All Downloads are FREE. Search and download functionalities are using the official Maven repository.

it.unimi.dsi.fastutil.ints.IntOpenHashSet Maven / Gradle / Ivy

Go to download

fastutil extends the Java Collections Framework by providing type-specific maps, sets, lists and priority queues with a small memory footprint and fast access and insertion; provides also big (64-bit) arrays, sets and lists, and fast, practical I/O classes for binary and text files.

There is a newer version: 8.5.15
Show newest version
/*
	* Copyright (C) 2002-2017 Sebastiano Vigna
	*
	* Licensed under the Apache License, Version 2.0 (the "License");
	* you may not use this file except in compliance with the License.
	* You may obtain a copy of the License at
	*
	*     http://www.apache.org/licenses/LICENSE-2.0
	*
	* Unless required by applicable law or agreed to in writing, software
	* distributed under the License is distributed on an "AS IS" BASIS,
	* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
	* See the License for the specific language governing permissions and
	* limitations under the License.
	*/
package it.unimi.dsi.fastutil.ints;
import it.unimi.dsi.fastutil.Hash;
import it.unimi.dsi.fastutil.HashCommon;
import static it.unimi.dsi.fastutil.HashCommon.arraySize;
import static it.unimi.dsi.fastutil.HashCommon.maxFill;
import java.util.Arrays;
import java.util.Collection;
import java.util.Iterator;
import java.util.NoSuchElementException;
/**  A type-specific hash set with with a fast, small-footprint implementation.
	*
	* 

Instances of this class use a hash table to represent a set. The table is * enlarged as needed by doubling its size when new entries are created, but it is never made * smaller (even on a {@link #clear()}). A family of {@linkplain #trim() trimming * methods} lets you control the size of the table; this is particularly useful * if you reuse instances of this class. * * @see Hash * @see HashCommon */ public class IntOpenHashSet extends AbstractIntSet implements java.io.Serializable, Cloneable, Hash { private static final long serialVersionUID = 0L; private static final boolean ASSERTS = false; /** The array of keys. */ protected transient int[] key; /** The mask for wrapping a position counter. */ protected transient int mask; /** Whether this set contains the null key. */ protected transient boolean containsNull; /** The current table size. Note that an additional element is allocated for storing the null key. */ protected transient int n; /** Threshold after which we rehash. It must be the table size times {@link #f}. */ protected transient int maxFill; /** Number of entries in the set (including the null key, if present). */ protected int size; /** The acceptable load factor. */ protected final float f; /** Creates a new hash set. * *

The actual table size will be the least power of two greater than expected/f. * * @param expected the expected number of elements in the hash set. * @param f the load factor. */ public IntOpenHashSet(final int expected, final float f) { if (f <= 0 || f > 1) throw new IllegalArgumentException("Load factor must be greater than 0 and smaller than or equal to 1"); if (expected < 0) throw new IllegalArgumentException("The expected number of elements must be nonnegative"); this.f = f; n = arraySize(expected, f); mask = n - 1; maxFill = maxFill(n, f); key = new int[n + 1]; } /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. * * @param expected the expected number of elements in the hash set. */ public IntOpenHashSet(final int expected) { this(expected, DEFAULT_LOAD_FACTOR); } /** Creates a new hash set with initial expected {@link Hash#DEFAULT_INITIAL_SIZE} elements * and {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. */ public IntOpenHashSet() { this(DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR); } /** Creates a new hash set copying a given collection. * * @param c a {@link Collection} to be copied into the new hash set. * @param f the load factor. */ public IntOpenHashSet(final Collection c, final float f) { this(c.size(), f); addAll(c); } /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor * copying a given collection. * * @param c a {@link Collection} to be copied into the new hash set. */ public IntOpenHashSet(final Collection c) { this(c, DEFAULT_LOAD_FACTOR); } /** Creates a new hash set copying a given type-specific collection. * * @param c a type-specific collection to be copied into the new hash set. * @param f the load factor. */ public IntOpenHashSet(final IntCollection c, final float f) { this(c.size(), f); addAll(c); } /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor * copying a given type-specific collection. * * @param c a type-specific collection to be copied into the new hash set. */ public IntOpenHashSet(final IntCollection c) { this(c, DEFAULT_LOAD_FACTOR); } /** Creates a new hash set using elements provided by a type-specific iterator. * * @param i a type-specific iterator whose elements will fill the set. * @param f the load factor. */ public IntOpenHashSet(final IntIterator i, final float f) { this(DEFAULT_INITIAL_SIZE, f); while(i.hasNext()) add(i.nextInt()); } /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using elements provided by a type-specific iterator. * * @param i a type-specific iterator whose elements will fill the set. */ public IntOpenHashSet(final IntIterator i) { this(i, DEFAULT_LOAD_FACTOR); } /** Creates a new hash set using elements provided by an iterator. * * @param i an iterator whose elements will fill the set. * @param f the load factor. */ public IntOpenHashSet(final Iterator i, final float f) { this(IntIterators.asIntIterator(i), f); } /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using elements provided by an iterator. * * @param i an iterator whose elements will fill the set. */ public IntOpenHashSet(final Iterator i) { this(IntIterators.asIntIterator(i)); } /** Creates a new hash set and fills it with the elements of a given array. * * @param a an array whose elements will be used to fill the set. * @param offset the first element to use. * @param length the number of elements to use. * @param f the load factor. */ public IntOpenHashSet(final int[] a, final int offset, final int length, final float f) { this(length < 0 ? 0 : length, f); IntArrays.ensureOffsetLength(a, offset, length); for(int i = 0; i < length; i++) add(a[offset + i]); } /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor and fills it with the elements of a given array. * * @param a an array whose elements will be used to fill the set. * @param offset the first element to use. * @param length the number of elements to use. */ public IntOpenHashSet(final int[] a, final int offset, final int length) { this(a, offset, length, DEFAULT_LOAD_FACTOR); } /** Creates a new hash set copying the elements of an array. * * @param a an array to be copied into the new hash set. * @param f the load factor. */ public IntOpenHashSet(final int[] a, final float f) { this(a, 0, a.length, f); } /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor * copying the elements of an array. * * @param a an array to be copied into the new hash set. */ public IntOpenHashSet(final int[] a) { this(a, DEFAULT_LOAD_FACTOR); } private int realSize() { return containsNull ? size - 1 : size; } private void ensureCapacity(final int capacity) { final int needed = arraySize(capacity, f); if (needed > n) rehash(needed); } private void tryCapacity(final long capacity) { final int needed = (int)Math.min(1 << 30, Math.max(2, HashCommon.nextPowerOfTwo((long)Math.ceil(capacity / f)))); if (needed > n) rehash(needed); } @Override public boolean addAll(IntCollection c) { if (f <= .5) ensureCapacity(c.size()); // The resulting collection will be sized for c.size() elements else tryCapacity(size() + c.size()); // The resulting collection will be tentatively sized for size() + c.size() elements return super.addAll(c); } @Override public boolean addAll(Collection c) { // The resulting collection will be at least c.size() big if (f <= .5) ensureCapacity(c.size()); // The resulting collection will be sized for c.size() elements else tryCapacity(size() + c.size()); // The resulting collection will be tentatively sized for size() + c.size() elements return super.addAll(c); } @Override public boolean add(final int k) { int pos; if (( (k) == (0) )) { if (containsNull) return false; containsNull = true; } else { int curr; final int[] key = this.key; // The starting point. if (! ( (curr = key[pos = ( it.unimi.dsi.fastutil.HashCommon.mix( (k) ) ) & mask]) == (0) )) { if (( (curr) == (k) )) return false; while(! ( (curr = key[pos = (pos + 1) & mask]) == (0) )) if (( (curr) == (k) )) return false; } key[pos] = k; } if (size++ >= maxFill) rehash(arraySize(size + 1, f)); if (ASSERTS) checkTable(); return true; } /** Shifts left entries with the specified hash code, starting at the specified position, * and empties the resulting free entry. * * @param pos a starting position. */ protected final void shiftKeys(int pos) { // Shift entries with the same hash. int last, slot; int curr; final int[] key = this.key; for(;;) { pos = ((last = pos) + 1) & mask; for(;;) { if (( (curr = key[pos]) == (0) )) { key[last] = (0); return; } slot = ( it.unimi.dsi.fastutil.HashCommon.mix( (curr) ) ) & mask; if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break; pos = (pos + 1) & mask; } key[last] = curr; } } private boolean removeEntry(final int pos) { size--; shiftKeys(pos); if (size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2); return true; } private boolean removeNullEntry() { containsNull = false; key[n] = (0); size--; if (size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2); return true; } @Override public boolean remove(final int k) { if (( (k) == (0) )) { if (containsNull) return removeNullEntry(); return false; } int curr; final int[] key = this.key; int pos; // The starting point. if (( (curr = key[pos = ( it.unimi.dsi.fastutil.HashCommon.mix( (k) ) ) & mask]) == (0) )) return false; if (( (k) == (curr) )) return removeEntry(pos); while(true) { if (( (curr = key[pos = (pos + 1) & mask]) == (0) )) return false; if (( (k) == (curr) )) return removeEntry(pos); } } @Override public boolean contains(final int k) { if (( (k) == (0) )) return containsNull; int curr; final int[] key = this.key; int pos; // The starting point. if (( (curr = key[pos = ( it.unimi.dsi.fastutil.HashCommon.mix( (k) ) ) & mask]) == (0) )) return false; if (( (k) == (curr) )) return true; while(true) { if (( (curr = key[pos = (pos + 1) & mask]) == (0) )) return false; if (( (k) == (curr) )) return true; } } /* Removes all elements from this set. * *

To increase object reuse, this method does not change the table size. * If you want to reduce the table size, you must use {@link #trim()}. * */ @Override public void clear() { if (size == 0) return; size = 0; containsNull = false; Arrays.fill(key, (0)); } @Override public int size() { return size; } @Override public boolean isEmpty() { return size == 0; } /** A no-op for backward compatibility. * * @param growthFactor unused. * @deprecated Since fastutil 6.1.0, hash tables are doubled when they are too full. */ @Deprecated public void growthFactor(int growthFactor) {} /** Gets the growth factor (2). * * @return the growth factor of this set, which is fixed (2). * @see #growthFactor(int) * @deprecated Since fastutil 6.1.0, hash tables are doubled when they are too full. */ @Deprecated public int growthFactor() { return 16; } /** An iterator over a hash set. */ private class SetIterator extends AbstractIntIterator { /** The index of the last entry returned, if positive or zero; initially, {@link #n}. If negative, the last element returned was that of index {@code - pos - 1} from the {@link #wrapped} list. */ int pos = n; /** The index of the last entry that has been returned (more precisely, the value of {@link #pos} if {@link #pos} is positive, or {@link Integer#MIN_VALUE} if {@link #pos} is negative). It is -1 if either we did not return an entry yet, or the last returned entry has been removed. */ int last = -1; /** A downward counter measuring how many entries must still be returned. */ int c = size; /** A boolean telling us whether we should return the null key. */ boolean mustReturnNull = IntOpenHashSet.this.containsNull; /** A lazily allocated list containing elements that have wrapped around the table because of removals. */ IntArrayList wrapped; public boolean hasNext() { return c != 0; } public int nextInt() { if (! hasNext()) throw new NoSuchElementException(); c--; if (mustReturnNull) { mustReturnNull = false; last = n; return key[n]; } final int key[] = IntOpenHashSet.this.key; for(;;) { if (--pos < 0) { // We are just enumerating elements from the wrapped list. last = Integer.MIN_VALUE; return wrapped.getInt(- pos - 1); } if (! ( (key[pos]) == (0) )) return key[last = pos]; } } /** Shifts left entries with the specified hash code, starting at the specified position, * and empties the resulting free entry. * * @param pos a starting position. */ private final void shiftKeys(int pos) { // Shift entries with the same hash. int last, slot; int curr; final int[] key = IntOpenHashSet.this.key; for(;;) { pos = ((last = pos) + 1) & mask; for(;;) { if (( (curr = key[pos]) == (0) )) { key[last] = (0); return; } slot = ( it.unimi.dsi.fastutil.HashCommon.mix( (curr) ) ) & mask; if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break; pos = (pos + 1) & mask; } if (pos < last) { // Wrapped entry. if (wrapped == null) wrapped = new IntArrayList (2); wrapped.add(key[pos]); } key[last] = curr; } } public void remove() { if (last == -1) throw new IllegalStateException(); if (last == n) { IntOpenHashSet.this.containsNull = false; IntOpenHashSet.this.key[n] = (0); } else if (pos >= 0) shiftKeys(last); else { // We're removing wrapped entries. IntOpenHashSet.this.remove(wrapped.getInt(- pos - 1)); last = -1; // Note that we must not decrement size return; } size--; last = -1; // You can no longer remove this entry. if (ASSERTS) checkTable(); } } @Override public IntIterator iterator() { return new SetIterator(); } /** A no-op for backward compatibility. The kind of tables implemented by * this class never need rehashing. * *

If you need to reduce the table size to fit exactly * this set, use {@link #trim()}. * * @return true. * @see #trim() * @deprecated A no-op. */ @Deprecated public boolean rehash() { return true; } /** Rehashes this set, making the table as small as possible. * *

This method rehashes the table to the smallest size satisfying the * load factor. It can be used when the set will not be changed anymore, so * to optimize access speed and size. * *

If the table size is already the minimum possible, this method * does nothing. * * @return true if there was enough memory to trim the set. * @see #trim(int) */ public boolean trim() { final int l = arraySize(size, f); if (l >= n || size > maxFill(l, f)) return true; try { rehash(l); } catch(OutOfMemoryError cantDoIt) { return false; } return true; } /** Rehashes this set if the table is too large. * *

Let N be the smallest table size that can hold * max(n,{@link #size()}) entries, still satisfying the load factor. If the current * table size is smaller than or equal to N, this method does * nothing. Otherwise, it rehashes this set in a table of size * N. * *

This method is useful when reusing sets. {@linkplain #clear() Clearing a * set} leaves the table size untouched. If you are reusing a set * many times, you can call this method with a typical * size to avoid keeping around a very large table just * because of a few large transient sets. * * @param n the threshold for the trimming. * @return true if there was enough memory to trim the set. * @see #trim() */ public boolean trim(final int n) { final int l = HashCommon.nextPowerOfTwo((int)Math.ceil(n / f)); if (l >= n || size > maxFill(l, f)) return true; try { rehash(l); } catch(OutOfMemoryError cantDoIt) { return false; } return true; } /** Rehashes the set. * *

This method implements the basic rehashing strategy, and may be * overriden by subclasses implementing different rehashing strategies (e.g., * disk-based rehashing). However, you should not override this method * unless you understand the internal workings of this class. * * @param newN the new size */ protected void rehash(final int newN) { final int key[] = this.key; final int mask = newN - 1; // Note that this is used by the hashing macro final int newKey[] = new int[newN + 1]; int i = n, pos; for(int j = realSize(); j-- != 0;) { while(( (key[--i]) == (0) )); if (! ( (newKey[pos = ( it.unimi.dsi.fastutil.HashCommon.mix( (key[i]) ) ) & mask]) == (0) )) while (! ( (newKey[pos = (pos + 1) & mask]) == (0) )); newKey[pos] = key[i]; } n = newN; this.mask = mask; maxFill = maxFill(n, f); this.key = newKey; } /** Returns a deep copy of this set. * *

This method performs a deep copy of this hash set; the data stored in the * set, however, is not cloned. Note that this makes a difference only for object keys. * * @return a deep copy of this set. */ @Override public IntOpenHashSet clone() { IntOpenHashSet c; try { c = (IntOpenHashSet )super.clone(); } catch(CloneNotSupportedException cantHappen) { throw new InternalError(); } c.key = key.clone(); c.containsNull = containsNull; return c; } /** Returns a hash code for this set. * * This method overrides the generic method provided by the superclass. * Since equals() is not overriden, it is important * that the value returned by this method is the same value as * the one returned by the overriden method. * * @return a hash code for this set. */ @Override public int hashCode() { int h = 0; for(int j = realSize(), i = 0; j-- != 0;) { while(( (key[i]) == (0) )) i++; h += (key[i]); i++; } // Zero / null have hash zero. return h; } private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { final IntIterator i = iterator(); s.defaultWriteObject(); for(int j = size; j-- != 0;) s.writeInt(i.nextInt()); } private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); n = arraySize(size, f); maxFill = maxFill(n, f); mask = n - 1; final int key[] = this.key = new int[n + 1]; int k; for(int i = size, pos; i-- != 0;) { k = s.readInt(); if (( (k) == (0) )) { pos = n; containsNull = true; } else { if (! ( (key[pos = ( it.unimi.dsi.fastutil.HashCommon.mix( (k) ) ) & mask]) == (0) )) while (! ( (key[pos = (pos + 1) & mask]) == (0) )); } key[pos] = k; } if (ASSERTS) checkTable(); } private void checkTable() {} }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy