.black (true); w.black(false); w.left = y.right; y.right = w; w = nodePath[i - 1].right = y; if (w.succ()) { w.succ(false); w.right.pred(w); } } w.black(nodePath[i - 1].black()); nodePath[i - 1].black(true); w.right.black(true); nodePath[i - 1].right = w.left; w.left = nodePath[i - 1]; if (i < 2) tree = w; else { if (dirPath[i - 2]) nodePath[i - 2].right = w; else nodePath[i - 2].left = w; } if (w.pred()) { w.pred(false); nodePath[i - 1].succ(w); } break; } } else { Entry KEY_VALUE_GENERIC w = nodePath[i - 1].left; if (! w.black()) { w.black (true); nodePath[i - 1].black(false); nodePath[i - 1].left = w.right; w.right = nodePath[i - 1]; if (i < 2) tree = w; else { if (dirPath[i - 2]) nodePath[i - 2].right = w; else nodePath[i - 2].left = w; } nodePath[i] = nodePath[i - 1]; dirPath[i] = true; nodePath[i - 1] = w; if (maxDepth == i++) maxDepth++; w = nodePath[i - 1].left; } if ((w.pred() || w.left.black()) && (w.succ() || w.right.black())) { w.black(false); } else { if (w.pred() || w.left.black()) { Entry KEY_VALUE_GENERIC y = w.right; y.black(true); w.black (false); w.right = y.left; y.left = w; w = nodePath[i - 1].left = y; if (w.pred()) { w.pred(false); w.left.succ(w); } } w.black(nodePath[i - 1].black()); nodePath[i - 1].black(true); w.left.black(true); nodePath[i - 1].left = w.right; w.right = nodePath[i - 1]; if (i < 2) tree = w; else { if (dirPath[i - 2]) nodePath[i - 2].right = w; else nodePath[i - 2].left = w; } if (w.succ()) { w.succ(false); nodePath[i - 1].pred(w); } break; } } } if (tree != null) tree.black(true); } modified = true; count--; // We clean up the node path, or we could have stale references later. while(maxDepth-- != 0) nodePath[maxDepth] = null; if (ASSERTS) { checkNodePath(); checkTree(tree, 0, -1); } return p.value; } @Override public boolean containsValue(final VALUE_TYPE v) { final ValueIterator i = new ValueIterator(); VALUE_TYPE ev; int j = count; while(j-- != 0) { ev = i.NEXT_VALUE(); if (VALUE_EQUALS(ev, v)) return true; } return false; } @Override public void clear() { count = 0; tree = null; entries = null; values = null; keys = null; firstEntry = lastEntry = null; } /** This class represent an entry in a tree map. * *

We use the only "metadata", i.e., {@link Entry#info}, to store * information about color, predecessor status and successor status. * *

Note that since the class is recursive, it can be * considered equivalently a tree. */ private static final class Entry KEY_VALUE_GENERIC extends ABSTRACT_MAP.BasicEntry KEY_VALUE_GENERIC implements Cloneable { /** The the bit in this mask is true, the node is black. */ private final static int BLACK_MASK = 1; /** If the bit in this mask is true, {@link #right} points to a successor. */ private final static int SUCC_MASK = 1 << 31; /** If the bit in this mask is true, {@link #left} points to a predecessor. */ private final static int PRED_MASK = 1 << 30; /** The pointers to the left and right subtrees. */ Entry KEY_VALUE_GENERIC left, right; /** This integers holds different information in different bits (see {@link #SUCC_MASK} and {@link #PRED_MASK}. */ int info; Entry() { super(KEY_NULL, VALUE_NULL); } /** Creates a new entry with the given key and value. * * @param k a key. * @param v a value. */ Entry(final KEY_GENERIC_TYPE k, final VALUE_GENERIC_TYPE v) { super(k, v); info = SUCC_MASK | PRED_MASK; } /** Returns the left subtree. * * @return the left subtree ({@code null} if the left * subtree is empty). */ Entry KEY_VALUE_GENERIC left() { return (info & PRED_MASK) != 0 ? null : left; } /** Returns the right subtree. * * @return the right subtree ({@code null} if the right * subtree is empty). */ Entry KEY_VALUE_GENERIC right() { return (info & SUCC_MASK) != 0 ? null : right; } /** Checks whether the left pointer is really a predecessor. * @return true if the left pointer is a predecessor. */ boolean pred() { return (info & PRED_MASK) != 0; } /** Checks whether the right pointer is really a successor. * @return true if the right pointer is a successor. */ boolean succ() { return (info & SUCC_MASK) != 0; } /** Sets whether the left pointer is really a predecessor. * @param pred if true then the left pointer will be considered a predecessor. */ void pred(final boolean pred) { if (pred) info |= PRED_MASK; else info &= ~PRED_MASK; } /** Sets whether the right pointer is really a successor. * @param succ if true then the right pointer will be considered a successor. */ void succ(final boolean succ) { if (succ) info |= SUCC_MASK; else info &= ~SUCC_MASK; } /** Sets the left pointer to a predecessor. * @param pred the predecessr. */ void pred(final Entry KEY_VALUE_GENERIC pred) { info |= PRED_MASK; left = pred; } /** Sets the right pointer to a successor. * @param succ the successor. */ void succ(final Entry KEY_VALUE_GENERIC succ) { info |= SUCC_MASK; right = succ; } /** Sets the left pointer to the given subtree. * @param left the new left subtree. */ void left(final Entry KEY_VALUE_GENERIC left) { info &= ~PRED_MASK; this.left = left; } /** Sets the right pointer to the given subtree. * @param right the new right subtree. */ void right(final Entry KEY_VALUE_GENERIC right) { info &= ~SUCC_MASK; this.right = right; } /** Returns whether this node is black. * @return true iff this node is black. */ boolean black() { return (info & BLACK_MASK) != 0; } /** Sets whether this node is black. * @param black if true, then this node becomes black; otherwise, it becomes red.. */ void black(final boolean black) { if (black) info |= BLACK_MASK; else info &= ~BLACK_MASK; } /** Computes the next entry in the set order. * * @return the next entry ({@code null}) if this is the last entry). */ Entry KEY_VALUE_GENERIC next() { Entry KEY_VALUE_GENERIC next = this.right; if ((info & SUCC_MASK) == 0) while ((next.info & PRED_MASK) == 0) next = next.left; return next; } /** Computes the previous entry in the set order. * * @return the previous entry ({@code null}) if this is the first entry). */ Entry KEY_VALUE_GENERIC prev() { Entry KEY_VALUE_GENERIC prev = this.left; if ((info & PRED_MASK) == 0) while ((prev.info & SUCC_MASK) == 0) prev = prev.right; return prev; } @Override public VALUE_GENERIC_TYPE setValue(final VALUE_GENERIC_TYPE value) { final VALUE_GENERIC_TYPE oldValue = this.value; this.value = value; return oldValue; } @Override SUPPRESS_WARNINGS_KEY_VALUE_UNCHECKED public Entry KEY_VALUE_GENERIC clone() { Entry KEY_VALUE_GENERIC c; try { c = (Entry KEY_VALUE_GENERIC)super.clone(); } catch(CloneNotSupportedException cantHappen) { throw new InternalError(); } c.key = key; c.value = value; c.info = info; return c; } @Override @SuppressWarnings("unchecked") public boolean equals(final Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry )o; return KEY_EQUALS(key, KEY_CLASS2TYPE(e.getKey())) && VALUE_EQUALS(value, VALUE_CLASS2TYPE(e.getValue())); } @Override public int hashCode() { return KEY2JAVAHASH_NOT_NULL(key) ^ VALUE2JAVAHASH(value); } @Override public String toString() { return key + "=>" + value; } /* public void prettyPrint() { prettyPrint(0); } public void prettyPrint(int level) { if (pred()) { for (int i = 0; i < level; i++) System.err.print(" "); System.err.println("pred: " + left); } else if (left != null) left.prettyPrint(level +1); for (int i = 0; i < level; i++) System.err.print(" "); System.err.println(key + "=" + value + " (" + balance() + ")"); if (succ()) { for (int i = 0; i < level; i++) System.err.print(" "); System.err.println("succ: " + right); } else if (right != null) right.prettyPrint(level + 1); }*/ } /* public void prettyPrint() { System.err.println("size: " + count); if (tree != null) tree.prettyPrint(); }*/ SUPPRESS_WARNINGS_KEY_UNCHECKED @Override public boolean containsKey(final KEY_TYPE k) { return findKey(KEY_GENERIC_CAST k) != null; } @Override public int size() { return count; } @Override public boolean isEmpty() { return count == 0; } SUPPRESS_WARNINGS_KEY_UNCHECKED @Override public VALUE_GENERIC_TYPE GET_VALUE(final KEY_TYPE k) { final Entry KEY_VALUE_GENERIC e = findKey(KEY_GENERIC_CAST k); return e == null ? defRetValue : e.value; } @Override public KEY_GENERIC_TYPE FIRST_KEY() { if (tree == null) throw new NoSuchElementException(); return firstEntry.key; } @Override public KEY_GENERIC_TYPE LAST_KEY() { if (tree == null) throw new NoSuchElementException(); return lastEntry.key; } /** An abstract iterator on the whole range. * *

This class can iterate in both directions on a threaded tree. */ private class TreeIterator { /** The entry that will be returned by the next call to {@link java.util.ListIterator#previous()} (or {@code null} if no previous entry exists). */ Entry KEY_VALUE_GENERIC prev; /** The entry that will be returned by the next call to {@link java.util.ListIterator#next()} (or {@code null} if no next entry exists). */ Entry KEY_VALUE_GENERIC next; /** The last entry that was returned (or {@code null} if we did not iterate or used {@link #remove()}). */ Entry KEY_VALUE_GENERIC curr; /** The current index (in the sense of a {@link java.util.ListIterator}). Note that this value is not meaningful when this {@link TreeIterator} has been created using the nonempty constructor.*/ int index = 0; TreeIterator() { next = firstEntry; } TreeIterator(final KEY_GENERIC_TYPE k) { if ((next = locateKey(k)) != null) { if (compare(next.key, k) <= 0) { prev = next; next = next.next(); } else prev = next.prev(); } } public boolean hasNext() { return next != null; } public boolean hasPrevious() { return prev != null; } void updateNext() { next = next.next(); } Entry KEY_VALUE_GENERIC nextEntry() { if (! hasNext()) throw new NoSuchElementException(); curr = prev = next; index++; updateNext(); return curr; } void updatePrevious() { prev = prev.prev(); } Entry KEY_VALUE_GENERIC previousEntry() { if (! hasPrevious()) throw new NoSuchElementException(); curr = next = prev; index--; updatePrevious(); return curr; } public int nextIndex() { return index; } public int previousIndex() { return index - 1; } public void remove() { if (curr == null) throw new IllegalStateException(); /* If the last operation was a next(), we are removing an entry that preceeds the current index, and thus we must decrement it. */ if (curr == prev) index--; next = prev = curr; updatePrevious(); updateNext(); RB_TREE_MAP.this.REMOVE_VALUE(curr.key); curr = null; } public int skip(final int n) { int i = n; while(i-- != 0 && hasNext()) nextEntry(); return n - i - 1; } public int back(final int n) { int i = n; while(i-- != 0 && hasPrevious()) previousEntry(); return n - i - 1; } } /** An iterator on the whole range. * *

This class can iterate in both directions on a threaded tree. */ private class EntryIterator extends TreeIterator implements ObjectListIterator { EntryIterator() {} EntryIterator(final KEY_GENERIC_TYPE k) { super(k); } @Override public MAP.Entry KEY_VALUE_GENERIC next() { return nextEntry(); } @Override public MAP.Entry KEY_VALUE_GENERIC previous() { return previousEntry(); } @Override public void set(MAP.Entry KEY_VALUE_GENERIC ok) { throw new UnsupportedOperationException(); } @Override public void add(MAP.Entry KEY_VALUE_GENERIC ok) { throw new UnsupportedOperationException(); } } @Override public ObjectSortedSet ENTRYSET() { if (entries == null) entries = new AbstractObjectSortedSet() { final Comparator comparator = new Comparator () { public int compare(final MAP.Entry KEY_VALUE_GENERIC x, MAP.Entry KEY_VALUE_GENERIC y) { return RB_TREE_MAP.this.actualComparator.compare(x.ENTRY_GET_KEY(), y.ENTRY_GET_KEY()); } }; @Override public Comparator comparator() { return comparator; } @Override public ObjectBidirectionalIterator iterator() { return new EntryIterator(); } @Override public ObjectBidirectionalIterator iterator(final MAP.Entry KEY_VALUE_GENERIC from) { return new EntryIterator(from.ENTRY_GET_KEY()); } @Override SUPPRESS_WARNINGS_KEY_UNCHECKED public boolean contains(final Object o) { if (!(o instanceof Map.Entry)) return false; final Map.Entry e = (Map.Entry)o; #if KEYS_PRIMITIVE if (e.getKey() == null || ! (e.getKey() instanceof KEY_CLASS)) return false; #endif #if VALUES_PRIMITIVE if (e.getValue() == null || ! (e.getValue() instanceof VALUE_CLASS)) return false; #endif final Entry KEY_VALUE_GENERIC f = findKey(KEY_OBJ2TYPE(KEY_GENERIC_CAST e.getKey())); return e.equals(f); } @Override SUPPRESS_WARNINGS_KEY_UNCHECKED public boolean remove(final Object o) { if (!(o instanceof Map.Entry)) return false; final Map.Entry e = (Map.Entry)o; #if KEYS_PRIMITIVE if (e.getKey() == null || ! (e.getKey() instanceof KEY_CLASS)) return false; #endif #if VALUES_PRIMITIVE if (e.getValue() == null || ! (e.getValue() instanceof VALUE_CLASS)) return false; #endif final Entry KEY_VALUE_GENERIC f = findKey(KEY_OBJ2TYPE(KEY_GENERIC_CAST e.getKey())); if (f != null) RB_TREE_MAP.this.REMOVE_VALUE(f.key); return f != null; } @Override public int size() { return count; } @Override public void clear() { RB_TREE_MAP.this.clear(); } @Override public MAP.Entry KEY_VALUE_GENERIC first() { return firstEntry; } @Override public MAP.Entry KEY_VALUE_GENERIC last() { return lastEntry; } @Override public ObjectSortedSet subSet(MAP.Entry KEY_VALUE_GENERIC from, MAP.Entry KEY_VALUE_GENERIC to) { return subMap(from.ENTRY_GET_KEY(), to.ENTRY_GET_KEY()).ENTRYSET(); } @Override public ObjectSortedSet headSet(MAP.Entry KEY_VALUE_GENERIC to) { return headMap(to.ENTRY_GET_KEY()).ENTRYSET(); } @Override public ObjectSortedSet tailSet(MAP.Entry KEY_VALUE_GENERIC from) { return tailMap(from.ENTRY_GET_KEY()).ENTRYSET(); } }; return entries; } /** An iterator on the whole range of keys. * *

This class can iterate in both directions on the keys of a threaded tree. We * simply override the {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods (and possibly * their type-specific counterparts) so that they return keys instead of entries. */ private final class KeyIterator extends TreeIterator implements KEY_LIST_ITERATOR KEY_GENERIC { public KeyIterator() {} public KeyIterator(final KEY_GENERIC_TYPE k) { super(k); } @Override public KEY_GENERIC_TYPE NEXT_KEY() { return nextEntry().key; } @Override public KEY_GENERIC_TYPE PREV_KEY() { return previousEntry().key; } @Override public void set(KEY_GENERIC_TYPE k) { throw new UnsupportedOperationException(); } @Override public void add(KEY_GENERIC_TYPE k) { throw new UnsupportedOperationException(); } #if !KEY_CLASS_Object @Deprecated @Override public KEY_GENERIC_CLASS next() { return KEY2OBJ(nextEntry().key); } @Deprecated @Override public KEY_GENERIC_CLASS previous() { return KEY2OBJ(previousEntry().key); } @Deprecated @Override public void set(KEY_CLASS ok) { throw new UnsupportedOperationException(); } @Deprecated @Override public void add(KEY_CLASS ok) { throw new UnsupportedOperationException(); } #endif }; /** A keyset implementation using a more direct implementation for iterators. */ private class KeySet extends ABSTRACT_SORTED_MAP KEY_VALUE_GENERIC.KeySet { public KEY_BIDI_ITERATOR KEY_GENERIC iterator() { return new KeyIterator(); } public KEY_BIDI_ITERATOR KEY_GENERIC iterator(final KEY_GENERIC_TYPE from) { return new KeyIterator(from); } } /** Returns a type-specific sorted set view of the keys contained in this map. * *

In addition to the semantics of {@link java.util.Map#keySet()}, you can * safely cast the set returned by this call to a type-specific sorted * set interface. * * @return a type-specific sorted set view of the keys contained in this map. */ @Override public SORTED_SET KEY_GENERIC keySet() { if (keys == null) keys = new KeySet(); return keys; } /** An iterator on the whole range of values. * *

This class can iterate in both directions on the values of a threaded tree. We * simply override the {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods (and possibly * their type-specific counterparts) so that they return values instead of entries. */ private final class ValueIterator extends TreeIterator implements VALUE_LIST_ITERATOR VALUE_GENERIC { @Override public VALUE_GENERIC_TYPE NEXT_VALUE() { return nextEntry().value; } @Override public VALUE_GENERIC_TYPE PREV_VALUE() { return previousEntry().value; } @Override public void set(VALUE_GENERIC_TYPE v) { throw new UnsupportedOperationException(); } @Override public void add(VALUE_GENERIC_TYPE v) { throw new UnsupportedOperationException(); } #if VALUES_PRIMITIVE @Deprecated @Override public VALUE_GENERIC_CLASS next() { return VALUE2OBJ(nextEntry().value); } @Deprecated @Override public VALUE_GENERIC_CLASS previous() { return VALUE2OBJ(previousEntry().value); } @Deprecated @Override public void set(VALUE_CLASS ok) { throw new UnsupportedOperationException(); } @Deprecated @Override public void add(VALUE_CLASS ok) { throw new UnsupportedOperationException(); } #endif }; /** Returns a type-specific collection view of the values contained in this map. * *

In addition to the semantics of {@link java.util.Map#values()}, you can * safely cast the collection returned by this call to a type-specific collection * interface. * * @return a type-specific collection view of the values contained in this map. */ @Override public VALUE_COLLECTION VALUE_GENERIC values() { if (values == null) values = new VALUE_ABSTRACT_COLLECTION VALUE_GENERIC() { @Override public VALUE_ITERATOR VALUE_GENERIC iterator() { return new ValueIterator(); } @Override public boolean contains(final VALUE_TYPE k) { return containsValue(k); } @Override public int size() { return count; } @Override public void clear() { RB_TREE_MAP.this.clear(); } }; return values; } @Override public KEY_COMPARATOR KEY_SUPER_GENERIC comparator() { return actualComparator; } @Override public SORTED_MAP KEY_VALUE_GENERIC headMap(KEY_GENERIC_TYPE to) { return new Submap(KEY_NULL, true, to, false); } @Override public SORTED_MAP KEY_VALUE_GENERIC tailMap(KEY_GENERIC_TYPE from) { return new Submap(from, false, KEY_NULL, true); } @Override public SORTED_MAP KEY_VALUE_GENERIC subMap(KEY_GENERIC_TYPE from, KEY_GENERIC_TYPE to) { return new Submap(from, false, to, false); } /** A submap with given range. * *

This class represents a submap. One has to specify the left/right * limits (which can be set to -∞ or ∞). Since the submap is a * view on the map, at a given moment it could happen that the limits of * the range are not any longer in the main map. Thus, things such as * {@link java.util.SortedMap#firstKey()} or {@link java.util.Collection#size()} must be always computed * on-the-fly. */ private final class Submap extends ABSTRACT_SORTED_MAP KEY_VALUE_GENERIC implements java.io.Serializable { private static final long serialVersionUID = -7046029254386353129L; /** The start of the submap range, unless {@link #bottom} is true. */ KEY_GENERIC_TYPE from; /** The end of the submap range, unless {@link #top} is true. */ KEY_GENERIC_TYPE to; /** If true, the submap range starts from -∞. */ boolean bottom; /** If true, the submap range goes to ∞. */ boolean top; /** Cached set of entries. */ protected transient ObjectSortedSet entries; /** Cached set of keys. */ protected transient SORTED_SET KEY_GENERIC keys; /** Cached collection of values. */ protected transient VALUE_COLLECTION VALUE_GENERIC values; /** Creates a new submap with given key range. * * @param from the start of the submap range. * @param bottom if true, the first parameter is ignored and the range starts from -∞. * @param to the end of the submap range. * @param top if true, the third parameter is ignored and the range goes to ∞. */ public Submap(final KEY_GENERIC_TYPE from, final boolean bottom, final KEY_GENERIC_TYPE to, final boolean top) { if (! bottom && ! top && RB_TREE_MAP.this.compare(from, to) > 0) throw new IllegalArgumentException("Start key (" + from + ") is larger than end key (" + to + ")"); this.from = from; this.bottom = bottom; this.to = to; this.top = top; this.defRetValue = RB_TREE_MAP.this.defRetValue; } @Override public void clear() { final SubmapIterator i = new SubmapIterator(); while(i.hasNext()) { i.nextEntry(); i.remove(); } } /** Checks whether a key is in the submap range. * @param k a key. * @return true if is the key is in the submap range. */ final boolean in(final KEY_GENERIC_TYPE k) { return (bottom || RB_TREE_MAP.this.compare(k, from) >= 0) && (top || RB_TREE_MAP.this.compare(k, to) < 0); } @Override public ObjectSortedSet ENTRYSET() { if (entries == null) entries = new AbstractObjectSortedSet() { @Override public ObjectBidirectionalIterator iterator() { return new SubmapEntryIterator(); } @Override public ObjectBidirectionalIterator iterator(final MAP.Entry KEY_VALUE_GENERIC from) { return new SubmapEntryIterator(from.ENTRY_GET_KEY()); } @Override public Comparator comparator() { return RB_TREE_MAP.this.ENTRYSET().comparator(); } @Override SUPPRESS_WARNINGS_KEY_UNCHECKED public boolean contains(final Object o) { if (!(o instanceof Map.Entry)) return false; final Map.Entry e = (Map.Entry)o; #if KEYS_PRIMITIVE if (e.getKey() == null || ! (e.getKey() instanceof KEY_CLASS)) return false; #endif #if VALUES_PRIMITIVE if (e.getValue() == null || ! (e.getValue() instanceof VALUE_CLASS)) return false; #endif final RB_TREE_MAP.Entry KEY_VALUE_GENERIC f = findKey(KEY_OBJ2TYPE(KEY_GENERIC_CAST e.getKey())); return f != null && in(f.key) && e.equals(f); } @Override SUPPRESS_WARNINGS_KEY_UNCHECKED public boolean remove(final Object o) { if (!(o instanceof Map.Entry)) return false; final Map.Entry e = (Map.Entry)o; #if KEYS_PRIMITIVE if (e.getKey() == null || ! (e.getKey() instanceof KEY_CLASS)) return false; #endif #if VALUES_PRIMITIVE if (e.getValue() == null || ! (e.getValue() instanceof VALUE_CLASS)) return false; #endif final RB_TREE_MAP.Entry KEY_VALUE_GENERIC f = findKey(KEY_OBJ2TYPE(KEY_GENERIC_CAST e.getKey())); if (f != null && in(f.key)) Submap.this.REMOVE_VALUE(f.key); return f != null; } @Override public int size() { int c = 0; for(Iterator i = iterator(); i.hasNext(); i.next()) c++; return c; } @Override public boolean isEmpty() { return ! new SubmapIterator().hasNext(); } @Override public void clear() { Submap.this.clear(); } @Override public MAP.Entry KEY_VALUE_GENERIC first() { return firstEntry(); } @Override public MAP.Entry KEY_VALUE_GENERIC last() { return lastEntry(); } @Override public ObjectSortedSet subSet(MAP.Entry KEY_VALUE_GENERIC from, MAP.Entry KEY_VALUE_GENERIC to) { return subMap(from.ENTRY_GET_KEY(), to.ENTRY_GET_KEY()).ENTRYSET(); } @Override public ObjectSortedSet headSet(MAP.Entry KEY_VALUE_GENERIC to) { return headMap(to.ENTRY_GET_KEY()).ENTRYSET(); } @Override public ObjectSortedSet tailSet(MAP.Entry KEY_VALUE_GENERIC from) { return tailMap(from.ENTRY_GET_KEY()).ENTRYSET(); } }; return entries; } private class KeySet extends ABSTRACT_SORTED_MAP KEY_VALUE_GENERIC.KeySet { public KEY_BIDI_ITERATOR KEY_GENERIC iterator() { return new SubmapKeyIterator(); } public KEY_BIDI_ITERATOR KEY_GENERIC iterator(final KEY_GENERIC_TYPE from) { return new SubmapKeyIterator(from); } } @Override public SORTED_SET KEY_GENERIC keySet() { if (keys == null) keys = new KeySet(); return keys; } @Override public VALUE_COLLECTION VALUE_GENERIC values() { if (values == null) values = new VALUE_ABSTRACT_COLLECTION VALUE_GENERIC() { public VALUE_ITERATOR VALUE_GENERIC iterator() { return new SubmapValueIterator(); } public boolean contains(final VALUE_TYPE k) { return containsValue(k); } public int size() { return Submap.this.size(); } public void clear() { Submap.this.clear(); } }; return values; } @Override SUPPRESS_WARNINGS_KEY_UNCHECKED public boolean containsKey(final KEY_TYPE k) { return in(KEY_GENERIC_CAST k) && RB_TREE_MAP.this.containsKey(k); } @Override public boolean containsValue(final VALUE_TYPE v) { final SubmapIterator i = new SubmapIterator(); VALUE_TYPE ev; while(i.hasNext()) { ev = i.nextEntry().value; if (VALUE_EQUALS(ev, v)) return true; } return false; } @Override SUPPRESS_WARNINGS_KEY_UNCHECKED public VALUE_GENERIC_TYPE GET_VALUE(final KEY_TYPE k) { final RB_TREE_MAP.Entry KEY_VALUE_GENERIC e; final KEY_GENERIC_TYPE kk = KEY_GENERIC_CAST k; return in(kk) && (e = findKey(kk)) != null ? e.value : this.defRetValue; } @Override public VALUE_GENERIC_TYPE put(final KEY_GENERIC_TYPE k, final VALUE_GENERIC_TYPE v) { modified = false; if (! in(k)) throw new IllegalArgumentException("Key (" + k + ") out of range [" + (bottom ? "-" : String.valueOf(from)) + ", " + (top ? "-" : String.valueOf(to)) + ")"); final VALUE_GENERIC_TYPE oldValue = RB_TREE_MAP.this.put(k, v); return modified ? this.defRetValue : oldValue; } @Override SUPPRESS_WARNINGS_KEY_UNCHECKED public VALUE_GENERIC_TYPE REMOVE_VALUE(final KEY_TYPE k) { modified = false; if (! in(KEY_GENERIC_CAST k)) return this.defRetValue; final VALUE_GENERIC_TYPE oldValue = RB_TREE_MAP.this.REMOVE_VALUE(k); return modified ? oldValue : this.defRetValue; } @Override public int size() { final SubmapIterator i = new SubmapIterator(); int n = 0; while(i.hasNext()) { n++; i.nextEntry(); } return n; } @Override public boolean isEmpty() { return ! new SubmapIterator().hasNext(); } @Override public KEY_COMPARATOR KEY_SUPER_GENERIC comparator() { return actualComparator; } @Override public SORTED_MAP KEY_VALUE_GENERIC headMap(final KEY_GENERIC_TYPE to) { if (top) return new Submap(from, bottom, to, false); return compare(to, this.to) < 0 ? new Submap(from, bottom, to, false) : this; } @Override public SORTED_MAP KEY_VALUE_GENERIC tailMap(final KEY_GENERIC_TYPE from) { if (bottom) return new Submap(from, false, to, top); return compare(from, this.from) > 0 ? new Submap(from, false, to, top) : this; } @Override public SORTED_MAP KEY_VALUE_GENERIC subMap(KEY_GENERIC_TYPE from, KEY_GENERIC_TYPE to) { if (top && bottom) return new Submap(from, false, to, false); if (! top) to = compare(to, this.to) < 0 ? to : this.to; if (! bottom) from = compare(from, this.from) > 0 ? from : this.from; if (! top && ! bottom && from == this.from && to == this.to) return this; return new Submap(from, false, to, false); } /** Locates the first entry. * * @return the first entry of this submap, or {@code null} if the submap is empty. */ public RB_TREE_MAP.Entry KEY_VALUE_GENERIC firstEntry() { if (tree == null) return null; // If this submap goes to -infinity, we return the main map first entry; otherwise, we locate the start of the map. RB_TREE_MAP.Entry KEY_VALUE_GENERIC e; if (bottom) e = firstEntry; else { e = locateKey(from); // If we find either the start or something greater we're OK. if (compare(e.key, from) < 0) e = e.next(); } // Finally, if this submap doesn't go to infinity, we check that the resulting key isn't greater than the end. if (e == null || ! top && compare(e.key, to) >= 0) return null; return e; } /** Locates the last entry. * * @return the last entry of this submap, or {@code null} if the submap is empty. */ public RB_TREE_MAP.Entry KEY_VALUE_GENERIC lastEntry() { if (tree == null) return null; // If this submap goes to infinity, we return the main map last entry; otherwise, we locate the end of the map. RB_TREE_MAP.Entry KEY_VALUE_GENERIC e; if (top) e = lastEntry; else { e = locateKey(to); // If we find something smaller than the end we're OK. if (compare(e.key, to) >= 0) e = e.prev(); } // Finally, if this submap doesn't go to -infinity, we check that the resulting key isn't smaller than the start. if (e == null || ! bottom && compare(e.key, from) < 0) return null; return e; } @Override public KEY_GENERIC_TYPE FIRST_KEY() { RB_TREE_MAP.Entry KEY_VALUE_GENERIC e = firstEntry(); if (e == null) throw new NoSuchElementException(); return e.key; } @Override public KEY_GENERIC_TYPE LAST_KEY() { RB_TREE_MAP.Entry KEY_VALUE_GENERIC e = lastEntry(); if (e == null) throw new NoSuchElementException(); return e.key; } /** An iterator for subranges. * *

This class inherits from {@link TreeIterator}, but overrides the methods that * update the pointer after a {@link java.util.ListIterator#next()} or {@link java.util.ListIterator#previous()}. If we would * move out of the range of the submap we just overwrite the next or previous * entry with {@code null}. */ private class SubmapIterator extends TreeIterator { SubmapIterator() { next = firstEntry(); } SubmapIterator(final KEY_GENERIC_TYPE k) { this(); if (next != null) { if (! bottom && compare(k, next.key) < 0) prev = null; else if (! top && compare(k, (prev = lastEntry()).key) >= 0) next = null; else { next = locateKey(k); if (compare(next.key, k) <= 0) { prev = next; next = next.next(); } else prev = next.prev(); } } } void updatePrevious() { prev = prev.prev(); if (! bottom && prev != null && RB_TREE_MAP.this.compare(prev.key, from) < 0) prev = null; } void updateNext() { next = next.next(); if (! top && next != null && RB_TREE_MAP.this.compare(next.key, to) >= 0) next = null; } } private class SubmapEntryIterator extends SubmapIterator implements ObjectListIterator { SubmapEntryIterator() {} SubmapEntryIterator(final KEY_GENERIC_TYPE k) { super(k); } @Override public MAP.Entry KEY_VALUE_GENERIC next() { return nextEntry(); } @Override public MAP.Entry KEY_VALUE_GENERIC previous() { return previousEntry(); } @Override public void set(MAP.Entry KEY_VALUE_GENERIC ok) { throw new UnsupportedOperationException(); } @Override public void add(MAP.Entry KEY_VALUE_GENERIC ok) { throw new UnsupportedOperationException(); } } /** An iterator on a subrange of keys. * *

This class can iterate in both directions on a subrange of the * keys of a threaded tree. We simply override the {@link * java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods (and possibly their * type-specific counterparts) so that they return keys instead of * entries. */ private final class SubmapKeyIterator extends SubmapIterator implements KEY_LIST_ITERATOR KEY_GENERIC { public SubmapKeyIterator() { super(); } public SubmapKeyIterator(KEY_GENERIC_TYPE from) { super(from); } @Override public KEY_GENERIC_TYPE NEXT_KEY() { return nextEntry().key; } @Override public KEY_GENERIC_TYPE PREV_KEY() { return previousEntry().key; } @Override public void set(KEY_GENERIC_TYPE k) { throw new UnsupportedOperationException(); } @Override public void add(KEY_GENERIC_TYPE k) { throw new UnsupportedOperationException(); } #if !KEY_CLASS_Object @Deprecated @Override public KEY_GENERIC_CLASS next() { return KEY2OBJ(nextEntry().key); } @Deprecated @Override public KEY_GENERIC_CLASS previous() { return KEY2OBJ(previousEntry().key); } @Deprecated @Override public void set(KEY_CLASS ok) { throw new UnsupportedOperationException(); } @Deprecated @Override public void add(KEY_CLASS ok) { throw new UnsupportedOperationException(); } #endif }; /** An iterator on a subrange of values. * *

This class can iterate in both directions on the values of a * subrange of the keys of a threaded tree. We simply override the * {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods (and possibly their * type-specific counterparts) so that they return values instead of * entries. */ private final class SubmapValueIterator extends SubmapIterator implements VALUE_LIST_ITERATOR VALUE_GENERIC { @Override public VALUE_GENERIC_TYPE NEXT_VALUE() { return nextEntry().value; } @Override public VALUE_GENERIC_TYPE PREV_VALUE() { return previousEntry().value; } @Override public void set(VALUE_GENERIC_TYPE v) { throw new UnsupportedOperationException(); } @Override public void add(VALUE_GENERIC_TYPE v) { throw new UnsupportedOperationException(); } #if VALUES_PRIMITIVE @Deprecated @Override public VALUE_GENERIC_CLASS next() { return VALUE2OBJ(nextEntry().value); } @Deprecated @Override public VALUE_GENERIC_CLASS previous() { return VALUE2OBJ(previousEntry().value); } @Deprecated @Override public void set(VALUE_CLASS ok) { throw new UnsupportedOperationException(); } @Deprecated @Override public void add(VALUE_CLASS ok) { throw new UnsupportedOperationException(); } #endif }; } /** Returns a deep copy of this tree map. * *

This method performs a deep copy of this tree map; the data stored in the * set, however, is not cloned. Note that this makes a difference only for object keys. * * @return a deep copy of this tree map. */ @Override SUPPRESS_WARNINGS_KEY_VALUE_UNCHECKED public RB_TREE_MAP KEY_VALUE_GENERIC clone() { RB_TREE_MAP KEY_VALUE_GENERIC c; try { c = (RB_TREE_MAP KEY_VALUE_GENERIC)super.clone(); } catch(CloneNotSupportedException cantHappen) { throw new InternalError(); } c.keys = null; c.values = null; c.entries = null; c.allocatePaths(); if (count != 0) { // Also this apparently unfathomable code is derived from GNU libavl. Entry KEY_VALUE_GENERIC e, p, q, rp = new Entry KEY_VALUE_GENERIC(), rq = new Entry KEY_VALUE_GENERIC(); p = rp; rp.left(tree); q = rq; rq.pred(null); while(true) { if (! p.pred()) { e = p.left.clone(); e.pred(q.left); e.succ(q); q.left(e); p = p.left; q = q.left; } else { while(p.succ()) { p = p.right; if (p == null) { q.right = null; c.tree = rq.left; c.firstEntry = c.tree; while(c.firstEntry.left != null) c.firstEntry = c.firstEntry.left; c.lastEntry = c.tree; while(c.lastEntry.right != null) c.lastEntry = c.lastEntry.right; return c; } q = q.right; } p = p.right; q = q.right; } if (! p.succ()) { e = p.right.clone(); e.succ(q.right); e.pred(q); q.right(e); } } } return c; } private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { int n = count; EntryIterator i = new EntryIterator(); Entry KEY_VALUE_GENERIC e; s.defaultWriteObject(); while(n-- != 0) { e = i.nextEntry(); s.WRITE_KEY(e.key); s.WRITE_VALUE(e.value); } } /** Reads the given number of entries from the input stream, returning the corresponding tree. * * @param s the input stream. * @param n the (positive) number of entries to read. * @param pred the entry containing the key that preceeds the first key in the tree. * @param succ the entry containing the key that follows the last key in the tree. */ SUPPRESS_WARNINGS_KEY_VALUE_UNCHECKED private Entry KEY_VALUE_GENERIC readTree(final java.io.ObjectInputStream s, final int n, final Entry KEY_VALUE_GENERIC pred, final Entry KEY_VALUE_GENERIC succ) throws java.io.IOException, ClassNotFoundException { if (n == 1) { final Entry KEY_VALUE_GENERIC top = new Entry KEY_VALUE_GENERIC(KEY_GENERIC_CAST s.READ_KEY(), VALUE_GENERIC_CAST s.READ_VALUE()); top.pred(pred); top.succ(succ); top.black(true); return top; } if (n == 2) { /* We handle separately this case so that recursion will *always* be on nonempty subtrees. */ final Entry KEY_VALUE_GENERIC top = new Entry KEY_VALUE_GENERIC(KEY_GENERIC_CAST s.READ_KEY(), VALUE_GENERIC_CAST s.READ_VALUE()); top.black(true); top.right(new Entry KEY_VALUE_GENERIC(KEY_GENERIC_CAST s.READ_KEY(), VALUE_GENERIC_CAST s.READ_VALUE())); top.right.pred(top); top.pred(pred); top.right.succ(succ); return top; } // The right subtree is the largest one. final int rightN = n / 2, leftN = n - rightN - 1; final Entry KEY_VALUE_GENERIC top = new Entry KEY_VALUE_GENERIC(); top.left(readTree(s, leftN, pred, top)); top.key = KEY_GENERIC_CAST s.READ_KEY(); top.value = VALUE_GENERIC_CAST s.READ_VALUE(); top.black(true); top.right(readTree(s, rightN, top, succ)); if (n + 2 == ((n + 2) & -(n + 2))) top.right.black(false); // Quick test for determining whether n + 2 is a power of 2. return top; } private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); /* The storedComparator is now correctly set, but we must restore on-the-fly the actualComparator. */ setActualComparator(); allocatePaths(); if (count != 0) { tree = readTree(s, count, null, null); Entry KEY_VALUE_GENERIC e; e = tree; while(e.left() != null) e = e.left(); firstEntry = e; e = tree; while(e.right() != null) e = e.right(); lastEntry = e; } if (ASSERTS) checkTree(tree, 0, -1); } #ifdef ASSERTS_CODE private void checkNodePath() { for(int i = nodePath.length; i-- != 0;) assert nodePath[i] == null : i; } private static KEY_VALUE_GENERIC int checkTree(Entry KEY_VALUE_GENERIC e, int d, int D) { if (e == null) return 0; if (e.black()) d++; if (e.left() != null) D = checkTree(e.left(), d, D); if (e.right() != null) D = checkTree(e.right(), d, D); if (e.left() == null && e.right() == null) { if (D == -1) D = d; else if (D != d) throw new AssertionError("Mismatch between number of black nodes (" + D + " and " + d + ")"); } return D; } #else private void checkNodePath() {} private static KEY_VALUE_GENERIC int checkTree(Entry KEY_VALUE_GENERIC e, int d, int D) { return 0; } #endif #ifdef TEST private static long seed = System.currentTimeMillis(); private static java.util.Random r = new java.util.Random(seed); private static KEY_TYPE genKey() { #if KEY_CLASS_Byte || KEY_CLASS_Short || KEY_CLASS_Character return (KEY_TYPE)(r.nextInt()); #elif KEYS_PRIMITIVE return r.NEXT_KEY(); #else return Integer.toBinaryString(r.nextInt()); #endif } private static VALUE_TYPE genValue() { #if VALUE_CLASS_Byte || VALUE_CLASS_Short || VALUE_CLASS_Character return (VALUE_TYPE)(r.nextInt()); #elif VALUES_PRIMITIVE return r.NEXT_VALUE(); #elif !VALUE_CLASS_Reference || KEY_CLASS_Reference return Integer.toBinaryString(r.nextInt()); #else return new java.io.Serializable() {}; #endif } private static java.text.NumberFormat format = new java.text.DecimalFormat("#,###.00"); private static java.text.FieldPosition p = new java.text.FieldPosition(0); private static String format(double d) { StringBuffer s = new StringBuffer(); return format.format(d, s, p).toString(); } private static void speedTest(int n, boolean comp) { int i, j; RB_TREE_MAP m; java.util.TreeMap t; KEY_TYPE k[] = new KEY_TYPE[n]; KEY_TYPE nk[] = new KEY_TYPE[n]; VALUE_TYPE v[] = new VALUE_TYPE[n]; long ms; for(i = 0; i < n; i++) { k[i] = genKey(); nk[i] = genKey(); v[i] = genValue(); } double totPut = 0, totYes = 0, totNo = 0, totAddTo = 0, totIterFor = 0, totIterBack = 0, totRemYes = 0, d, dd, ddd; if (comp) { for(j = 0; j < 20; j++) { t = new java.util.TreeMap(); /* We first add all pairs to t. */ for(i = 0; i < n; i++) t.put(KEY2OBJ(k[i]), VALUE2OBJ(v[i])); /* Then we remove the first half and put it back. */ for(i = 0; i < n/2; i++) t.remove(KEY2OBJ(k[i])); ms = System.currentTimeMillis(); for(i = 0; i < n/2; i++) t.put(KEY2OBJ(k[i]), VALUE2OBJ(v[i])); d = System.currentTimeMillis() - ms; /* Then we remove the other half and put it back again. */ ms = System.currentTimeMillis(); for(i = n/2; i < n; i++) t.remove(KEY2OBJ(k[i])); dd = System.currentTimeMillis() - ms ; ms = System.currentTimeMillis(); for(i = n/2; i < n; i++) t.put(KEY2OBJ(k[i]), VALUE2OBJ(v[i])); d += System.currentTimeMillis() - ms; if (j > 2) totPut += n/d; System.out.print("Add: " + format(n/d) +" K/s "); /* Then we remove again the first half. */ ms = System.currentTimeMillis(); for(i = 0; i < n/2; i++) t.remove(KEY2OBJ(k[i])); dd += System.currentTimeMillis() - ms ; if (j > 2) totRemYes += n/dd; System.out.print("RemYes: " + format(n/dd) +" K/s "); /* And then we put it back. */ for(i = 0; i < n/2; i++) t.put(KEY2OBJ(k[i]), VALUE2OBJ(v[i])); #if VALUES_PRIMITIVE && !VALUE_CLASS_Boolean /* we perform n/2 addTo() operations with get then put */ ms = System.currentTimeMillis(); for(i = 0; i < n/2; i++) t.put(KEY2OBJ(k[i]), (VALUE_TYPE) ((VALUE_CLASS) t.get(KEY2OBJ(k[i])) + i)); ddd = System.currentTimeMillis() - ms; if (j > 2) totAddTo += n/ddd; System.out.print("AddTo: " + format(n/ddd) +" K/s "); #endif /* We check for pairs in t. */ ms = System.currentTimeMillis(); for(i = 0; i < n; i++) t.containsKey(KEY2OBJ(k[i])); d = 1.0 * n / (System.currentTimeMillis() - ms); if (j > 2) totYes += d; System.out.print("Yes: " + format(d) +" K/s "); /* We check for pairs not in t. */ ms = System.currentTimeMillis(); for(i = 0; i < n; i++) t.containsKey(KEY2OBJ(nk[i])); d = 1.0 * n / (System.currentTimeMillis() - ms); if (j > 2) totNo += d; System.out.print("No: " + format(d) +" K/s "); /* We iterate on t. */ ms = System.currentTimeMillis(); for(Iterator it = t.entrySet().iterator(); it.hasNext(); it.next()); d = 1.0 * n / (System.currentTimeMillis() - ms); if (j > 2) totIterFor += d; System.out.print("IterFor: " + format(d) +" K/s "); System.out.println(); } System.out.println(); System.out.println("java.util Put: " + format(totPut/(j-3)) + " K/s RemYes: " + format(totRemYes/(j-3)) + " K/s Yes: " + format(totYes/(j-3)) + " K/s No: " + format(totNo/(j-3))+ "K/s AddTo: " + format(totAddTo/(j-3)) + " K/s IterFor: " + format(totIterFor/(j-3)) + " K/s"); System.out.println(); t = null; totPut = totYes = totNo = totIterFor = totIterBack = totRemYes = 0; } for(j = 0; j < 20; j++) { m = new RB_TREE_MAP(); /* We first add all pairs to m. */ for(i = 0; i < n; i++) m.put(k[i], v[i]); /* Then we remove the first half and put it back. */ for(i = 0; i < n/2; i++) m.remove(k[i]); ms = System.currentTimeMillis(); for(i = 0; i < n/2; i++) m.put(k[i], v[i]); d = System.currentTimeMillis() - ms; /* Then we remove the other half and put it back again. */ ms = System.currentTimeMillis(); for(i = n/2; i < n; i++) m.remove(k[i]); dd = System.currentTimeMillis() - ms ; ms = System.currentTimeMillis(); for(i = n/2; i < n; i++) m.put(k[i], v[i]); d += System.currentTimeMillis() - ms; if (j > 2) totPut += n/d; System.out.print("Add: " + format(n/d) +" K/s "); /* Then we remove again the first half. */ ms = System.currentTimeMillis(); for(i = 0; i < n/2; i++) m.remove(k[i]); dd += System.currentTimeMillis() - ms ; if (j > 2) totRemYes += n/dd; System.out.print("RemYes: " + format(n/dd) +" K/s "); /* And then we put it back. */ for(i = 0; i < n/2; i++) m.put(k[i], v[i]); #if VALUES_PRIMITIVE && !VALUE_CLASS_Boolean /* we perform n/2 addTo() operations with get then put */ ms = System.currentTimeMillis(); for(i = 0; i < n/2; i++) m.addTo(k[i], (VALUE_TYPE) i); ddd = System.currentTimeMillis() - ms; if (j > 2) totAddTo += n/ddd; System.out.print("AddTo: " + format(n/ddd) +" K/s "); #endif /* We check for pairs in m. */ ms = System.currentTimeMillis(); for(i = 0; i < n; i++) m.containsKey(k[i]); d = 1.0 * n / (System.currentTimeMillis() - ms); if (j > 2) totYes += d; System.out.print("Yes: " + format(d) +" K/s "); /* We check for pairs not in m. */ ms = System.currentTimeMillis(); for(i = 0; i < n; i++) m.containsKey(nk[i]); d = 1.0 * n / (System.currentTimeMillis() - ms); if (j > 2) totNo += d; System.out.print("No: " + format(d) +" K/s "); /* We iterate on m. */ java.util.ListIterator it = (java.util.ListIterator)m.entrySet().iterator(); ms = System.currentTimeMillis(); for(; it.hasNext(); it.next()); d = 1.0 * n / (System.currentTimeMillis() - ms); if (j > 2) totIterFor += d; System.out.print("IterFor: " + format(d) +" K/s "); /* We iterate back on m. */ ms = System.currentTimeMillis(); for(; it.hasPrevious(); it.previous()); d = 1.0 * n / (System.currentTimeMillis() - ms); if (j > 2) totIterBack += d; System.out.print("IterBack: " + format(d) +" K/s "); System.out.println(); } System.out.println(); System.out.println("fastutil Put: " + format(totPut/(j-3)) + " K/s RemYes: " + format(totRemYes/(j-3)) + " K/s Yes: " + format(totYes/(j-3)) + " K/s No: " + format(totNo/(j-3))+ "K/s AddTo: " + format(totAddTo/(j-3)) + " K/s IterFor: " + format(totIterFor/(j-3)) + " K/s"); System.out.println(); } private static boolean valEquals(Object o1, Object o2) { return o1 == null ? o2 == null : o1.equals(o2); } private static void fatal(String msg) { System.out.println(msg); System.exit(1); } private static void ensure(boolean cond, String msg) { if (cond) return; fatal(msg); } private static Object[] k, v, nk; private static KEY_TYPE kt[]; private static KEY_TYPE nkt[]; private static VALUE_TYPE vt[]; private static RB_TREE_MAP topMap; protected static void testMaps(SORTED_MAP m, SortedMap t, int n, int level) { long ms; boolean mThrowsIllegal, tThrowsIllegal, mThrowsNoElement, tThrowsNoElement; Object rt = null, rm = null; if (level > 4) return; /* Now we check that both maps agree on first/last keys. */ mThrowsNoElement = mThrowsIllegal = tThrowsNoElement = tThrowsIllegal = false; try { m.firstKey(); } catch (NoSuchElementException e) { mThrowsNoElement = true; } try { t.firstKey(); } catch (NoSuchElementException e) { tThrowsNoElement = true; } ensure(mThrowsNoElement == tThrowsNoElement, "Error (" + level + ", " + seed + "): firstKey() divergence at start in NoSuchElementException (" + mThrowsNoElement + ", " + tThrowsNoElement + ")"); if (! mThrowsNoElement) ensure(t.firstKey().equals(m.firstKey()), "Error (" + level + ", " + seed + "): m and t differ at start on their first key (" + m.firstKey() + ", " + t.firstKey() +")"); mThrowsNoElement = mThrowsIllegal = tThrowsNoElement = tThrowsIllegal = false; try { m.lastKey(); } catch (NoSuchElementException e) { mThrowsNoElement = true; } try { t.lastKey(); } catch (NoSuchElementException e) { tThrowsNoElement = true; } ensure(mThrowsNoElement == tThrowsNoElement, "Error (" + level + ", " + seed + "): lastKey() divergence at start in NoSuchElementException (" + mThrowsNoElement + ", " + tThrowsNoElement + ")"); if (! mThrowsNoElement) ensure(t.lastKey().equals(m.lastKey()), "Error (" + level + ", " + seed + "): m and t differ at start on their last key (" + m.lastKey() + ", " + t.lastKey() +")"); /* Now we check that m and t are equal. */ if (!m.equals(t) || ! t.equals(m)) System.err.println("m: " + m + " t: " + t); ensure(m.equals(t), "Error (" + level + ", " + seed + "): ! m.equals(t) at start"); ensure(t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals(m) at start"); /* Now we check that m actually holds that data. */ for(Iterator i=t.entrySet().iterator(); i.hasNext();) { java.util.Map.Entry e = (java.util.Map.Entry)i.next(); ensure(valEquals(e.getValue(), m.get(e.getKey())), "Error (" + level + ", " + seed + "): m and t differ on an entry ("+e+") after insertion (iterating on t)"); } /* Now we check that m actually holds that data, but iterating on m. */ for(Iterator i=m.entrySet().iterator(); i.hasNext();) { Entry e = (Entry)i.next(); ensure(valEquals(e.getValue(), t.get(e.getKey())), "Error (" + level + ", " + seed + "): m and t differ on an entry ("+e+") after insertion (iterating on m)"); } /* Now we check that m actually holds the same keys. */ for(Iterator i=t.keySet().iterator(); i.hasNext();) { Object o = i.next(); ensure(m.containsKey(o), "Error (" + level + ", " + seed + "): m and t differ on a key ("+o+") after insertion (iterating on t)"); ensure(m.keySet().contains(o), "Error (" + level + ", " + seed + "): m and t differ on a key ("+o+", in keySet()) after insertion (iterating on t)"); } /* Now we check that m actually holds the same keys, but iterating on m. */ for(Iterator i=m.keySet().iterator(); i.hasNext();) { Object o = i.next(); ensure(t.containsKey(o), "Error (" + level + ", " + seed + "): m and t differ on a key after insertion (iterating on m)"); ensure(t.keySet().contains(o), "Error (" + level + ", " + seed + "): m and t differ on a key (in keySet()) after insertion (iterating on m)"); } /* Now we check that m actually hold the same values. */ for(Iterator i=t.values().iterator(); i.hasNext();) { Object o = i.next(); ensure(m.containsValue(o), "Error (" + level + ", " + seed + "): m and t differ on a value after insertion (iterating on t)"); ensure(m.values().contains(o), "Error (" + level + ", " + seed + "): m and t differ on a value (in values()) after insertion (iterating on t)"); } /* Now we check that m actually hold the same values, but iterating on m. */ for(Iterator i=m.values().iterator(); i.hasNext();) { Object o = i.next(); ensure(t.containsValue(o), "Error (" + level + ", " + seed + "): m and t differ on a value after insertion (iterating on m)"); ensure(t.values().contains(o), "Error (" + level + ", " + seed + "): m and t differ on a value (in values()) after insertion (iterating on m)"); } /* Now we check that inquiries about random data give the same answer in m and t. For m we use the polymorphic method. */ for(int i=0; i 0) { badPrevious = true; j.previous(); break; } previous = k; } i = (it.unimi.dsi.fastutil.BidirectionalIterator)((SORTED_SET)m.keySet()).iterator(from); for(int k = 0; k < 2*n; k++) { ensure(i.hasNext() == j.hasNext(), "Error (" + level + ", " + seed + "): divergence in hasNext() (iterator with starting point " + from + ")"); ensure(i.hasPrevious() == j.hasPrevious() || badPrevious && (i.hasPrevious() == (previous != null)), "Error (" + level + ", " + seed + "): divergence in hasPrevious() (iterator with starting point " + from + ")" + badPrevious); if (r.nextFloat() < .8 && i.hasNext()) { ensure((I = i.next()).equals(J = j.next()), "Error (" + level + ", " + seed + "): divergence in next() (" + I + ", " + J + ", iterator with starting point " + from + ")"); //System.err.println("Done next " + I + " " + J + " " + badPrevious); badPrevious = false; if (r.nextFloat() < 0.5) { //System.err.println("Removing in next"); i.remove(); j.remove(); t.remove(J); } } else if (!badPrevious && r.nextFloat() < .2 && i.hasPrevious()) { ensure((I = i.previous()).equals(J = j.previous()), "Error (" + level + ", " + seed + "): divergence in previous() (" + I + ", " + J + ", iterator with starting point " + from + ")"); if (r.nextFloat() < 0.5) { //System.err.println("Removing in prev"); i.remove(); j.remove(); t.remove(J); } } } } /* Now we check that m actually holds that data. */ ensure(m.equals(t), "Error (" + level + ", " + seed + "): ! m.equals(t) after iteration"); ensure(t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals(m) after iteration"); /* Now we select a pair of keys and create a submap. */ if (! m.isEmpty()) { java.util.ListIterator i; Object start = m.firstKey(), end = m.firstKey(); for(i = (java.util.ListIterator)m.keySet().iterator(); i.hasNext() && r.nextFloat() < .3; start = end = i.next()); for(; i.hasNext() && r.nextFloat() < .95; end = i.next()); //System.err.println("Checking subMap from " + start + " to " + end + " (level=" + (level+1) + ")..."); testMaps((SORTED_MAP)m.subMap((KEY_CLASS) start, (KEY_CLASS)end), t.subMap(start, end), n, level + 1); ensure(m.equals(t), "Error (" + level + ", " + seed + "): ! m.equals(t) after subMap"); ensure(t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals(m) after subMap"); //System.err.println("Checking headMap to " + end + " (level=" + (level+1) + ")..."); testMaps((SORTED_MAP)m.headMap((KEY_CLASS)end), t.headMap(end), n, level + 1); ensure(m.equals(t), "Error (" + level + ", " + seed + "): ! m.equals(t) after headMap"); ensure(t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals(m) after headMap"); //System.err.println("Checking tailMap from " + start + " (level=" + (level+1) + ")..."); testMaps((SORTED_MAP)m.tailMap((KEY_CLASS)start), t.tailMap(start), n, level + 1); ensure(m.equals(t), "Error (" + level + ", " + seed + "): ! m.equals(t) after tailMap"); ensure(t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals(m) after tailMap"); } } private static void test(int n) { RB_TREE_MAP m = new RB_TREE_MAP(); SortedMap t = new java.util.TreeMap(); topMap = m; k = new Object[n]; v = new Object[n]; nk = new Object[n]; kt = new KEY_TYPE[n]; nkt = new KEY_TYPE[n]; vt = new VALUE_TYPE[n]; for(int i = 0; i < n; i++) { #if KEY_CLASS_Object k[i] = kt[i] = genKey(); nk[i] = nkt[i] = genKey(); #else k[i] = new KEY_CLASS(kt[i] = genKey()); nk[i] = new KEY_CLASS(nkt[i] = genKey()); #endif #if VALUES_REFERENCE v[i] = vt[i] = genValue(); #else v[i] = new VALUE_CLASS(vt[i] = genValue()); #endif } /* We add pairs to t. */ for(int i = 0; i < n; i++) t.put(k[i], v[i]); /* We add to m the same data */ m.putAll(t); testMaps(m, t, n, 0); System.out.println("Test OK"); return; } public static void main(String args[]) { int n = Integer.parseInt(args[1]); if (args.length > 2) r = new java.util.Random(seed = Long.parseLong(args[2])); try { if ("speedTest".equals(args[0]) || "speedComp".equals(args[0])) speedTest(n, "speedComp".equals(args[0])); else if ("test".equals(args[0])) test(n); } catch(Throwable e) { e.printStackTrace(System.err); System.err.println("seed: " + seed); } } #endif }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy