drv.RBTreeMap.drv Maven / Gradle / Ivy
Show all versions of fastutil Show documentation
/*
* Copyright (C) 2002-2017 Sebastiano Vigna
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package PACKAGE;
import it.unimi.dsi.fastutil.objects.AbstractObjectSortedSet;
import it.unimi.dsi.fastutil.objects.ObjectBidirectionalIterator;
import it.unimi.dsi.fastutil.objects.ObjectListIterator;
import it.unimi.dsi.fastutil.objects.ObjectSortedSet;
import VALUE_PACKAGE.VALUE_COLLECTION;
import VALUE_PACKAGE.VALUE_ABSTRACT_COLLECTION;
import VALUE_PACKAGE.VALUE_ITERATOR;
import java.util.Comparator;
import java.util.Iterator;
import java.util.Map;
import java.util.SortedMap;
import java.util.NoSuchElementException;
#if VALUES_PRIMITIVE
import VALUE_PACKAGE.VALUE_LIST_ITERATOR;
#endif
/** A type-specific red-black tree map with a fast, small-footprint implementation.
*
* The iterators provided by the views of this class are type-specific {@linkplain
* it.unimi.dsi.fastutil.BidirectionalIterator bidirectional iterators}.
* Moreover, the iterator returned by {@code iterator()} can be safely cast
* to a type-specific {@linkplain java.util.ListIterator list iterator}.
*
*/
public class RB_TREE_MAP KEY_VALUE_GENERIC extends ABSTRACT_SORTED_MAP KEY_VALUE_GENERIC implements java.io.Serializable, Cloneable {
/** A reference to the root entry. */
protected transient Entry KEY_VALUE_GENERIC tree;
/** Number of entries in this map. */
protected int count;
/** The first key in this map. */
protected transient Entry KEY_VALUE_GENERIC firstEntry;
/** The last key in this map. */
protected transient Entry KEY_VALUE_GENERIC lastEntry;
/** Cached set of entries. */
protected transient ObjectSortedSet entries;
/** Cached set of keys. */
protected transient SORTED_SET KEY_GENERIC keys;
/** Cached collection of values. */
protected transient VALUE_COLLECTION VALUE_GENERIC values;
/** The value of this variable remembers, after a {@code put()}
* or a {@code remove()}, whether the domain of the map
* has been modified. */
protected transient boolean modified;
/** This map's comparator, as provided in the constructor. */
protected Comparator super KEY_GENERIC_CLASS> storedComparator;
/** This map's actual comparator; it may differ from {@link #storedComparator} because it is
always a type-specific comparator, so it could be derived from the former by wrapping. */
protected transient KEY_COMPARATOR KEY_SUPER_GENERIC actualComparator;
private static final long serialVersionUID = -7046029254386353129L;
{
allocatePaths();
}
/** Creates a new empty tree map.
*/
public RB_TREE_MAP() {
tree = null;
count = 0;
}
/** Generates the comparator that will be actually used.
*
* When a given {@link Comparator} is specified and stored in {@link
* #storedComparator}, we must check whether it is type-specific. If it is
* so, we can used directly, and we store it in {@link #actualComparator}. Otherwise,
* we adapt it using a helper static method.
*/
private void setActualComparator() {
#if KEY_CLASS_Object
actualComparator = storedComparator;
#else
actualComparator = COMPARATORS.AS_KEY_COMPARATOR(storedComparator);
#endif
}
/** Creates a new empty tree map with the given comparator.
*
* @param c a (possibly type-specific) comparator.
*/
public RB_TREE_MAP(final Comparator super KEY_GENERIC_CLASS> c) {
this();
storedComparator = c;
setActualComparator();
}
/** Creates a new tree map copying a given map.
*
* @param m a {@link Map} to be copied into the new tree map.
*/
public RB_TREE_MAP(final Map extends KEY_GENERIC_CLASS, ? extends VALUE_GENERIC_CLASS> m) {
this();
putAll(m);
}
/** Creates a new tree map copying a given sorted map (and its {@link Comparator}).
*
* @param m a {@link SortedMap} to be copied into the new tree map.
*/
public RB_TREE_MAP(final SortedMap m) {
this(m.comparator());
putAll(m);
}
/** Creates a new tree map copying a given map.
*
* @param m a type-specific map to be copied into the new tree map.
*/
public RB_TREE_MAP(final MAP KEY_VALUE_EXTENDS_GENERIC m) {
this();
putAll(m);
}
/** Creates a new tree map copying a given sorted map (and its {@link Comparator}).
*
* @param m a type-specific sorted map to be copied into the new tree map.
*/
public RB_TREE_MAP(final SORTED_MAP KEY_VALUE_GENERIC m) {
this(m.comparator());
putAll(m);
}
/** Creates a new tree map using the elements of two parallel arrays and the given comparator.
*
* @param k the array of keys of the new tree map.
* @param v the array of corresponding values in the new tree map.
* @param c a (possibly type-specific) comparator.
* @throws IllegalArgumentException if {@code k} and {@code v} have different lengths.
*/
public RB_TREE_MAP(final KEY_GENERIC_TYPE[] k, final VALUE_GENERIC_TYPE v[], final Comparator super KEY_GENERIC_CLASS> c) {
this(c);
if (k.length != v.length) throw new IllegalArgumentException("The key array and the value array have different lengths (" + k.length + " and " + v.length + ")");
for(int i = 0; i < k.length; i++) this.put(k[i], v[i]);
}
/** Creates a new tree map using the elements of two parallel arrays.
*
* @param k the array of keys of the new tree map.
* @param v the array of corresponding values in the new tree map.
* @throws IllegalArgumentException if {@code k} and {@code v} have different lengths.
*/
public RB_TREE_MAP(final KEY_GENERIC_TYPE[] k, final VALUE_GENERIC_TYPE v[]) {
this(k, v, null);
}
/*
* The following methods implements some basic building blocks used by
* all accessors. They are (and should be maintained) identical to those used in RBTreeSet.drv.
*
* The put()/remove() code is derived from Ben Pfaff's GNU libavl
* (http://www.msu.edu/~pfaffben/avl/). If you want to understand what's
* going on, you should have a look at the literate code contained therein
* first.
*/
/** Compares two keys in the right way.
*
* This method uses the {@link #actualComparator} if it is non-{@code null}.
* Otherwise, it resorts to primitive type comparisons or to {@link Comparable#compareTo(Object) compareTo()}.
*
* @param k1 the first key.
* @param k2 the second key.
* @return a number smaller than, equal to or greater than 0, as usual
* (i.e., when k1 < k2, k1 = k2 or k1 > k2, respectively).
*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
final int compare(final KEY_GENERIC_TYPE k1, final KEY_GENERIC_TYPE k2) {
return actualComparator == null ? KEY_CMP(k1, k2) : actualComparator.compare(k1, k2);
}
/** Returns the entry corresponding to the given key, if it is in the tree; {@code null}, otherwise.
*
* @param k the key to search for.
* @return the corresponding entry, or {@code null} if no entry with the given key exists.
*/
final Entry KEY_VALUE_GENERIC findKey(final KEY_GENERIC_TYPE k) {
Entry KEY_VALUE_GENERIC e = tree;
int cmp;
while (e != null && (cmp = compare(k, e.key)) != 0) e = cmp < 0 ? e.left() : e.right();
return e;
}
/** Locates a key.
*
* @param k a key.
* @return the last entry on a search for the given key; this will be
* the given key, if it present; otherwise, it will be either the smallest greater key or the greatest smaller key.
*/
final Entry KEY_VALUE_GENERIC locateKey(final KEY_GENERIC_TYPE k) {
Entry KEY_VALUE_GENERIC e = tree, last = tree;
int cmp = 0;
while (e != null && (cmp = compare(k, e.key)) != 0) {
last = e;
e = cmp < 0 ? e.left() : e.right();
}
return cmp == 0 ? e : last;
}
/** This vector remembers the path and the direction followed during the
* current insertion. It suffices for about 232 entries. */
private transient boolean dirPath[];
private transient Entry KEY_VALUE_GENERIC nodePath[];
SUPPRESS_WARNINGS_KEY_VALUE_UNCHECKED_RAWTYPES
private void allocatePaths() {
dirPath = new boolean[64];
nodePath = new Entry[64];
}
#if VALUES_PRIMITIVE && !VALUE_CLASS_Boolean
/** Adds an increment to value currently associated with a key.
*
*
Note that this method respects the {@linkplain #defaultReturnValue() default return value} semantics: when
* called with a key that does not currently appears in the map, the key
* will be associated with the default return value plus
* the given increment.
*
* @param k the key.
* @param incr the increment.
* @return the old value, or the {@linkplain #defaultReturnValue() default return value} if no value was present for the given key.
*/
public VALUE_GENERIC_TYPE addTo(final KEY_GENERIC_TYPE k, final VALUE_GENERIC_TYPE incr) {
Entry KEY_VALUE_GENERIC e = add(k);
final VALUE_GENERIC_TYPE oldValue = e.value;
e.value += incr;
return oldValue;
}
#endif
@Override
public VALUE_GENERIC_TYPE put(final KEY_GENERIC_TYPE k, final VALUE_GENERIC_TYPE v) {
Entry KEY_VALUE_GENERIC e = add(k);
final VALUE_GENERIC_TYPE oldValue = e.value;
e.value = v;
return oldValue;
}
/** Returns a node with key k in the balanced tree, creating one with defRetValue if necessary.
*
* @param k the key
* @return a node with key k. If a node with key k already exists, then that node is returned,
* otherwise a new node with defRetValue is created ensuring that the tree is balanced
* after creation of the node.
*/
private Entry KEY_VALUE_GENERIC add(final KEY_GENERIC_TYPE k) {
/* After execution of this method, modified is true iff a new entry has been inserted. */
modified = false;
int maxDepth = 0;
Entry KEY_VALUE_GENERIC e;
if (tree == null) { // The case of the empty tree is treated separately.
count++;
e = tree = lastEntry = firstEntry = new Entry KEY_VALUE_GENERIC_DIAMOND(k, defRetValue);
}
else {
Entry KEY_VALUE_GENERIC p = tree;
int cmp, i = 0;
while(true) {
if ((cmp = compare(k, p.key)) == 0) {
// We clean up the node path, or we could have stale references later.
while(i-- != 0) nodePath[i] = null;
return p;
}
nodePath[i] = p;
if (dirPath[i++] = cmp > 0) {
if (p.succ()) {
count++;
e = new Entry KEY_VALUE_GENERIC_DIAMOND(k, defRetValue);
if (p.right == null) lastEntry = e;
e.left = p;
e.right = p.right;
p.right(e);
break;
}
p = p.right;
}
else {
if (p.pred()) {
count++;
e = new Entry KEY_VALUE_GENERIC_DIAMOND(k, defRetValue);
if (p.left == null) firstEntry = e;
e.right = p;
e.left = p.left;
p.left(e);
break;
}
p = p.left;
}
}
modified = true;
maxDepth = i--;
while(i > 0 && ! nodePath[i].black()) {
if (! dirPath[i - 1]) {
Entry KEY_VALUE_GENERIC y = nodePath[i - 1].right;
if (! nodePath[i - 1].succ() && ! y.black()) {
nodePath[i].black(true);
y.black(true);
nodePath[i - 1].black(false);
i -= 2;
}
else {
Entry KEY_VALUE_GENERIC x;
if (! dirPath[i]) y = nodePath[i];
else {
x = nodePath[i];
y = x.right;
x.right = y.left;
y.left = x;
nodePath[i - 1].left = y;
if (y.pred()) {
y.pred(false);
x.succ(y);
}
}
x = nodePath[i - 1];
x.black(false);
y.black(true);
x.left = y.right;
y.right = x;
if (i < 2) tree = y;
else {
if (dirPath[i - 2]) nodePath[i - 2].right = y;
else nodePath[i - 2].left = y;
}
if (y.succ()) {
y.succ(false);
x.pred(y);
}
break;
}
}
else {
Entry KEY_VALUE_GENERIC y = nodePath[i - 1].left;
if (! nodePath[i - 1].pred() && ! y.black()) {
nodePath[i].black(true);
y.black(true);
nodePath[i - 1].black(false);
i -= 2;
}
else {
Entry KEY_VALUE_GENERIC x;
if (dirPath[i]) y = nodePath[i];
else {
x = nodePath[i];
y = x.left;
x.left = y.right;
y.right = x;
nodePath[i - 1].right = y;
if (y.succ()) {
y.succ(false);
x.pred(y);
}
}
x = nodePath[i - 1];
x.black(false);
y.black(true);
x.right = y.left;
y.left = x;
if (i < 2) tree = y;
else {
if (dirPath[i - 2]) nodePath[i - 2].right = y;
else nodePath[i - 2].left = y;
}
if (y.pred()){
y.pred(false);
x.succ(y);
}
break;
}
}
}
}
tree.black(true);
// We clean up the node path, or we could have stale references later.
while(maxDepth-- != 0) nodePath[maxDepth] = null;
return e;
}
/* After execution of this method, {@link #modified} is true iff an entry
has been deleted. */
SUPPRESS_WARNINGS_KEY_UNCHECKED
@Override
public VALUE_GENERIC_TYPE REMOVE_VALUE(final KEY_TYPE k) {
modified = false;
if (tree == null) return defRetValue;
Entry KEY_VALUE_GENERIC p = tree;
int cmp;
int i = 0;
final KEY_GENERIC_TYPE kk = KEY_GENERIC_CAST k;
while(true) {
if ((cmp = compare(kk, p.key)) == 0) break;
dirPath[i] = cmp > 0;
nodePath[i] = p;
if (dirPath[i++]) {
if ((p = p.right()) == null) {
// We clean up the node path, or we could have stale references later.
while(i-- != 0) nodePath[i] = null;
return defRetValue;
}
}
else {
if ((p = p.left()) == null) {
// We clean up the node path, or we could have stale references later.
while(i-- != 0) nodePath[i] = null;
return defRetValue;
}
}
}
if (p.left == null) firstEntry = p.next();
if (p.right == null) lastEntry = p.prev();
if (p.succ()) {
if (p.pred()) {
if (i == 0) tree = p.left;
else {
if (dirPath[i - 1]) nodePath[i - 1].succ(p.right);
else nodePath[i - 1].pred(p.left);
}
}
else {
p.prev().right = p.right;
if (i == 0) tree = p.left;
else {
if (dirPath[i - 1]) nodePath[i - 1].right = p.left;
else nodePath[i - 1].left = p.left;
}
}
}
else {
boolean color;
Entry KEY_VALUE_GENERIC r = p.right;
if (r.pred()) {
r.left = p.left;
r.pred(p.pred());
if (! r.pred()) r.prev().right = r;
if (i == 0) tree = r;
else {
if (dirPath[i - 1]) nodePath[i - 1].right = r;
else nodePath[i - 1].left = r;
}
color = r.black();
r.black(p.black());
p.black(color);
dirPath[i] = true;
nodePath[i++] = r;
}
else {
Entry KEY_VALUE_GENERIC s;
int j = i++;
while(true) {
dirPath[i] = false;
nodePath[i++] = r;
s = r.left;
if (s.pred()) break;
r = s;
}
dirPath[j] = true;
nodePath[j] = s;
if (s.succ()) r.pred(s);
else r.left = s.right;
s.left = p.left;
if (! p.pred()) {
p.prev().right = s;
s.pred(false);
}
s.right(p.right);
color = s.black();
s.black(p.black());
p.black(color);
if (j == 0) tree = s;
else {
if (dirPath[j - 1]) nodePath[j - 1].right = s;
else nodePath[j - 1].left = s;
}
}
}
int maxDepth = i;
if (p.black()) {
for(; i > 0; i--) {
if (dirPath[i - 1] && ! nodePath[i - 1].succ() ||
! dirPath[i - 1] && ! nodePath[i - 1].pred()) {
Entry KEY_VALUE_GENERIC x = dirPath[i - 1] ? nodePath[i - 1].right : nodePath[i - 1].left;
if (! x.black()) {
x.black(true);
break;
}
}
if (! dirPath[i - 1]) {
Entry KEY_VALUE_GENERIC w = nodePath[i - 1].right;
if (! w.black()) {
w.black(true);
nodePath[i - 1].black(false);
nodePath[i - 1].right = w.left;
w.left = nodePath[i - 1];
if (i < 2) tree = w;
else {
if (dirPath[i - 2]) nodePath[i - 2].right = w;
else nodePath[i - 2].left = w;
}
nodePath[i] = nodePath[i - 1];
dirPath[i] = false;
nodePath[i - 1] = w;
if (maxDepth == i++) maxDepth++;
w = nodePath[i - 1].right;
}
if ((w.pred() || w.left.black()) &&
(w.succ() || w.right.black())) {
w.black(false);
}
else {
if (w.succ() || w.right.black()) {
Entry KEY_VALUE_GENERIC y = w.left;
y.black (true);
w.black(false);
w.left = y.right;
y.right = w;
w = nodePath[i - 1].right = y;
if (w.succ()) {
w.succ(false);
w.right.pred(w);
}
}
w.black(nodePath[i - 1].black());
nodePath[i - 1].black(true);
w.right.black(true);
nodePath[i - 1].right = w.left;
w.left = nodePath[i - 1];
if (i < 2) tree = w;
else {
if (dirPath[i - 2]) nodePath[i - 2].right = w;
else nodePath[i - 2].left = w;
}
if (w.pred()) {
w.pred(false);
nodePath[i - 1].succ(w);
}
break;
}
}
else {
Entry KEY_VALUE_GENERIC w = nodePath[i - 1].left;
if (! w.black()) {
w.black (true);
nodePath[i - 1].black(false);
nodePath[i - 1].left = w.right;
w.right = nodePath[i - 1];
if (i < 2) tree = w;
else {
if (dirPath[i - 2]) nodePath[i - 2].right = w;
else nodePath[i - 2].left = w;
}
nodePath[i] = nodePath[i - 1];
dirPath[i] = true;
nodePath[i - 1] = w;
if (maxDepth == i++) maxDepth++;
w = nodePath[i - 1].left;
}
if ((w.pred() || w.left.black()) &&
(w.succ() || w.right.black())) {
w.black(false);
}
else {
if (w.pred() || w.left.black()) {
Entry KEY_VALUE_GENERIC y = w.right;
y.black(true);
w.black (false);
w.right = y.left;
y.left = w;
w = nodePath[i - 1].left = y;
if (w.pred()) {
w.pred(false);
w.left.succ(w);
}
}
w.black(nodePath[i - 1].black());
nodePath[i - 1].black(true);
w.left.black(true);
nodePath[i - 1].left = w.right;
w.right = nodePath[i - 1];
if (i < 2) tree = w;
else {
if (dirPath[i - 2]) nodePath[i - 2].right = w;
else nodePath[i - 2].left = w;
}
if (w.succ()) {
w.succ(false);
nodePath[i - 1].pred(w);
}
break;
}
}
}
if (tree != null) tree.black(true);
}
modified = true;
count--;
// We clean up the node path, or we could have stale references later.
while(maxDepth-- != 0) nodePath[maxDepth] = null;
return p.value;
}
@Override
public boolean containsValue(final VALUE_TYPE v) {
final ValueIterator i = new ValueIterator();
VALUE_TYPE ev;
int j = count;
while(j-- != 0) {
ev = i.NEXT_VALUE();
if (VALUE_EQUALS(ev, v)) return true;
}
return false;
}
@Override
public void clear() {
count = 0;
tree = null;
entries = null;
values = null;
keys = null;
firstEntry = lastEntry = null;
}
/** This class represent an entry in a tree map.
*
*
We use the only "metadata", i.e., {@link Entry#info}, to store
* information about color, predecessor status and successor status.
*
*
Note that since the class is recursive, it can be
* considered equivalently a tree.
*/
private static final class Entry KEY_VALUE_GENERIC extends ABSTRACT_MAP.BasicEntry KEY_VALUE_GENERIC implements Cloneable {
/** The the bit in this mask is true, the node is black. */
private static final int BLACK_MASK = 1;
/** If the bit in this mask is true, {@link #right} points to a successor. */
private static final int SUCC_MASK = 1 << 31;
/** If the bit in this mask is true, {@link #left} points to a predecessor. */
private static final int PRED_MASK = 1 << 30;
/** The pointers to the left and right subtrees. */
Entry KEY_VALUE_GENERIC left, right;
/** This integers holds different information in different bits (see {@link #SUCC_MASK} and {@link #PRED_MASK}. */
int info;
Entry() {
super(KEY_NULL, VALUE_NULL);
}
/** Creates a new entry with the given key and value.
*
* @param k a key.
* @param v a value.
*/
Entry(final KEY_GENERIC_TYPE k, final VALUE_GENERIC_TYPE v) {
super(k, v);
info = SUCC_MASK | PRED_MASK;
}
/** Returns the left subtree.
*
* @return the left subtree ({@code null} if the left
* subtree is empty).
*/
Entry KEY_VALUE_GENERIC left() {
return (info & PRED_MASK) != 0 ? null : left;
}
/** Returns the right subtree.
*
* @return the right subtree ({@code null} if the right
* subtree is empty).
*/
Entry KEY_VALUE_GENERIC right() {
return (info & SUCC_MASK) != 0 ? null : right;
}
/** Checks whether the left pointer is really a predecessor.
* @return true if the left pointer is a predecessor.
*/
boolean pred() {
return (info & PRED_MASK) != 0;
}
/** Checks whether the right pointer is really a successor.
* @return true if the right pointer is a successor.
*/
boolean succ() {
return (info & SUCC_MASK) != 0;
}
/** Sets whether the left pointer is really a predecessor.
* @param pred if true then the left pointer will be considered a predecessor.
*/
void pred(final boolean pred) {
if (pred) info |= PRED_MASK;
else info &= ~PRED_MASK;
}
/** Sets whether the right pointer is really a successor.
* @param succ if true then the right pointer will be considered a successor.
*/
void succ(final boolean succ) {
if (succ) info |= SUCC_MASK;
else info &= ~SUCC_MASK;
}
/** Sets the left pointer to a predecessor.
* @param pred the predecessr.
*/
void pred(final Entry KEY_VALUE_GENERIC pred) {
info |= PRED_MASK;
left = pred;
}
/** Sets the right pointer to a successor.
* @param succ the successor.
*/
void succ(final Entry KEY_VALUE_GENERIC succ) {
info |= SUCC_MASK;
right = succ;
}
/** Sets the left pointer to the given subtree.
* @param left the new left subtree.
*/
void left(final Entry KEY_VALUE_GENERIC left) {
info &= ~PRED_MASK;
this.left = left;
}
/** Sets the right pointer to the given subtree.
* @param right the new right subtree.
*/
void right(final Entry KEY_VALUE_GENERIC right) {
info &= ~SUCC_MASK;
this.right = right;
}
/** Returns whether this node is black.
* @return true iff this node is black.
*/
boolean black() {
return (info & BLACK_MASK) != 0;
}
/** Sets whether this node is black.
* @param black if true, then this node becomes black; otherwise, it becomes red..
*/
void black(final boolean black) {
if (black) info |= BLACK_MASK;
else info &= ~BLACK_MASK;
}
/** Computes the next entry in the set order.
*
* @return the next entry ({@code null}) if this is the last entry).
*/
Entry KEY_VALUE_GENERIC next() {
Entry KEY_VALUE_GENERIC next = this.right;
if ((info & SUCC_MASK) == 0) while ((next.info & PRED_MASK) == 0) next = next.left;
return next;
}
/** Computes the previous entry in the set order.
*
* @return the previous entry ({@code null}) if this is the first entry).
*/
Entry KEY_VALUE_GENERIC prev() {
Entry KEY_VALUE_GENERIC prev = this.left;
if ((info & PRED_MASK) == 0) while ((prev.info & SUCC_MASK) == 0) prev = prev.right;
return prev;
}
@Override
public VALUE_GENERIC_TYPE setValue(final VALUE_GENERIC_TYPE value) {
final VALUE_GENERIC_TYPE oldValue = this.value;
this.value = value;
return oldValue;
}
@Override
SUPPRESS_WARNINGS_KEY_VALUE_UNCHECKED
public Entry KEY_VALUE_GENERIC clone() {
Entry KEY_VALUE_GENERIC c;
try {
c = (Entry KEY_VALUE_GENERIC)super.clone();
}
catch(CloneNotSupportedException cantHappen) {
throw new InternalError();
}
c.key = key;
c.value = value;
c.info = info;
return c;
}
@Override
@SuppressWarnings("unchecked")
public boolean equals(final Object o) {
if (!(o instanceof Map.Entry)) return false;
Map.Entry e = (Map.Entry )o;
return KEY_EQUALS(key, KEY_CLASS2TYPE(e.getKey())) && VALUE_EQUALS(value, VALUE_CLASS2TYPE(e.getValue()));
}
@Override
public int hashCode() {
return KEY2JAVAHASH_NOT_NULL(key) ^ VALUE2JAVAHASH(value);
}
@Override
public String toString() {
return key + "=>" + value;
}
/*
public void prettyPrint() {
prettyPrint(0);
}
public void prettyPrint(int level) {
if (pred()) {
for (int i = 0; i < level; i++)
System.err.print(" ");
System.err.println("pred: " + left);
}
else if (left != null)
left.prettyPrint(level +1);
for (int i = 0; i < level; i++)
System.err.print(" ");
System.err.println(key + "=" + value + " (" + balance() + ")");
if (succ()) {
for (int i = 0; i < level; i++)
System.err.print(" ");
System.err.println("succ: " + right);
}
else if (right != null)
right.prettyPrint(level + 1);
}*/
}
/*
public void prettyPrint() {
System.err.println("size: " + count);
if (tree != null) tree.prettyPrint();
}*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
@Override
public boolean containsKey(final KEY_TYPE k) {
return findKey(KEY_GENERIC_CAST k) != null;
}
@Override
public int size() {
return count;
}
@Override
public boolean isEmpty() {
return count == 0;
}
SUPPRESS_WARNINGS_KEY_UNCHECKED
@Override
public VALUE_GENERIC_TYPE GET_VALUE(final KEY_TYPE k) {
final Entry KEY_VALUE_GENERIC e = findKey(KEY_GENERIC_CAST k);
return e == null ? defRetValue : e.value;
}
@Override
public KEY_GENERIC_TYPE FIRST_KEY() {
if (tree == null) throw new NoSuchElementException();
return firstEntry.key;
}
@Override
public KEY_GENERIC_TYPE LAST_KEY() {
if (tree == null) throw new NoSuchElementException();
return lastEntry.key;
}
/** An abstract iterator on the whole range.
*
* This class can iterate in both directions on a threaded tree.
*/
private class TreeIterator {
/** The entry that will be returned by the next call to {@link java.util.ListIterator#previous()} (or {@code null} if no previous entry exists). */
Entry KEY_VALUE_GENERIC prev;
/** The entry that will be returned by the next call to {@link java.util.ListIterator#next()} (or {@code null} if no next entry exists). */
Entry KEY_VALUE_GENERIC next;
/** The last entry that was returned (or {@code null} if we did not iterate or used {@link #remove()}). */
Entry KEY_VALUE_GENERIC curr;
/** The current index (in the sense of a {@link java.util.ListIterator}). Note that this value is not meaningful when this {@link TreeIterator} has been created using the nonempty constructor.*/
int index = 0;
TreeIterator() {
next = firstEntry;
}
TreeIterator(final KEY_GENERIC_TYPE k) {
if ((next = locateKey(k)) != null) {
if (compare(next.key, k) <= 0) {
prev = next;
next = next.next();
}
else prev = next.prev();
}
}
public boolean hasNext() { return next != null; }
public boolean hasPrevious() { return prev != null; }
void updateNext() {
next = next.next();
}
Entry KEY_VALUE_GENERIC nextEntry() {
if (! hasNext()) throw new NoSuchElementException();
curr = prev = next;
index++;
updateNext();
return curr;
}
void updatePrevious() {
prev = prev.prev();
}
Entry KEY_VALUE_GENERIC previousEntry() {
if (! hasPrevious()) throw new NoSuchElementException();
curr = next = prev;
index--;
updatePrevious();
return curr;
}
public int nextIndex() {
return index;
}
public int previousIndex() {
return index - 1;
}
public void remove() {
if (curr == null) throw new IllegalStateException();
/* If the last operation was a next(), we are removing an entry that preceeds
the current index, and thus we must decrement it. */
if (curr == prev) index--;
next = prev = curr;
updatePrevious();
updateNext();
RB_TREE_MAP.this.REMOVE_VALUE(curr.key);
curr = null;
}
public int skip(final int n) {
int i = n;
while(i-- != 0 && hasNext()) nextEntry();
return n - i - 1;
}
public int back(final int n) {
int i = n;
while(i-- != 0 && hasPrevious()) previousEntry();
return n - i - 1;
}
}
/** An iterator on the whole range.
*
*
This class can iterate in both directions on a threaded tree.
*/
private class EntryIterator extends TreeIterator implements ObjectListIterator {
EntryIterator() {}
EntryIterator(final KEY_GENERIC_TYPE k) {
super(k);
}
@Override
public MAP.Entry KEY_VALUE_GENERIC next() { return nextEntry(); }
@Override
public MAP.Entry KEY_VALUE_GENERIC previous() { return previousEntry(); }
}
@Override
public ObjectSortedSet ENTRYSET() {
if (entries == null) entries = new AbstractObjectSortedSet() {
final Comparator super MAP.Entry KEY_VALUE_GENERIC> comparator = (Comparator) (x, y) -> RB_TREE_MAP.this.actualComparator.compare(x.ENTRY_GET_KEY(), y.ENTRY_GET_KEY());
@Override
public Comparator super MAP.Entry KEY_VALUE_GENERIC> comparator() { return comparator; }
@Override
public ObjectBidirectionalIterator iterator() { return new EntryIterator(); }
@Override
public ObjectBidirectionalIterator iterator(final MAP.Entry KEY_VALUE_GENERIC from) { return new EntryIterator(from.ENTRY_GET_KEY()); }
@Override
SUPPRESS_WARNINGS_KEY_UNCHECKED
public boolean contains(final Object o) {
if (!(o instanceof Map.Entry)) return false;
final Map.Entry,?> e = (Map.Entry,?>)o;
#if KEYS_PRIMITIVE
if (e.getKey() == null || ! (e.getKey() instanceof KEY_CLASS)) return false;
#endif
#if VALUES_PRIMITIVE
if (e.getValue() == null || ! (e.getValue() instanceof VALUE_CLASS)) return false;
#endif
final Entry KEY_VALUE_GENERIC f = findKey(KEY_OBJ2TYPE(KEY_GENERIC_CAST e.getKey()));
return e.equals(f);
}
@Override
SUPPRESS_WARNINGS_KEY_UNCHECKED
public boolean remove(final Object o) {
if (!(o instanceof Map.Entry)) return false;
final Map.Entry,?> e = (Map.Entry,?>)o;
#if KEYS_PRIMITIVE
if (e.getKey() == null || ! (e.getKey() instanceof KEY_CLASS)) return false;
#endif
#if VALUES_PRIMITIVE
if (e.getValue() == null || ! (e.getValue() instanceof VALUE_CLASS)) return false;
#endif
final Entry KEY_VALUE_GENERIC f = findKey(KEY_OBJ2TYPE(KEY_GENERIC_CAST e.getKey()));
if (f == null || ! VALUE_EQUALS(f.ENTRY_GET_VALUE(), VALUE_OBJ2TYPE(e.getValue()))) return false;
RB_TREE_MAP.this.REMOVE_VALUE(f.key);
return true;
}
@Override
public int size() { return count; }
@Override
public void clear() { RB_TREE_MAP.this.clear(); }
@Override
public MAP.Entry KEY_VALUE_GENERIC first() { return firstEntry; }
@Override
public MAP.Entry KEY_VALUE_GENERIC last() { return lastEntry; }
@Override
public ObjectSortedSet subSet(MAP.Entry KEY_VALUE_GENERIC from, MAP.Entry KEY_VALUE_GENERIC to) { return subMap(from.ENTRY_GET_KEY(), to.ENTRY_GET_KEY()).ENTRYSET(); }
@Override
public ObjectSortedSet headSet(MAP.Entry KEY_VALUE_GENERIC to) { return headMap(to.ENTRY_GET_KEY()).ENTRYSET(); }
@Override
public ObjectSortedSet tailSet(MAP.Entry KEY_VALUE_GENERIC from) { return tailMap(from.ENTRY_GET_KEY()).ENTRYSET(); }
};
return entries;
}
/** An iterator on the whole range of keys.
*
* This class can iterate in both directions on the keys of a threaded tree. We
* simply override the {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods (and possibly
* their type-specific counterparts) so that they return keys instead of entries.
*/
private final class KeyIterator extends TreeIterator implements KEY_LIST_ITERATOR KEY_GENERIC {
public KeyIterator() {}
public KeyIterator(final KEY_GENERIC_TYPE k) { super(k); }
@Override
public KEY_GENERIC_TYPE NEXT_KEY() { return nextEntry().key; }
@Override
public KEY_GENERIC_TYPE PREV_KEY() { return previousEntry().key; }
};
/** A keyset implementation using a more direct implementation for iterators. */
private class KeySet extends ABSTRACT_SORTED_MAP KEY_VALUE_GENERIC.KeySet {
@Override
public KEY_BIDI_ITERATOR KEY_GENERIC iterator() { return new KeyIterator(); }
@Override
public KEY_BIDI_ITERATOR KEY_GENERIC iterator(final KEY_GENERIC_TYPE from) { return new KeyIterator(from); }
}
/** Returns a type-specific sorted set view of the keys contained in this map.
*
*
In addition to the semantics of {@link java.util.Map#keySet()}, you can
* safely cast the set returned by this call to a type-specific sorted
* set interface.
*
* @return a type-specific sorted set view of the keys contained in this map.
*/
@Override
public SORTED_SET KEY_GENERIC keySet() {
if (keys == null) keys = new KeySet();
return keys;
}
/** An iterator on the whole range of values.
*
*
This class can iterate in both directions on the values of a threaded tree. We
* simply override the {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods (and possibly
* their type-specific counterparts) so that they return values instead of entries.
*/
private final class ValueIterator extends TreeIterator implements VALUE_LIST_ITERATOR VALUE_GENERIC {
@Override
public VALUE_GENERIC_TYPE NEXT_VALUE() { return nextEntry().value; }
@Override
public VALUE_GENERIC_TYPE PREV_VALUE() { return previousEntry().value; }
};
/** Returns a type-specific collection view of the values contained in this map.
*
*
In addition to the semantics of {@link java.util.Map#values()}, you can
* safely cast the collection returned by this call to a type-specific collection
* interface.
*
* @return a type-specific collection view of the values contained in this map.
*/
@Override
public VALUE_COLLECTION VALUE_GENERIC values() {
if (values == null) values = new VALUE_ABSTRACT_COLLECTION VALUE_GENERIC() {
@Override
public VALUE_ITERATOR VALUE_GENERIC iterator() { return new ValueIterator(); }
@Override
public boolean contains(final VALUE_TYPE k) { return containsValue(k); }
@Override
public int size() { return count; }
@Override
public void clear() { RB_TREE_MAP.this.clear(); }
};
return values;
}
@Override
public KEY_COMPARATOR KEY_SUPER_GENERIC comparator() { return actualComparator; }
@Override
public SORTED_MAP KEY_VALUE_GENERIC headMap(KEY_GENERIC_TYPE to) { return new Submap(KEY_NULL, true, to, false); }
@Override
public SORTED_MAP KEY_VALUE_GENERIC tailMap(KEY_GENERIC_TYPE from) { return new Submap(from, false, KEY_NULL, true); }
@Override
public SORTED_MAP KEY_VALUE_GENERIC subMap(KEY_GENERIC_TYPE from, KEY_GENERIC_TYPE to) { return new Submap(from, false, to, false); }
/** A submap with given range.
*
*
This class represents a submap. One has to specify the left/right
* limits (which can be set to -∞ or ∞). Since the submap is a
* view on the map, at a given moment it could happen that the limits of
* the range are not any longer in the main map. Thus, things such as
* {@link java.util.SortedMap#firstKey()} or {@link java.util.Collection#size()} must be always computed
* on-the-fly.
*/
private final class Submap extends ABSTRACT_SORTED_MAP KEY_VALUE_GENERIC implements java.io.Serializable {
private static final long serialVersionUID = -7046029254386353129L;
/** The start of the submap range, unless {@link #bottom} is true. */
KEY_GENERIC_TYPE from;
/** The end of the submap range, unless {@link #top} is true. */
KEY_GENERIC_TYPE to;
/** If true, the submap range starts from -∞. */
boolean bottom;
/** If true, the submap range goes to ∞. */
boolean top;
/** Cached set of entries. */
protected transient ObjectSortedSet entries;
/** Cached set of keys. */
protected transient SORTED_SET KEY_GENERIC keys;
/** Cached collection of values. */
protected transient VALUE_COLLECTION VALUE_GENERIC values;
/** Creates a new submap with given key range.
*
* @param from the start of the submap range.
* @param bottom if true, the first parameter is ignored and the range starts from -∞.
* @param to the end of the submap range.
* @param top if true, the third parameter is ignored and the range goes to ∞.
*/
public Submap(final KEY_GENERIC_TYPE from, final boolean bottom, final KEY_GENERIC_TYPE to, final boolean top) {
if (! bottom && ! top && RB_TREE_MAP.this.compare(from, to) > 0) throw new IllegalArgumentException("Start key (" + from + ") is larger than end key (" + to + ")");
this.from = from;
this.bottom = bottom;
this.to = to;
this.top = top;
this.defRetValue = RB_TREE_MAP.this.defRetValue;
}
@Override
public void clear() {
final SubmapIterator i = new SubmapIterator();
while(i.hasNext()) {
i.nextEntry();
i.remove();
}
}
/** Checks whether a key is in the submap range.
* @param k a key.
* @return true if is the key is in the submap range.
*/
final boolean in(final KEY_GENERIC_TYPE k) {
return (bottom || RB_TREE_MAP.this.compare(k, from) >= 0) &&
(top || RB_TREE_MAP.this.compare(k, to) < 0);
}
@Override
public ObjectSortedSet ENTRYSET() {
if (entries == null) entries = new AbstractObjectSortedSet() {
@Override
public ObjectBidirectionalIterator iterator() {
return new SubmapEntryIterator();
}
@Override
public ObjectBidirectionalIterator iterator(final MAP.Entry KEY_VALUE_GENERIC from) {
return new SubmapEntryIterator(from.ENTRY_GET_KEY());
}
@Override
public Comparator super MAP.Entry KEY_VALUE_GENERIC> comparator() { return RB_TREE_MAP.this.ENTRYSET().comparator(); }
@Override
SUPPRESS_WARNINGS_KEY_UNCHECKED
public boolean contains(final Object o) {
if (!(o instanceof Map.Entry)) return false;
final Map.Entry,?> e = (Map.Entry,?>)o;
#if KEYS_PRIMITIVE
if (e.getKey() == null || ! (e.getKey() instanceof KEY_CLASS)) return false;
#endif
#if VALUES_PRIMITIVE
if (e.getValue() == null || ! (e.getValue() instanceof VALUE_CLASS)) return false;
#endif
final RB_TREE_MAP.Entry KEY_VALUE_GENERIC f = findKey(KEY_OBJ2TYPE(KEY_GENERIC_CAST e.getKey()));
return f != null && in(f.key) && e.equals(f);
}
@Override
SUPPRESS_WARNINGS_KEY_UNCHECKED
public boolean remove(final Object o) {
if (!(o instanceof Map.Entry)) return false;
final Map.Entry,?> e = (Map.Entry,?>)o;
#if KEYS_PRIMITIVE
if (e.getKey() == null || ! (e.getKey() instanceof KEY_CLASS)) return false;
#endif
#if VALUES_PRIMITIVE
if (e.getValue() == null || ! (e.getValue() instanceof VALUE_CLASS)) return false;
#endif
final RB_TREE_MAP.Entry KEY_VALUE_GENERIC f = findKey(KEY_OBJ2TYPE(KEY_GENERIC_CAST e.getKey()));
if (f != null && in(f.key)) Submap.this.REMOVE_VALUE(f.key);
return f != null;
}
@Override
public int size() {
int c = 0;
for(Iterator> i = iterator(); i.hasNext(); i.next()) c++;
return c;
}
@Override
public boolean isEmpty() { return ! new SubmapIterator().hasNext(); }
@Override
public void clear() { Submap.this.clear(); }
@Override
public MAP.Entry KEY_VALUE_GENERIC first() { return firstEntry(); }
@Override
public MAP.Entry KEY_VALUE_GENERIC last() { return lastEntry(); }
@Override
public ObjectSortedSet subSet(MAP.Entry KEY_VALUE_GENERIC from, MAP.Entry KEY_VALUE_GENERIC to) { return subMap(from.ENTRY_GET_KEY(), to.ENTRY_GET_KEY()).ENTRYSET(); }
@Override
public ObjectSortedSet headSet(MAP.Entry KEY_VALUE_GENERIC to) { return headMap(to.ENTRY_GET_KEY()).ENTRYSET(); }
@Override
public ObjectSortedSet tailSet(MAP.Entry KEY_VALUE_GENERIC from) { return tailMap(from.ENTRY_GET_KEY()).ENTRYSET(); }
};
return entries;
}
private class KeySet extends ABSTRACT_SORTED_MAP KEY_VALUE_GENERIC.KeySet {
@Override
public KEY_BIDI_ITERATOR KEY_GENERIC iterator() { return new SubmapKeyIterator(); }
@Override
public KEY_BIDI_ITERATOR KEY_GENERIC iterator(final KEY_GENERIC_TYPE from) { return new SubmapKeyIterator(from); }
}
@Override
public SORTED_SET KEY_GENERIC keySet() {
if (keys == null) keys = new KeySet();
return keys;
}
@Override
public VALUE_COLLECTION VALUE_GENERIC values() {
if (values == null) values = new VALUE_ABSTRACT_COLLECTION VALUE_GENERIC() {
@Override
public VALUE_ITERATOR VALUE_GENERIC iterator() { return new SubmapValueIterator(); }
@Override
public boolean contains(final VALUE_TYPE k) { return containsValue(k); }
@Override
public int size() { return Submap.this.size(); }
@Override
public void clear() { Submap.this.clear(); }
};
return values;
}
@Override
SUPPRESS_WARNINGS_KEY_UNCHECKED
public boolean containsKey(final KEY_TYPE k) { return in(KEY_GENERIC_CAST k) && RB_TREE_MAP.this.containsKey(k); }
@Override
public boolean containsValue(final VALUE_TYPE v) {
final SubmapIterator i = new SubmapIterator();
VALUE_TYPE ev;
while(i.hasNext()) {
ev = i.nextEntry().value;
if (VALUE_EQUALS(ev, v)) return true;
}
return false;
}
@Override
SUPPRESS_WARNINGS_KEY_UNCHECKED
public VALUE_GENERIC_TYPE GET_VALUE(final KEY_TYPE k) {
final RB_TREE_MAP.Entry KEY_VALUE_GENERIC e;
final KEY_GENERIC_TYPE kk = KEY_GENERIC_CAST k;
return in(kk) && (e = findKey(kk)) != null ? e.value : this.defRetValue;
}
@Override
public VALUE_GENERIC_TYPE put(final KEY_GENERIC_TYPE k, final VALUE_GENERIC_TYPE v) {
modified = false;
if (! in(k)) throw new IllegalArgumentException("Key (" + k + ") out of range [" + (bottom ? "-" : String.valueOf(from)) + ", " + (top ? "-" : String.valueOf(to)) + ")");
final VALUE_GENERIC_TYPE oldValue = RB_TREE_MAP.this.put(k, v);
return modified ? this.defRetValue : oldValue;
}
@Override
SUPPRESS_WARNINGS_KEY_UNCHECKED
public VALUE_GENERIC_TYPE REMOVE_VALUE(final KEY_TYPE k) {
modified = false;
if (! in(KEY_GENERIC_CAST k)) return this.defRetValue;
final VALUE_GENERIC_TYPE oldValue = RB_TREE_MAP.this.REMOVE_VALUE(k);
return modified ? oldValue : this.defRetValue;
}
@Override
public int size() {
final SubmapIterator i = new SubmapIterator();
int n = 0;
while(i.hasNext()) {
n++;
i.nextEntry();
}
return n;
}
@Override
public boolean isEmpty() { return ! new SubmapIterator().hasNext(); }
@Override
public KEY_COMPARATOR KEY_SUPER_GENERIC comparator() { return actualComparator; }
@Override
public SORTED_MAP KEY_VALUE_GENERIC headMap(final KEY_GENERIC_TYPE to) {
if (top) return new Submap(from, bottom, to, false);
return compare(to, this.to) < 0 ? new Submap(from, bottom, to, false) : this;
}
@Override
public SORTED_MAP KEY_VALUE_GENERIC tailMap(final KEY_GENERIC_TYPE from) {
if (bottom) return new Submap(from, false, to, top);
return compare(from, this.from) > 0 ? new Submap(from, false, to, top) : this;
}
@Override
public SORTED_MAP KEY_VALUE_GENERIC subMap(KEY_GENERIC_TYPE from, KEY_GENERIC_TYPE to) {
if (top && bottom) return new Submap(from, false, to, false);
if (! top) to = compare(to, this.to) < 0 ? to : this.to;
if (! bottom) from = compare(from, this.from) > 0 ? from : this.from;
if (! top && ! bottom && from == this.from && to == this.to) return this;
return new Submap(from, false, to, false);
}
/** Locates the first entry.
*
* @return the first entry of this submap, or {@code null} if the submap is empty.
*/
public RB_TREE_MAP.Entry KEY_VALUE_GENERIC firstEntry() {
if (tree == null) return null;
// If this submap goes to -infinity, we return the main map first entry; otherwise, we locate the start of the map.
RB_TREE_MAP.Entry KEY_VALUE_GENERIC e;
if (bottom) e = firstEntry;
else {
e = locateKey(from);
// If we find either the start or something greater we're OK.
if (compare(e.key, from) < 0) e = e.next();
}
// Finally, if this submap doesn't go to infinity, we check that the resulting key isn't greater than the end.
if (e == null || ! top && compare(e.key, to) >= 0) return null;
return e;
}
/** Locates the last entry.
*
* @return the last entry of this submap, or {@code null} if the submap is empty.
*/
public RB_TREE_MAP.Entry KEY_VALUE_GENERIC lastEntry() {
if (tree == null) return null;
// If this submap goes to infinity, we return the main map last entry; otherwise, we locate the end of the map.
RB_TREE_MAP.Entry KEY_VALUE_GENERIC e;
if (top) e = lastEntry;
else {
e = locateKey(to);
// If we find something smaller than the end we're OK.
if (compare(e.key, to) >= 0) e = e.prev();
}
// Finally, if this submap doesn't go to -infinity, we check that the resulting key isn't smaller than the start.
if (e == null || ! bottom && compare(e.key, from) < 0) return null;
return e;
}
@Override
public KEY_GENERIC_TYPE FIRST_KEY() {
RB_TREE_MAP.Entry KEY_VALUE_GENERIC e = firstEntry();
if (e == null) throw new NoSuchElementException();
return e.key;
}
@Override
public KEY_GENERIC_TYPE LAST_KEY() {
RB_TREE_MAP.Entry KEY_VALUE_GENERIC e = lastEntry();
if (e == null) throw new NoSuchElementException();
return e.key;
}
/** An iterator for subranges.
*
* This class inherits from {@link TreeIterator}, but overrides the methods that
* update the pointer after a {@link java.util.ListIterator#next()} or {@link java.util.ListIterator#previous()}. If we would
* move out of the range of the submap we just overwrite the next or previous
* entry with {@code null}.
*/
private class SubmapIterator extends TreeIterator {
SubmapIterator() {
next = firstEntry();
}
SubmapIterator(final KEY_GENERIC_TYPE k) {
this();
if (next != null) {
if (! bottom && compare(k, next.key) < 0) prev = null;
else if (! top && compare(k, (prev = lastEntry()).key) >= 0) next = null;
else {
next = locateKey(k);
if (compare(next.key, k) <= 0) {
prev = next;
next = next.next();
}
else prev = next.prev();
}
}
}
@Override
void updatePrevious() {
prev = prev.prev();
if (! bottom && prev != null && RB_TREE_MAP.this.compare(prev.key, from) < 0) prev = null;
}
@Override
void updateNext() {
next = next.next();
if (! top && next != null && RB_TREE_MAP.this.compare(next.key, to) >= 0) next = null;
}
}
private class SubmapEntryIterator extends SubmapIterator implements ObjectListIterator {
SubmapEntryIterator() {}
SubmapEntryIterator(final KEY_GENERIC_TYPE k) {
super(k);
}
@Override
public MAP.Entry KEY_VALUE_GENERIC next() { return nextEntry(); }
@Override
public MAP.Entry KEY_VALUE_GENERIC previous() { return previousEntry(); }
}
/** An iterator on a subrange of keys.
*
* This class can iterate in both directions on a subrange of the
* keys of a threaded tree. We simply override the {@link
* java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods (and possibly their
* type-specific counterparts) so that they return keys instead of
* entries.
*/
private final class SubmapKeyIterator extends SubmapIterator implements KEY_LIST_ITERATOR KEY_GENERIC {
public SubmapKeyIterator() { super(); }
public SubmapKeyIterator(KEY_GENERIC_TYPE from) { super(from); }
@Override
public KEY_GENERIC_TYPE NEXT_KEY() { return nextEntry().key; }
@Override
public KEY_GENERIC_TYPE PREV_KEY() { return previousEntry().key; }
};
/** An iterator on a subrange of values.
*
*
This class can iterate in both directions on the values of a
* subrange of the keys of a threaded tree. We simply override the
* {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods (and possibly their
* type-specific counterparts) so that they return values instead of
* entries.
*/
private final class SubmapValueIterator extends SubmapIterator implements VALUE_LIST_ITERATOR VALUE_GENERIC {
@Override
public VALUE_GENERIC_TYPE NEXT_VALUE() { return nextEntry().value; }
@Override
public VALUE_GENERIC_TYPE PREV_VALUE() { return previousEntry().value; }
};
}
/** Returns a deep copy of this tree map.
*
*
This method performs a deep copy of this tree map; the data stored in the
* set, however, is not cloned. Note that this makes a difference only for object keys.
*
* @return a deep copy of this tree map.
*/
@Override
SUPPRESS_WARNINGS_KEY_VALUE_UNCHECKED
public RB_TREE_MAP KEY_VALUE_GENERIC clone() {
RB_TREE_MAP KEY_VALUE_GENERIC c;
try {
c = (RB_TREE_MAP KEY_VALUE_GENERIC)super.clone();
}
catch(CloneNotSupportedException cantHappen) {
throw new InternalError();
}
c.keys = null;
c.values = null;
c.entries = null;
c.allocatePaths();
if (count != 0) {
// Also this apparently unfathomable code is derived from GNU libavl.
Entry KEY_VALUE_GENERIC e, p, q, rp = new Entry KEY_VALUE_GENERIC_DIAMOND(), rq = new Entry KEY_VALUE_GENERIC_DIAMOND();
p = rp;
rp.left(tree);
q = rq;
rq.pred(null);
while(true) {
if (! p.pred()) {
e = p.left.clone();
e.pred(q.left);
e.succ(q);
q.left(e);
p = p.left;
q = q.left;
}
else {
while(p.succ()) {
p = p.right;
if (p == null) {
q.right = null;
c.tree = rq.left;
c.firstEntry = c.tree;
while(c.firstEntry.left != null) c.firstEntry = c.firstEntry.left;
c.lastEntry = c.tree;
while(c.lastEntry.right != null) c.lastEntry = c.lastEntry.right;
return c;
}
q = q.right;
}
p = p.right;
q = q.right;
}
if (! p.succ()) {
e = p.right.clone();
e.succ(q.right);
e.pred(q);
q.right(e);
}
}
}
return c;
}
private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException {
int n = count;
EntryIterator i = new EntryIterator();
Entry KEY_VALUE_GENERIC e;
s.defaultWriteObject();
while(n-- != 0) {
e = i.nextEntry();
s.WRITE_KEY(e.key);
s.WRITE_VALUE(e.value);
}
}
/** Reads the given number of entries from the input stream, returning the corresponding tree.
*
* @param s the input stream.
* @param n the (positive) number of entries to read.
* @param pred the entry containing the key that preceeds the first key in the tree.
* @param succ the entry containing the key that follows the last key in the tree.
*/
SUPPRESS_WARNINGS_KEY_VALUE_UNCHECKED
private Entry KEY_VALUE_GENERIC readTree(final java.io.ObjectInputStream s, final int n, final Entry KEY_VALUE_GENERIC pred, final Entry KEY_VALUE_GENERIC succ) throws java.io.IOException, ClassNotFoundException {
if (n == 1) {
final Entry KEY_VALUE_GENERIC top = new Entry KEY_VALUE_GENERIC_DIAMOND(KEY_GENERIC_CAST s.READ_KEY(), VALUE_GENERIC_CAST s.READ_VALUE());
top.pred(pred);
top.succ(succ);
top.black(true);
return top;
}
if (n == 2) {
/* We handle separately this case so that recursion will
*always* be on nonempty subtrees. */
final Entry KEY_VALUE_GENERIC top = new Entry KEY_VALUE_GENERIC_DIAMOND(KEY_GENERIC_CAST s.READ_KEY(), VALUE_GENERIC_CAST s.READ_VALUE());
top.black(true);
top.right(new Entry KEY_VALUE_GENERIC_DIAMOND(KEY_GENERIC_CAST s.READ_KEY(), VALUE_GENERIC_CAST s.READ_VALUE()));
top.right.pred(top);
top.pred(pred);
top.right.succ(succ);
return top;
}
// The right subtree is the largest one.
final int rightN = n / 2, leftN = n - rightN - 1;
final Entry KEY_VALUE_GENERIC top = new Entry KEY_VALUE_GENERIC_DIAMOND();
top.left(readTree(s, leftN, pred, top));
top.key = KEY_GENERIC_CAST s.READ_KEY();
top.value = VALUE_GENERIC_CAST s.READ_VALUE();
top.black(true);
top.right(readTree(s, rightN, top, succ));
if (n + 2 == ((n + 2) & -(n + 2))) top.right.black(false); // Quick test for determining whether n + 2 is a power of 2.
return top;
}
private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
/* The storedComparator is now correctly set, but we must restore
on-the-fly the actualComparator. */
setActualComparator();
allocatePaths();
if (count != 0) {
tree = readTree(s, count, null, null);
Entry KEY_VALUE_GENERIC e;
e = tree;
while(e.left() != null) e = e.left();
firstEntry = e;
e = tree;
while(e.right() != null) e = e.right();
lastEntry = e;
}
}
#ifdef ASSERTS_CODE
private void checkNodePath() {
for(int i = nodePath.length; i-- != 0;) assert nodePath[i] == null : i;
}
private static KEY_VALUE_GENERIC int checkTree(Entry KEY_VALUE_GENERIC e, int d, int D) {
if (e == null) return 0;
if (e.black()) d++;
if (e.left() != null) D = checkTree(e.left(), d, D);
if (e.right() != null) D = checkTree(e.right(), d, D);
if (e.left() == null && e.right() == null) {
if (D == -1) D = d;
else if (D != d) throw new AssertionError("Mismatch between number of black nodes (" + D + " and " + d + ")");
}
return D;
}
#endif
#ifdef TEST
private static long seed = System.currentTimeMillis();
private static java.util.Random r = new java.util.Random(seed);
private static KEY_TYPE genKey() {
#if KEY_CLASS_Byte || KEY_CLASS_Short || KEY_CLASS_Character
return (KEY_TYPE)(r.nextInt());
#elif KEYS_PRIMITIVE
return r.NEXT_KEY();
#else
return Integer.toBinaryString(r.nextInt());
#endif
}
private static VALUE_TYPE genValue() {
#if VALUE_CLASS_Byte || VALUE_CLASS_Short || VALUE_CLASS_Character
return (VALUE_TYPE)(r.nextInt());
#elif VALUES_PRIMITIVE
return r.NEXT_VALUE();
#elif !VALUE_CLASS_Reference || KEY_CLASS_Reference
return Integer.toBinaryString(r.nextInt());
#else
return new java.io.Serializable() {};
#endif
}
private static java.text.NumberFormat format = new java.text.DecimalFormat("#,###.00");
private static java.text.FieldPosition p = new java.text.FieldPosition(0);
private static String format(double d) {
StringBuffer s = new StringBuffer();
return format.format(d, s, p).toString();
}
private static void speedTest(int n, boolean comp) {
int i, j;
RB_TREE_MAP m;
java.util.TreeMap t;
KEY_TYPE k[] = new KEY_TYPE[n];
KEY_TYPE nk[] = new KEY_TYPE[n];
VALUE_TYPE v[] = new VALUE_TYPE[n];
long ms;
for(i = 0; i < n; i++) {
k[i] = genKey();
nk[i] = genKey();
v[i] = genValue();
}
double totPut = 0, totYes = 0, totNo = 0, totAddTo = 0, totIterFor = 0, totIterBack = 0, totRemYes = 0, d, dd, ddd;
if (comp) { for(j = 0; j < 20; j++) {
t = new java.util.TreeMap();
/* We first add all pairs to t. */
for(i = 0; i < n; i++) t.put(KEY2OBJ(k[i]), VALUE2OBJ(v[i]));
/* Then we remove the first half and put it back. */
for(i = 0; i < n/2; i++) t.remove(KEY2OBJ(k[i]));
ms = System.currentTimeMillis();
for(i = 0; i < n/2; i++) t.put(KEY2OBJ(k[i]), VALUE2OBJ(v[i]));
d = System.currentTimeMillis() - ms;
/* Then we remove the other half and put it back again. */
ms = System.currentTimeMillis();
for(i = n/2; i < n; i++) t.remove(KEY2OBJ(k[i]));
dd = System.currentTimeMillis() - ms ;
ms = System.currentTimeMillis();
for(i = n/2; i < n; i++) t.put(KEY2OBJ(k[i]), VALUE2OBJ(v[i]));
d += System.currentTimeMillis() - ms;
if (j > 2) totPut += n/d;
System.out.print("Add: " + format(n/d) +" K/s ");
/* Then we remove again the first half. */
ms = System.currentTimeMillis();
for(i = 0; i < n/2; i++) t.remove(KEY2OBJ(k[i]));
dd += System.currentTimeMillis() - ms ;
if (j > 2) totRemYes += n/dd;
System.out.print("RemYes: " + format(n/dd) +" K/s ");
/* And then we put it back. */
for(i = 0; i < n/2; i++) t.put(KEY2OBJ(k[i]), VALUE2OBJ(v[i]));
#if VALUES_PRIMITIVE && !VALUE_CLASS_Boolean
/* we perform n/2 addTo() operations with get then put */
ms = System.currentTimeMillis();
for(i = 0; i < n/2; i++) t.put(KEY2OBJ(k[i]), (VALUE_TYPE) ((VALUE_CLASS) t.get(KEY2OBJ(k[i])) + i));
ddd = System.currentTimeMillis() - ms;
if (j > 2) totAddTo += n/ddd;
System.out.print("AddTo: " + format(n/ddd) +" K/s ");
#endif
/* We check for pairs in t. */
ms = System.currentTimeMillis();
for(i = 0; i < n; i++) t.containsKey(KEY2OBJ(k[i]));
d = 1.0 * n / (System.currentTimeMillis() - ms);
if (j > 2) totYes += d;
System.out.print("Yes: " + format(d) +" K/s ");
/* We check for pairs not in t. */
ms = System.currentTimeMillis();
for(i = 0; i < n; i++) t.containsKey(KEY2OBJ(nk[i]));
d = 1.0 * n / (System.currentTimeMillis() - ms);
if (j > 2) totNo += d;
System.out.print("No: " + format(d) +" K/s ");
/* We iterate on t. */
ms = System.currentTimeMillis();
for(Iterator it = t.entrySet().iterator(); it.hasNext(); it.next());
d = 1.0 * n / (System.currentTimeMillis() - ms);
if (j > 2) totIterFor += d;
System.out.print("IterFor: " + format(d) +" K/s ");
System.out.println();
}
System.out.println();
System.out.println("java.util Put: " + format(totPut/(j-3)) + " K/s RemYes: " + format(totRemYes/(j-3)) + " K/s Yes: " + format(totYes/(j-3)) + " K/s No: " + format(totNo/(j-3))+ "K/s AddTo: " + format(totAddTo/(j-3)) + " K/s IterFor: " + format(totIterFor/(j-3)) + " K/s");
System.out.println();
t = null;
totPut = totYes = totNo = totIterFor = totIterBack = totRemYes = 0;
}
for(j = 0; j < 20; j++) {
m = new RB_TREE_MAP();
/* We first add all pairs to m. */
for(i = 0; i < n; i++) m.put(k[i], v[i]);
/* Then we remove the first half and put it back. */
for(i = 0; i < n/2; i++) m.remove(k[i]);
ms = System.currentTimeMillis();
for(i = 0; i < n/2; i++) m.put(k[i], v[i]);
d = System.currentTimeMillis() - ms;
/* Then we remove the other half and put it back again. */
ms = System.currentTimeMillis();
for(i = n/2; i < n; i++) m.remove(k[i]);
dd = System.currentTimeMillis() - ms ;
ms = System.currentTimeMillis();
for(i = n/2; i < n; i++) m.put(k[i], v[i]);
d += System.currentTimeMillis() - ms;
if (j > 2) totPut += n/d;
System.out.print("Add: " + format(n/d) +" K/s ");
/* Then we remove again the first half. */
ms = System.currentTimeMillis();
for(i = 0; i < n/2; i++) m.remove(k[i]);
dd += System.currentTimeMillis() - ms ;
if (j > 2) totRemYes += n/dd;
System.out.print("RemYes: " + format(n/dd) +" K/s ");
/* And then we put it back. */
for(i = 0; i < n/2; i++) m.put(k[i], v[i]);
#if VALUES_PRIMITIVE && !VALUE_CLASS_Boolean
/* we perform n/2 addTo() operations with get then put */
ms = System.currentTimeMillis();
for(i = 0; i < n/2; i++) m.addTo(k[i], (VALUE_TYPE) i);
ddd = System.currentTimeMillis() - ms;
if (j > 2) totAddTo += n/ddd;
System.out.print("AddTo: " + format(n/ddd) +" K/s ");
#endif
/* We check for pairs in m. */
ms = System.currentTimeMillis();
for(i = 0; i < n; i++) m.containsKey(k[i]);
d = 1.0 * n / (System.currentTimeMillis() - ms);
if (j > 2) totYes += d;
System.out.print("Yes: " + format(d) +" K/s ");
/* We check for pairs not in m. */
ms = System.currentTimeMillis();
for(i = 0; i < n; i++) m.containsKey(nk[i]);
d = 1.0 * n / (System.currentTimeMillis() - ms);
if (j > 2) totNo += d;
System.out.print("No: " + format(d) +" K/s ");
/* We iterate on m. */
java.util.ListIterator it = (java.util.ListIterator)m.entrySet().iterator();
ms = System.currentTimeMillis();
for(; it.hasNext(); it.next());
d = 1.0 * n / (System.currentTimeMillis() - ms);
if (j > 2) totIterFor += d;
System.out.print("IterFor: " + format(d) +" K/s ");
/* We iterate back on m. */
ms = System.currentTimeMillis();
for(; it.hasPrevious(); it.previous());
d = 1.0 * n / (System.currentTimeMillis() - ms);
if (j > 2) totIterBack += d;
System.out.print("IterBack: " + format(d) +" K/s ");
System.out.println();
}
System.out.println();
System.out.println("fastutil Put: " + format(totPut/(j-3)) + " K/s RemYes: " + format(totRemYes/(j-3)) + " K/s Yes: " + format(totYes/(j-3)) + " K/s No: " + format(totNo/(j-3))+ "K/s AddTo: " + format(totAddTo/(j-3)) + " K/s IterFor: " + format(totIterFor/(j-3)) + " K/s");
System.out.println();
}
private static boolean valEquals(Object o1, Object o2) {
return o1 == null ? o2 == null : o1.equals(o2);
}
private static void fatal(String msg) {
System.out.println(msg);
System.exit(1);
}
private static void ensure(boolean cond, String msg) {
if (cond) return;
fatal(msg);
}
private static Object[] k, v, nk;
private static KEY_TYPE kt[];
private static KEY_TYPE nkt[];
private static VALUE_TYPE vt[];
private static RB_TREE_MAP topMap;
protected static void testMaps(SORTED_MAP m, SortedMap t, int n, int level) {
long ms;
boolean mThrowsIllegal, tThrowsIllegal, mThrowsNoElement, tThrowsNoElement;
Object rt = null, rm = null;
if (level > 4) return;
/* Now we check that both maps agree on first/last keys. */
mThrowsNoElement = mThrowsIllegal = tThrowsNoElement = tThrowsIllegal = false;
try {
m.firstKey();
}
catch (NoSuchElementException e) { mThrowsNoElement = true; }
try {
t.firstKey();
}
catch (NoSuchElementException e) { tThrowsNoElement = true; }
ensure(mThrowsNoElement == tThrowsNoElement, "Error (" + level + ", " + seed + "): firstKey() divergence at start in NoSuchElementException (" + mThrowsNoElement + ", " + tThrowsNoElement + ")");
if (! mThrowsNoElement) ensure(t.firstKey().equals(m.firstKey()), "Error (" + level + ", " + seed + "): m and t differ at start on their first key (" + m.firstKey() + ", " + t.firstKey() +")");
mThrowsNoElement = mThrowsIllegal = tThrowsNoElement = tThrowsIllegal = false;
try {
m.lastKey();
}
catch (NoSuchElementException e) { mThrowsNoElement = true; }
try {
t.lastKey();
}
catch (NoSuchElementException e) { tThrowsNoElement = true; }
ensure(mThrowsNoElement == tThrowsNoElement, "Error (" + level + ", " + seed + "): lastKey() divergence at start in NoSuchElementException (" + mThrowsNoElement + ", " + tThrowsNoElement + ")");
if (! mThrowsNoElement) ensure(t.lastKey().equals(m.lastKey()), "Error (" + level + ", " + seed + "): m and t differ at start on their last key (" + m.lastKey() + ", " + t.lastKey() +")");
/* Now we check that m and t are equal. */
if (!m.equals(t) || ! t.equals(m)) System.err.println("m: " + m + " t: " + t);
ensure(m.equals(t), "Error (" + level + ", " + seed + "): ! m.equals(t) at start");
ensure(t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals(m) at start");
/* Now we check that m actually holds that data. */
for(Iterator i=t.entrySet().iterator(); i.hasNext();) {
java.util.Map.Entry e = (java.util.Map.Entry)i.next();
ensure(valEquals(e.getValue(), m.get(e.getKey())), "Error (" + level + ", " + seed + "): m and t differ on an entry ("+e+") after insertion (iterating on t)");
}
/* Now we check that m actually holds that data, but iterating on m. */
for(Iterator i=m.entrySet().iterator(); i.hasNext();) {
Entry e = (Entry)i.next();
ensure(valEquals(e.getValue(), t.get(e.getKey())), "Error (" + level + ", " + seed + "): m and t differ on an entry ("+e+") after insertion (iterating on m)");
}
/* Now we check that m actually holds the same keys. */
for(Iterator i=t.keySet().iterator(); i.hasNext();) {
Object o = i.next();
ensure(m.containsKey(o), "Error (" + level + ", " + seed + "): m and t differ on a key ("+o+") after insertion (iterating on t)");
ensure(m.keySet().contains(o), "Error (" + level + ", " + seed + "): m and t differ on a key ("+o+", in keySet()) after insertion (iterating on t)");
}
/* Now we check that m actually holds the same keys, but iterating on m. */
for(Iterator i=m.keySet().iterator(); i.hasNext();) {
Object o = i.next();
ensure(t.containsKey(o), "Error (" + level + ", " + seed + "): m and t differ on a key after insertion (iterating on m)");
ensure(t.keySet().contains(o), "Error (" + level + ", " + seed + "): m and t differ on a key (in keySet()) after insertion (iterating on m)");
}
/* Now we check that m actually hold the same values. */
for(Iterator i=t.values().iterator(); i.hasNext();) {
Object o = i.next();
ensure(m.containsValue(o), "Error (" + level + ", " + seed + "): m and t differ on a value after insertion (iterating on t)");
ensure(m.values().contains(o), "Error (" + level + ", " + seed + "): m and t differ on a value (in values()) after insertion (iterating on t)");
}
/* Now we check that m actually hold the same values, but iterating on m. */
for(Iterator i=m.values().iterator(); i.hasNext();) {
Object o = i.next();
ensure(t.containsValue(o), "Error (" + level + ", " + seed + "): m and t differ on a value after insertion (iterating on m)");
ensure(t.values().contains(o), "Error (" + level + ", " + seed + "): m and t differ on a value (in values()) after insertion (iterating on m)");
}
/* Now we check that inquiries about random data give the same answer in m and t. For
m we use the polymorphic method. */
for(int i=0; i 0) {
badPrevious = true;
j.previous();
break;
}
previous = k;
}
i = (it.unimi.dsi.fastutil.BidirectionalIterator)((SORTED_SET)m.keySet()).iterator(from);
for(int k = 0; k < 2*n; k++) {
ensure(i.hasNext() == j.hasNext(), "Error (" + level + ", " + seed + "): divergence in hasNext() (iterator with starting point " + from + ")");
ensure(i.hasPrevious() == j.hasPrevious() || badPrevious && (i.hasPrevious() == (previous != null)), "Error (" + level + ", " + seed + "): divergence in hasPrevious() (iterator with starting point " + from + ")" + badPrevious);
if (r.nextFloat() < .8 && i.hasNext()) {
ensure((I = i.next()).equals(J = j.next()), "Error (" + level + ", " + seed + "): divergence in next() (" + I + ", " + J + ", iterator with starting point " + from + ")");
//System.err.println("Done next " + I + " " + J + " " + badPrevious);
badPrevious = false;
if (r.nextFloat() < 0.5) {
//System.err.println("Removing in next");
i.remove();
j.remove();
t.remove(J);
}
}
else if (!badPrevious && r.nextFloat() < .2 && i.hasPrevious()) {
ensure((I = i.previous()).equals(J = j.previous()), "Error (" + level + ", " + seed + "): divergence in previous() (" + I + ", " + J + ", iterator with starting point " + from + ")");
if (r.nextFloat() < 0.5) {
//System.err.println("Removing in prev");
i.remove();
j.remove();
t.remove(J);
}
}
}
}
/* Now we check that m actually holds that data. */
ensure(m.equals(t), "Error (" + level + ", " + seed + "): ! m.equals(t) after iteration");
ensure(t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals(m) after iteration");
/* Now we select a pair of keys and create a submap. */
if (! m.isEmpty()) {
java.util.ListIterator i;
Object start = m.firstKey(), end = m.firstKey();
for(i = (java.util.ListIterator)m.keySet().iterator(); i.hasNext() && r.nextFloat() < .3; start = end = i.next());
for(; i.hasNext() && r.nextFloat() < .95; end = i.next());
//System.err.println("Checking subMap from " + start + " to " + end + " (level=" + (level+1) + ")...");
testMaps((SORTED_MAP)m.subMap((KEY_CLASS) start, (KEY_CLASS)end), t.subMap(start, end), n, level + 1);
ensure(m.equals(t), "Error (" + level + ", " + seed + "): ! m.equals(t) after subMap");
ensure(t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals(m) after subMap");
//System.err.println("Checking headMap to " + end + " (level=" + (level+1) + ")...");
testMaps((SORTED_MAP)m.headMap((KEY_CLASS)end), t.headMap(end), n, level + 1);
ensure(m.equals(t), "Error (" + level + ", " + seed + "): ! m.equals(t) after headMap");
ensure(t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals(m) after headMap");
//System.err.println("Checking tailMap from " + start + " (level=" + (level+1) + ")...");
testMaps((SORTED_MAP)m.tailMap((KEY_CLASS)start), t.tailMap(start), n, level + 1);
ensure(m.equals(t), "Error (" + level + ", " + seed + "): ! m.equals(t) after tailMap");
ensure(t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals(m) after tailMap");
}
}
private static void runTest(int n) {
RB_TREE_MAP m = new RB_TREE_MAP();
SortedMap t = new java.util.TreeMap();
topMap = m;
k = new Object[n];
v = new Object[n];
nk = new Object[n];
kt = new KEY_TYPE[n];
nkt = new KEY_TYPE[n];
vt = new VALUE_TYPE[n];
for(int i = 0; i < n; i++) {
#if KEY_CLASS_Object
k[i] = kt[i] = genKey();
nk[i] = nkt[i] = genKey();
#else
k[i] = new KEY_CLASS(kt[i] = genKey());
nk[i] = new KEY_CLASS(nkt[i] = genKey());
#endif
#if VALUES_REFERENCE
v[i] = vt[i] = genValue();
#else
v[i] = new VALUE_CLASS(vt[i] = genValue());
#endif
}
/* We add pairs to t. */
for(int i = 0; i < n; i++) t.put(k[i], v[i]);
/* We add to m the same data */
m.putAll(t);
testMaps(m, t, n, 0);
System.out.println("Test OK");
return;
}
public static void main(String args[]) {
int n = Integer.parseInt(args[1]);
if (args.length > 2) r = new java.util.Random(seed = Long.parseLong(args[2]));
try {
if ("speedTest".equals(args[0]) || "speedComp".equals(args[0])) speedTest(n, "speedComp".equals(args[0]));
else if ("test".equals(args[0])) runTest(n);
} catch(Throwable e) {
e.printStackTrace(System.err);
System.err.println("seed: " + seed);
}
}
#endif
}