All Downloads are FREE. Search and download functionalities are using the official Maven repository.

it.unimi.dsi.fastutil.Arrays Maven / Gradle / Ivy

Go to download

fastutil extends the Java Collections Framework by providing type-specific maps, sets, lists and priority queues with a small memory footprint and fast access and insertion; provides also big (64-bit) arrays, sets and lists, and fast, practical I/O classes for binary and text files.

There is a newer version: 8.5.15
Show newest version
package it.unimi.dsi.fastutil;

/*
 * Copyright (C) 2002-2017 Sebastiano Vigna
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

import it.unimi.dsi.fastutil.ints.IntComparator;

import java.util.ArrayList;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.RecursiveAction;

/** A class providing static methods and objects that do useful things with arrays.
 *
 * 

In addition to commodity methods, this class contains {@link Swapper}-based implementations * of {@linkplain #quickSort(int, int, IntComparator, Swapper) quicksort} and of * a stable, in-place {@linkplain #mergeSort(int, int, IntComparator, Swapper) mergesort}. These * generic sorting methods can be used to sort any kind of list, but they find their natural * usage, for instance, in sorting arrays in parallel. * * @see Arrays */ public class Arrays { private Arrays() {} /** This is a safe value used by {@link ArrayList} (as of Java 7) to avoid * throwing {@link OutOfMemoryError} on some JVMs. We adopt the same value. */ public static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; /** Ensures that a range given by its first (inclusive) and last (exclusive) elements fits an array of given length. * *

This method may be used whenever an array range check is needed. * * @param arrayLength an array length. * @param from a start index (inclusive). * @param to an end index (inclusive). * @throws IllegalArgumentException if {@code from} is greater than {@code to}. * @throws ArrayIndexOutOfBoundsException if {@code from} or {@code to} are greater than {@code arrayLength} or negative. */ public static void ensureFromTo(final int arrayLength, final int from, final int to) { if (from < 0) throw new ArrayIndexOutOfBoundsException("Start index (" + from + ") is negative"); if (from > to) throw new IllegalArgumentException("Start index (" + from + ") is greater than end index (" + to + ")"); if (to > arrayLength) throw new ArrayIndexOutOfBoundsException("End index (" + to + ") is greater than array length (" + arrayLength + ")"); } /** Ensures that a range given by an offset and a length fits an array of given length. * *

This method may be used whenever an array range check is needed. * * @param arrayLength an array length. * @param offset a start index for the fragment * @param length a length (the number of elements in the fragment). * @throws IllegalArgumentException if {@code length} is negative. * @throws ArrayIndexOutOfBoundsException if {@code offset} is negative or {@code offset}+{@code length} is greater than {@code arrayLength}. */ public static void ensureOffsetLength(final int arrayLength, final int offset, final int length) { if (offset < 0) throw new ArrayIndexOutOfBoundsException("Offset (" + offset + ") is negative"); if (length < 0) throw new IllegalArgumentException("Length (" + length + ") is negative"); if (offset + length > arrayLength) throw new ArrayIndexOutOfBoundsException("Last index (" + (offset + length) + ") is greater than array length (" + arrayLength + ")"); } /** * Transforms two consecutive sorted ranges into a single sorted range. The initial ranges are * {@code [first..middle)} and {@code [middle..last)}, and the resulting range is * {@code [first..last)}. Elements in the first input range will precede equal elements in * the second. */ private static void inPlaceMerge(final int from, int mid, final int to, final IntComparator comp, final Swapper swapper) { if (from >= mid || mid >= to) return; if (to - from == 2) { if (comp.compare(mid, from) < 0) swapper.swap(from, mid); return; } int firstCut; int secondCut; if (mid - from > to - mid) { firstCut = from + (mid - from) / 2; secondCut = lowerBound(mid, to, firstCut, comp); } else { secondCut = mid + (to - mid) / 2; firstCut = upperBound(from, mid, secondCut, comp); } int first2 = firstCut; int middle2 = mid; int last2 = secondCut; if (middle2 != first2 && middle2 != last2) { int first1 = first2; int last1 = middle2; while (first1 < --last1) swapper.swap(first1++, last1); first1 = middle2; last1 = last2; while (first1 < --last1) swapper.swap(first1++, last1); first1 = first2; last1 = last2; while (first1 < --last1) swapper.swap(first1++, last1); } mid = firstCut + (secondCut - mid); inPlaceMerge(from, firstCut, mid, comp, swapper); inPlaceMerge(mid, secondCut, to, comp, swapper); } /** * Performs a binary search on an already-sorted range: finds the first position where an * element can be inserted without violating the ordering. Sorting is by a user-supplied * comparison function. * * @param from the index of the first element (inclusive) to be included in the binary search. * @param to the index of the last element (exclusive) to be included in the binary search. * @param pos the position of the element to be searched for. * @param comp the comparison function. * @return the largest index i such that, for every j in the range {@code [first..i)}, * {@code comp.compare(j, pos)} is {@code true}. */ private static int lowerBound(int from, final int to, final int pos, final IntComparator comp) { // if (comp==null) throw new NullPointerException(); int len = to - from; while (len > 0) { int half = len / 2; int middle = from + half; if (comp.compare(middle, pos) < 0) { from = middle + 1; len -= half + 1; } else { len = half; } } return from; } /** * Performs a binary search on an already sorted range: finds the last position where an element * can be inserted without violating the ordering. Sorting is by a user-supplied comparison * function. * * @param from the index of the first element (inclusive) to be included in the binary search. * @param to the index of the last element (exclusive) to be included in the binary search. * @param pos the position of the element to be searched for. * @param comp the comparison function. * @return The largest index i such that, for every j in the range {@code [first..i)}, * {@code comp.compare(pos, j)} is {@code false}. */ private static int upperBound(int from, final int mid, final int pos, final IntComparator comp) { // if (comp==null) throw new NullPointerException(); int len = mid - from; while (len > 0) { int half = len / 2; int middle = from + half; if (comp.compare(pos, middle) < 0) { len = half; } else { from = middle + 1; len -= half + 1; } } return from; } /** * Returns the index of the median of the three indexed chars. */ private static int med3(final int a, final int b, final int c, final IntComparator comp) { int ab = comp.compare(a, b); int ac = comp.compare(a, c); int bc = comp.compare(b, c); return (ab < 0 ? (bc < 0 ? b : ac < 0 ? c : a) : (bc > 0 ? b : ac > 0 ? c : a)); } private static final int MERGESORT_NO_REC = 16; /** Sorts the specified range of elements using the specified swapper and according to the order induced by the specified * comparator using mergesort. * *

This sort is guaranteed to be stable: equal elements will not be reordered as a result * of the sort. The sorting algorithm is an in-place mergesort that is significantly slower than a * standard mergesort, as its running time is O(n (log n)2), but it does not allocate additional memory; as a result, it can be * used as a generic sorting algorithm. * * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. * @param c the comparator to determine the order of the generic data (arguments are positions). * @param swapper an object that knows how to swap the elements at any two positions. */ public static void mergeSort(final int from, final int to, final IntComparator c, final Swapper swapper) { /* * We retain the same method signature as quickSort. Given only a comparator and swapper we * do not know how to copy and move elements from/to temporary arrays. Hence, in contrast to * the JDK mergesorts this is an "in-place" mergesort, i.e. does not allocate any temporary * arrays. A non-inplace mergesort would perhaps be faster in most cases, but would require * non-intuitive delegate objects... */ final int length = to - from; // Insertion sort on smallest arrays if (length < MERGESORT_NO_REC) { for (int i = from; i < to; i++) { for (int j = i; j > from && (c.compare(j - 1, j) > 0); j--) { swapper.swap(j, j - 1); } } return; } // Recursively sort halves int mid = (from + to) >>> 1; mergeSort(from, mid, c, swapper); mergeSort(mid, to, c, swapper); // If list is already sorted, nothing left to do. This is an // optimization that results in faster sorts for nearly ordered lists. if (c.compare(mid - 1, mid) <= 0) return; // Merge sorted halves inPlaceMerge(from, mid, to, c, swapper); } /** Swaps two sequences of elements using a provided swapper. * * @param swapper the swapper. * @param a a position in {@code x}. * @param b another position in {@code x}. * @param n the number of elements to exchange starting at {@code a} and {@code b}. */ protected static void swap(final Swapper swapper, int a, int b, final int n) { for (int i = 0; i < n; i++, a++, b++) swapper.swap(a, b); } private static final int QUICKSORT_NO_REC = 16; private static final int PARALLEL_QUICKSORT_NO_FORK = 8192; private static final int QUICKSORT_MEDIAN_OF_9 = 128; protected static class ForkJoinGenericQuickSort extends RecursiveAction { private static final long serialVersionUID = 1L; private final int from; private final int to; private final IntComparator comp; private final Swapper swapper; public ForkJoinGenericQuickSort(final int from, final int to, final IntComparator comp, final Swapper swapper) { this.from = from; this.to = to; this.comp = comp; this.swapper = swapper; } @Override protected void compute() { final int len = to - from; if (len < PARALLEL_QUICKSORT_NO_FORK) { quickSort(from, to, comp, swapper); return; } // Choose a partition element, v int m = from + len / 2; int l = from; int n = to - 1; int s = len / 8; l = med3(l, l + s, l + 2 * s, comp); m = med3(m - s, m, m + s, comp); n = med3(n - 2 * s, n - s, n, comp); m = med3(l, m, n, comp); // Establish Invariant: v* (v)* v* int a = from, b = a, c = to - 1, d = c; while (true) { int comparison; while (b <= c && ((comparison = comp.compare(b, m)) <= 0)) { if (comparison == 0) { // Fix reference to pivot if necessary if (a == m) m = b; else if (b == m) m = a; swapper.swap(a++, b); } b++; } while (c >= b && ((comparison = comp.compare(c, m)) >= 0)) { if (comparison == 0) { // Fix reference to pivot if necessary if (c == m) m = d; else if (d == m) m = c; swapper.swap(c, d--); } c--; } if (b > c) break; // Fix reference to pivot if necessary if (b == m) m = d; else if (c == m) m = c; swapper.swap(b++, c--); } // Swap partition elements back to middle s = Math.min(a - from, b - a); swap(swapper, from, b - s, s); s = Math.min(d - c, to - d - 1); swap(swapper, b, to - s, s); // Recursively sort non-partition-elements int t; s = b - a; t = d - c; if (s > 1 && t > 1) invokeAll(new ForkJoinGenericQuickSort(from, from + s, comp, swapper), new ForkJoinGenericQuickSort(to - t, to, comp, swapper)); else if (s > 1) invokeAll(new ForkJoinGenericQuickSort(from, from + s, comp, swapper)); else invokeAll(new ForkJoinGenericQuickSort(to - t, to, comp, swapper)); } } /** Sorts the specified range of elements using the specified swapper and according to the order induced by the specified * comparator using a parallel quicksort. * *

The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas * McIlroy, “Engineering a Sort Function”, Software: Practice and Experience, 23(11), pages * 1249−1265, 1993. * *

This implementation uses a {@link ForkJoinPool} executor service with {@link Runtime#availableProcessors()} parallel threads. * * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. * @param comp the comparator to determine the order of the generic data. * @param swapper an object that knows how to swap the elements at any two positions. * */ public static void parallelQuickSort(final int from, final int to, final IntComparator comp, final Swapper swapper) { final ForkJoinPool pool = new ForkJoinPool(Runtime.getRuntime().availableProcessors()); pool.invoke(new ForkJoinGenericQuickSort(from, to, comp, swapper)); pool.shutdown(); } /** Sorts the specified range of elements using the specified swapper and according to the order induced by the specified * comparator using parallel quicksort. * *

The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas * McIlroy, “Engineering a Sort Function”, Software: Practice and Experience, 23(11), pages * 1249−1265, 1993. * *

This implementation uses a {@link ForkJoinPool} executor service with {@link Runtime#availableProcessors()} parallel threads. * * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. * @param comp the comparator to determine the order of the generic data. * @param swapper an object that knows how to swap the elements at any two positions. * */ public static void quickSort(final int from, final int to, final IntComparator comp, final Swapper swapper) { final int len = to - from; // Insertion sort on smallest arrays if (len < QUICKSORT_NO_REC) { for (int i = from; i < to; i++) for (int j = i; j > from && (comp.compare(j - 1, j) > 0); j--) { swapper.swap(j, j - 1); } return; } // Choose a partition element, v int m = from + len / 2; // Small arrays, middle element int l = from; int n = to - 1; if (len > QUICKSORT_MEDIAN_OF_9) { // Big arrays, pseudomedian of 9 int s = len / 8; l = med3(l, l + s, l + 2 * s, comp); m = med3(m - s, m, m + s, comp); n = med3(n - 2 * s, n - s, n, comp); } m = med3(l, m, n, comp); // Mid-size, med of 3 // int v = x[m]; int a = from; int b = a; int c = to - 1; // Establish Invariant: v* (v)* v* int d = c; while (true) { int comparison; while (b <= c && ((comparison = comp.compare(b, m)) <= 0)) { if (comparison == 0) { // Fix reference to pivot if necessary if (a == m) m = b; else if (b == m) m = a; swapper.swap(a++, b); } b++; } while (c >= b && ((comparison = comp.compare(c, m)) >= 0)) { if (comparison == 0) { // Fix reference to pivot if necessary if (c == m) m = d; else if (d == m) m = c; swapper.swap(c, d--); } c--; } if (b > c) break; // Fix reference to pivot if necessary if (b == m) m = d; else if (c == m) m = c; swapper.swap(b++, c--); } // Swap partition elements back to middle int s; s = Math.min(a - from, b - a); swap(swapper, from, b - s, s); s = Math.min(d - c, to - d - 1); swap(swapper, b, to - s, s); // Recursively sort non-partition-elements if ((s = b - a) > 1) quickSort(from, from + s, comp, swapper); if ((s = d - c) > 1) quickSort(to - s, to, comp, swapper); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy