All Downloads are FREE. Search and download functionalities are using the official Maven repository.

it.unimi.dsi.fastutil.floats.FloatBigArrays Maven / Gradle / Ivy

Go to download

fastutil extends the Java Collections Framework by providing type-specific maps, sets, lists and priority queues with a small memory footprint and fast access and insertion; provides also big (64-bit) arrays, sets and lists, and fast, practical I/O classes for binary and text files.

There is a newer version: 8.5.15
Show newest version
/*
	* Copyright (C) 2009-2017 Sebastiano Vigna
	*
	* Licensed under the Apache License, Version 2.0 (the "License");
	* you may not use this file except in compliance with the License.
	* You may obtain a copy of the License at
	*
	*     http://www.apache.org/licenses/LICENSE-2.0
	*
	* Unless required by applicable law or agreed to in writing, software
	* distributed under the License is distributed on an "AS IS" BASIS,
	* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
	* See the License for the specific language governing permissions and
	* limitations under the License.
	*
	*
	*
	* Copyright (C) 1999 CERN - European Organization for Nuclear Research.
	*
	*   Permission to use, copy, modify, distribute and sell this software and
	*   its documentation for any purpose is hereby granted without fee,
	*   provided that the above copyright notice appear in all copies and that
	*   both that copyright notice and this permission notice appear in
	*   supporting documentation. CERN makes no representations about the
	*   suitability of this software for any purpose. It is provided "as is"
	*   without expressed or implied warranty.
	*/
package it.unimi.dsi.fastutil.floats;
import java.util.Arrays;
import java.util.Random;
import it.unimi.dsi.fastutil.BigArrays;
import it.unimi.dsi.fastutil.Hash;
import static it.unimi.dsi.fastutil.BigArrays.ensureLength;
import static it.unimi.dsi.fastutil.BigArrays.start;
import static it.unimi.dsi.fastutil.BigArrays.segment;
import static it.unimi.dsi.fastutil.BigArrays.displacement;
import static it.unimi.dsi.fastutil.BigArrays.SEGMENT_MASK;
import static it.unimi.dsi.fastutil.BigArrays.SEGMENT_SHIFT;
import static it.unimi.dsi.fastutil.BigArrays.SEGMENT_SIZE;
import it.unimi.dsi.fastutil.bytes.ByteBigArrays;
/**
 * A class providing static methods and objects that do useful things with
 * {@linkplain BigArrays big arrays}.
 *
 * 

* In particular, the {@code forceCapacity()}, {@code ensureCapacity()}, * {@code grow()}, {@code trim()} and {@code setLength()} methods allow to * handle big arrays much like array lists. * *

* Note that {@link it.unimi.dsi.fastutil.io.BinIO} and * {@link it.unimi.dsi.fastutil.io.TextIO} contain several methods that make it * possible to load and save big arrays of primitive types as sequences of * elements in {@link java.io.DataInput} format (i.e., not as objects) or as * sequences of lines of text. * * @see BigArrays */ public final class FloatBigArrays { private FloatBigArrays() { } /** A static, final, empty big array. */ public static final float[][] EMPTY_BIG_ARRAY = {}; /** * A static, final, empty big array to be used as default big array in * allocations. An object distinct from {@link #EMPTY_BIG_ARRAY} makes it * possible to have different behaviors depending on whether the user required * an empty allocation, or we are just lazily delaying allocation. * * @see java.util.ArrayList */ public static final float[][] DEFAULT_EMPTY_BIG_ARRAY = {}; /** * Returns the element of the given big array of specified index. * * @param array * a big array. * @param index * a position in the big array. * @return the element of the big array at the specified position. */ public static float get(final float[][] array, final long index) { return array[segment(index)][displacement(index)]; } /** * Sets the element of the given big array of specified index. * * @param array * a big array. * @param index * a position in the big array. * @param value * the new value for the array element at the specified position. */ public static void set(final float[][] array, final long index, float value) { array[segment(index)][displacement(index)] = value; } /** * Swaps the element of the given big array of specified indices. * * @param array * a big array. * @param first * a position in the big array. * @param second * a position in the big array. */ public static void swap(final float[][] array, final long first, final long second) { final float t = array[segment(first)][displacement(first)]; array[segment(first)][displacement(first)] = array[segment(second)][displacement(second)]; array[segment(second)][displacement(second)] = t; } /** * Adds the specified increment the element of the given big array of specified * index. * * @param array * a big array. * @param index * a position in the big array. * @param incr * the increment */ public static void add(final float[][] array, final long index, float incr) { array[segment(index)][displacement(index)] += incr; } /** * Multiplies by the specified factor the element of the given big array of * specified index. * * @param array * a big array. * @param index * a position in the big array. * @param factor * the factor */ public static void mul(final float[][] array, final long index, float factor) { array[segment(index)][displacement(index)] *= factor; } /** * Increments the element of the given big array of specified index. * * @param array * a big array. * @param index * a position in the big array. */ public static void incr(final float[][] array, final long index) { array[segment(index)][displacement(index)]++; } /** * Decrements the element of the given big array of specified index. * * @param array * a big array. * @param index * a position in the big array. */ public static void decr(final float[][] array, final long index) { array[segment(index)][displacement(index)]--; } /** * Returns the length of the given big array. * * @param array * a big array. * @return the length of the given big array. */ public static long length(final float[][] array) { final int length = array.length; return length == 0 ? 0 : start(length - 1) + array[length - 1].length; } /** * Copies a big array from the specified source big array, beginning at the * specified position, to the specified position of the destination big array. * Handles correctly overlapping regions of the same big array. * * @param srcArray * the source big array. * @param srcPos * the starting position in the source big array. * @param destArray * the destination big array. * @param destPos * the starting position in the destination data. * @param length * the number of elements to be copied. */ public static void copy(final float[][] srcArray, final long srcPos, final float[][] destArray, final long destPos, long length) { if (destPos <= srcPos) { int srcSegment = segment(srcPos); int destSegment = segment(destPos); int srcDispl = displacement(srcPos); int destDispl = displacement(destPos); int l; while (length > 0) { l = (int) Math.min(length, Math.min(srcArray[srcSegment].length - srcDispl, destArray[destSegment].length - destDispl)); System.arraycopy(srcArray[srcSegment], srcDispl, destArray[destSegment], destDispl, l); if ((srcDispl += l) == SEGMENT_SIZE) { srcDispl = 0; srcSegment++; } if ((destDispl += l) == SEGMENT_SIZE) { destDispl = 0; destSegment++; } length -= l; } } else { int srcSegment = segment(srcPos + length); int destSegment = segment(destPos + length); int srcDispl = displacement(srcPos + length); int destDispl = displacement(destPos + length); int l; while (length > 0) { if (srcDispl == 0) { srcDispl = SEGMENT_SIZE; srcSegment--; } if (destDispl == 0) { destDispl = SEGMENT_SIZE; destSegment--; } l = (int) Math.min(length, Math.min(srcDispl, destDispl)); System.arraycopy(srcArray[srcSegment], srcDispl - l, destArray[destSegment], destDispl - l, l); srcDispl -= l; destDispl -= l; length -= l; } } } /** * Copies a big array from the specified source big array, beginning at the * specified position, to the specified position of the destination array. * * @param srcArray * the source big array. * @param srcPos * the starting position in the source big array. * @param destArray * the destination array. * @param destPos * the starting position in the destination data. * @param length * the number of elements to be copied. */ public static void copyFromBig(final float[][] srcArray, final long srcPos, final float[] destArray, int destPos, int length) { int srcSegment = segment(srcPos); int srcDispl = displacement(srcPos); int l; while (length > 0) { l = Math.min(srcArray[srcSegment].length - srcDispl, length); System.arraycopy(srcArray[srcSegment], srcDispl, destArray, destPos, l); if ((srcDispl += l) == SEGMENT_SIZE) { srcDispl = 0; srcSegment++; } destPos += l; length -= l; } } /** * Copies an array from the specified source array, beginning at the specified * position, to the specified position of the destination big array. * * @param srcArray * the source array. * @param srcPos * the starting position in the source array. * @param destArray * the destination big array. * @param destPos * the starting position in the destination data. * @param length * the number of elements to be copied. */ public static void copyToBig(final float[] srcArray, int srcPos, final float[][] destArray, final long destPos, long length) { int destSegment = segment(destPos); int destDispl = displacement(destPos); int l; while (length > 0) { l = (int) Math.min(destArray[destSegment].length - destDispl, length); System.arraycopy(srcArray, srcPos, destArray[destSegment], destDispl, l); if ((destDispl += l) == SEGMENT_SIZE) { destDispl = 0; destSegment++; } srcPos += l; length -= l; } } /** * Creates a new big array. * * @param length * the length of the new big array. * @return a new big array of given length. */ public static float[][] newBigArray(final long length) { if (length == 0) return EMPTY_BIG_ARRAY; ensureLength(length); final int baseLength = (int) ((length + SEGMENT_MASK) >>> SEGMENT_SHIFT); float[][] base = new float[baseLength][]; final int residual = (int) (length & SEGMENT_MASK); if (residual != 0) { for (int i = 0; i < baseLength - 1; i++) base[i] = new float[SEGMENT_SIZE]; base[baseLength - 1] = new float[residual]; } else for (int i = 0; i < baseLength; i++) base[i] = new float[SEGMENT_SIZE]; return base; } /** * Turns a standard array into a big array. * *

* Note that the returned big array might contain as a segment the original * array. * * @param array * an array. * @return a new big array with the same length and content of {@code array}. */ public static float[][] wrap(final float[] array) { if (array.length == 0) return EMPTY_BIG_ARRAY; if (array.length <= SEGMENT_SIZE) return new float[][]{array}; final float[][] bigArray = newBigArray(array.length); for (int i = 0; i < bigArray.length; i++) System.arraycopy(array, (int) start(i), bigArray[i], 0, bigArray[i].length); return bigArray; } /** * Ensures that a big array can contain the given number of entries. * *

* If you cannot foresee whether this big array will need again to be enlarged, * you should probably use {@code grow()} instead. * *

* Warning: the returned array might use part of the segments * of the original array, which must be considered read-only after calling this * method. * * @param array * a big array. * @param length * the new minimum length for this big array. * @return {@code array}, if it contains {@code length} entries or more; * otherwise, a big array with {@code length} entries whose first * {@code length(array)} entries are the same as those of {@code array}. */ public static float[][] ensureCapacity(final float[][] array, final long length) { return ensureCapacity(array, length, length(array)); } /** * Forces a big array to contain the given number of entries, preserving just a * part of the big array. * *

* Warning: the returned array might use part of the segments * of the original array, which must be considered read-only after calling this * method. * * @param array * a big array. * @param length * the new minimum length for this big array. * @param preserve * the number of elements of the big array that must be preserved in * case a new allocation is necessary. * @return a big array with {@code length} entries whose first {@code preserve} * entries are the same as those of {@code array}. */ public static float[][] forceCapacity(final float[][] array, final long length, final long preserve) { ensureLength(length); final int valid = array.length - (array.length == 0 || array.length > 0 && array[array.length - 1].length == SEGMENT_SIZE ? 0 : 1); final int baseLength = (int) ((length + SEGMENT_MASK) >>> SEGMENT_SHIFT); final float[][] base = Arrays.copyOf(array, baseLength); final int residual = (int) (length & SEGMENT_MASK); if (residual != 0) { for (int i = valid; i < baseLength - 1; i++) base[i] = new float[SEGMENT_SIZE]; base[baseLength - 1] = new float[residual]; } else for (int i = valid; i < baseLength; i++) base[i] = new float[SEGMENT_SIZE]; if (preserve - (valid * (long) SEGMENT_SIZE) > 0) copy(array, valid * (long) SEGMENT_SIZE, base, valid * (long) SEGMENT_SIZE, preserve - (valid * (long) SEGMENT_SIZE)); return base; } /** * Ensures that a big array can contain the given number of entries, preserving * just a part of the big array. * *

* Warning: the returned array might use part of the segments * of the original array, which must be considered read-only after calling this * method. * * @param array * a big array. * @param length * the new minimum length for this big array. * @param preserve * the number of elements of the big array that must be preserved in * case a new allocation is necessary. * @return {@code array}, if it can contain {@code length} entries or more; * otherwise, a big array with {@code length} entries whose first * {@code preserve} entries are the same as those of {@code array}. */ public static float[][] ensureCapacity(final float[][] array, final long length, final long preserve) { return length > length(array) ? forceCapacity(array, length, preserve) : array; } /** * Grows the given big array to the maximum between the given length and the * current length increased by 50%, provided that the given length is larger * than the current length. * *

* If you want complete control on the big array growth, you should probably use * {@code ensureCapacity()} instead. * *

* Warning: the returned array might use part of the segments * of the original array, which must be considered read-only after calling this * method. * * @param array * a big array. * @param length * the new minimum length for this big array. * @return {@code array}, if it can contain {@code length} entries; otherwise, a * big array with max({@code length},{@code length(array)}/φ) * entries whose first {@code length(array)} entries are the same as * those of {@code array}. */ public static float[][] grow(final float[][] array, final long length) { final long oldLength = length(array); return length > oldLength ? grow(array, length, oldLength) : array; } /** * Grows the given big array to the maximum between the given length and the * current length increased by 50%, provided that the given length is larger * than the current length, preserving just a part of the big array. * *

* If you want complete control on the big array growth, you should probably use * {@code ensureCapacity()} instead. * *

* Warning: the returned array might use part of the segments * of the original array, which must be considered read-only after calling this * method. * * @param array * a big array. * @param length * the new minimum length for this big array. * @param preserve * the number of elements of the big array that must be preserved in * case a new allocation is necessary. * @return {@code array}, if it can contain {@code length} entries; otherwise, a * big array with max({@code length},{@code length(array)}/φ) * entries whose first {@code preserve} entries are the same as those of * {@code array}. */ public static float[][] grow(final float[][] array, final long length, final long preserve) { final long oldLength = length(array); return length > oldLength ? ensureCapacity(array, Math.max(oldLength + (oldLength >> 1), length), preserve) : array; } /** * Trims the given big array to the given length. * *

* Warning: the returned array might use part of the segments * of the original array, which must be considered read-only after calling this * method. * * @param array * a big array. * @param length * the new maximum length for the big array. * @return {@code array}, if it contains {@code length} entries or less; * otherwise, a big array with {@code length} entries whose entries are * the same as the first {@code length} entries of {@code array}. * */ public static float[][] trim(final float[][] array, final long length) { ensureLength(length); final long oldLength = length(array); if (length >= oldLength) return array; final int baseLength = (int) ((length + SEGMENT_MASK) >>> SEGMENT_SHIFT); final float[][] base = Arrays.copyOf(array, baseLength); final int residual = (int) (length & SEGMENT_MASK); if (residual != 0) base[baseLength - 1] = FloatArrays.trim(base[baseLength - 1], residual); return base; } /** * Sets the length of the given big array. * *

* Warning: the returned array might use part of the segments * of the original array, which must be considered read-only after calling this * method. * * @param array * a big array. * @param length * the new length for the big array. * @return {@code array}, if it contains exactly {@code length} entries; * otherwise, if it contains more than {@code length} entries, * a big array with {@code length} entries whose entries are the same as * the first {@code length} entries of {@code array}; otherwise, a big * array with {@code length} entries whose first {@code length(array)} * entries are the same as those of {@code array}. * */ public static float[][] setLength(final float[][] array, final long length) { final long oldLength = length(array); if (length == oldLength) return array; if (length < oldLength) return trim(array, length); return ensureCapacity(array, length); } /** * Returns a copy of a portion of a big array. * * @param array * a big array. * @param offset * the first element to copy. * @param length * the number of elements to copy. * @return a new big array containing {@code length} elements of {@code array} * starting at {@code offset}. */ public static float[][] copy(final float[][] array, final long offset, final long length) { ensureOffsetLength(array, offset, length); final float[][] a = newBigArray(length); copy(array, offset, a, 0, length); return a; } /** * Returns a copy of a big array. * * @param array * a big array. * @return a copy of {@code array}. */ public static float[][] copy(final float[][] array) { final float[][] base = array.clone(); for (int i = base.length; i-- != 0;) base[i] = array[i].clone(); return base; } /** * Fills the given big array with the given value. * *

* This method uses a backward loop. It is significantly faster than the * corresponding method in {@link java.util.Arrays}. * * @param array * a big array. * @param value * the new value for all elements of the big array. */ public static void fill(final float[][] array, final float value) { for (int i = array.length; i-- != 0;) Arrays.fill(array[i], value); } /** * Fills a portion of the given big array with the given value. * *

* If possible (i.e., {@code from} is 0) this method uses a backward loop. In * this case, it is significantly faster than the corresponding method in * {@link java.util.Arrays}. * * @param array * a big array. * @param from * the starting index of the portion to fill. * @param to * the end index of the portion to fill. * @param value * the new value for all elements of the specified portion of the big * array. */ public static void fill(final float[][] array, final long from, long to, final float value) { final long length = length(array); BigArrays.ensureFromTo(length, from, to); if (length == 0) return; // To avoid addressing array[0] int fromSegment = segment(from); int toSegment = segment(to); int fromDispl = displacement(from); int toDispl = displacement(to); if (fromSegment == toSegment) { Arrays.fill(array[fromSegment], fromDispl, toDispl, value); return; } if (toDispl != 0) Arrays.fill(array[toSegment], 0, toDispl, value); while (--toSegment > fromSegment) Arrays.fill(array[toSegment], value); Arrays.fill(array[fromSegment], fromDispl, SEGMENT_SIZE, value); } /** * Returns true if the two big arrays are elementwise equal. * *

* This method uses a backward loop. It is significantly faster than the * corresponding method in {@link java.util.Arrays}. * * @param a1 * a big array. * @param a2 * another big array. * @return true if the two big arrays are of the same length, and their elements * are equal. */ public static boolean equals(final float[][] a1, final float a2[][]) { if (length(a1) != length(a2)) return false; int i = a1.length, j; float[] t, u; while (i-- != 0) { t = a1[i]; u = a2[i]; j = t.length; while (j-- != 0) if (!(Float.floatToIntBits(t[j]) == Float.floatToIntBits(u[j]))) return false; } return true; } /* * Returns a string representation of the contents of the specified big array. * * The string representation consists of a list of the big array's elements, * enclosed in square brackets ("[]"). Adjacent elements are separated by the * characters ", " (a comma followed by a space). Returns "null" if {@code a} is * null. * * @param a the big array whose string representation to return. * * @return the string representation of {@code a}. */ public static String toString(final float[][] a) { if (a == null) return "null"; final long last = length(a) - 1; if (last == -1) return "[]"; final StringBuilder b = new StringBuilder(); b.append('['); for (long i = 0;; i++) { b.append(String.valueOf(get(a, i))); if (i == last) return b.append(']').toString(); b.append(", "); } } /** * Ensures that a range given by its first (inclusive) and last (exclusive) * elements fits a big array. * *

* This method may be used whenever a big array range check is needed. * * @param a * a big array. * @param from * a start index (inclusive). * @param to * an end index (inclusive). * @throws IllegalArgumentException * if {@code from} is greater than {@code to}. * @throws ArrayIndexOutOfBoundsException * if {@code from} or {@code to} are greater than the big array * length or negative. */ public static void ensureFromTo(final float[][] a, final long from, final long to) { BigArrays.ensureFromTo(length(a), from, to); } /** * Ensures that a range given by an offset and a length fits a big array. * *

* This method may be used whenever a big array range check is needed. * * @param a * a big array. * @param offset * a start index. * @param length * a length (the number of elements in the range). * @throws IllegalArgumentException * if {@code length} is negative. * @throws ArrayIndexOutOfBoundsException * if {@code offset} is negative or {@code offset}+{@code length} is * greater than the big array length. */ public static void ensureOffsetLength(final float[][] a, final long offset, final long length) { BigArrays.ensureOffsetLength(length(a), offset, length); } /** A type-specific content-based hash strategy for big arrays. */ private static final class BigArrayHashStrategy implements Hash.Strategy, java.io.Serializable { private static final long serialVersionUID = -7046029254386353129L; @Override public int hashCode(final float[][] o) { return java.util.Arrays.deepHashCode(o); } @Override public boolean equals(final float[][] a, final float[][] b) { return FloatBigArrays.equals(a, b); } } /** * A type-specific content-based hash strategy for big arrays. * *

* This hash strategy may be used in custom hash collections whenever keys are * big arrays, and they must be considered equal by content. This strategy will * handle {@code null} correctly, and it is serializable. */ @SuppressWarnings({"rawtypes"}) public static final Hash.Strategy HASH_STRATEGY = new BigArrayHashStrategy(); private static final int SMALL = 7; private static final int MEDIUM = 40; private static void vecSwap(final float[][] x, long a, long b, final long n) { for (int i = 0; i < n; i++, a++, b++) swap(x, a, b); } private static long med3(final float x[][], final long a, final long b, final long c, FloatComparator comp) { int ab = comp.compare(get(x, a), get(x, b)); int ac = comp.compare(get(x, a), get(x, c)); int bc = comp.compare(get(x, b), get(x, c)); return (ab < 0 ? (bc < 0 ? b : ac < 0 ? c : a) : (bc > 0 ? b : ac > 0 ? c : a)); } private static void selectionSort(final float[][] a, final long from, final long to, final FloatComparator comp) { for (long i = from; i < to - 1; i++) { long m = i; for (long j = i + 1; j < to; j++) if (comp.compare(FloatBigArrays.get(a, j), FloatBigArrays.get(a, m)) < 0) m = j; if (m != i) swap(a, i, m); } } /** * Sorts the specified range of elements according to the order induced by the * specified comparator using quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. * Douglas McIlroy, “Engineering a Sort Function”, Software: * Practice and Experience, 23(11), pages 1249−1265, 1993. * * @param x * the big array to be sorted. * @param from * the index of the first element (inclusive) to be sorted. * @param to * the index of the last element (exclusive) to be sorted. * @param comp * the comparator to determine the sorting order. */ public static void quickSort(final float[][] x, final long from, final long to, final FloatComparator comp) { final long len = to - from; // Selection sort on smallest arrays if (len < SMALL) { selectionSort(x, from, to, comp); return; } // Choose a partition element, v long m = from + len / 2; // Small arrays, middle element if (len > SMALL) { long l = from; long n = to - 1; if (len > MEDIUM) { // Big arrays, pseudomedian of 9 long s = len / 8; l = med3(x, l, l + s, l + 2 * s, comp); m = med3(x, m - s, m, m + s, comp); n = med3(x, n - 2 * s, n - s, n, comp); } m = med3(x, l, m, n, comp); // Mid-size, med of 3 } final float v = get(x, m); // Establish Invariant: v* (v)* v* long a = from, b = a, c = to - 1, d = c; while (true) { int comparison; while (b <= c && (comparison = comp.compare(get(x, b), v)) <= 0) { if (comparison == 0) swap(x, a++, b); b++; } while (c >= b && (comparison = comp.compare(get(x, c), v)) >= 0) { if (comparison == 0) swap(x, c, d--); c--; } if (b > c) break; swap(x, b++, c--); } // Swap partition elements back to middle long s, n = to; s = Math.min(a - from, b - a); vecSwap(x, from, b - s, s); s = Math.min(d - c, n - d - 1); vecSwap(x, b, n - s, s); // Recursively sort non-partition-elements if ((s = b - a) > 1) quickSort(x, from, from + s, comp); if ((s = d - c) > 1) quickSort(x, n - s, n, comp); } private static long med3(final float x[][], final long a, final long b, final long c) { int ab = (Float.compare((get(x, a)), (get(x, b)))); int ac = (Float.compare((get(x, a)), (get(x, c)))); int bc = (Float.compare((get(x, b)), (get(x, c)))); return (ab < 0 ? (bc < 0 ? b : ac < 0 ? c : a) : (bc > 0 ? b : ac > 0 ? c : a)); } private static void selectionSort(final float[][] a, final long from, final long to) { for (long i = from; i < to - 1; i++) { long m = i; for (long j = i + 1; j < to; j++) if ((Float.compare((FloatBigArrays.get(a, j)), (FloatBigArrays.get(a, m))) < 0)) m = j; if (m != i) swap(a, i, m); } } /** * Sorts the specified big array according to the order induced by the specified * comparator using quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. * Douglas McIlroy, “Engineering a Sort Function”, Software: * Practice and Experience, 23(11), pages 1249−1265, 1993. * * @param x * the big array to be sorted. * @param comp * the comparator to determine the sorting order. * */ public static void quickSort(final float[][] x, final FloatComparator comp) { quickSort(x, 0, FloatBigArrays.length(x), comp); } /** * Sorts the specified range of elements according to the natural ascending * order using quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. * Douglas McIlroy, “Engineering a Sort Function”, Software: * Practice and Experience, 23(11), pages 1249−1265, 1993. * * @param x * the big array to be sorted. * @param from * the index of the first element (inclusive) to be sorted. * @param to * the index of the last element (exclusive) to be sorted. */ public static void quickSort(final float[][] x, final long from, final long to) { final long len = to - from; // Selection sort on smallest arrays if (len < SMALL) { selectionSort(x, from, to); return; } // Choose a partition element, v long m = from + len / 2; // Small arrays, middle element if (len > SMALL) { long l = from; long n = to - 1; if (len > MEDIUM) { // Big arrays, pseudomedian of 9 long s = len / 8; l = med3(x, l, l + s, l + 2 * s); m = med3(x, m - s, m, m + s); n = med3(x, n - 2 * s, n - s, n); } m = med3(x, l, m, n); // Mid-size, med of 3 } final float v = get(x, m); // Establish Invariant: v* (v)* v* long a = from, b = a, c = to - 1, d = c; while (true) { int comparison; while (b <= c && (comparison = (Float.compare((get(x, b)), (v)))) <= 0) { if (comparison == 0) swap(x, a++, b); b++; } while (c >= b && (comparison = (Float.compare((get(x, c)), (v)))) >= 0) { if (comparison == 0) swap(x, c, d--); c--; } if (b > c) break; swap(x, b++, c--); } // Swap partition elements back to middle long s, n = to; s = Math.min(a - from, b - a); vecSwap(x, from, b - s, s); s = Math.min(d - c, n - d - 1); vecSwap(x, b, n - s, s); // Recursively sort non-partition-elements if ((s = b - a) > 1) quickSort(x, from, from + s); if ((s = d - c) > 1) quickSort(x, n - s, n); } /** * Sorts the specified big array according to the natural ascending order using * quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. * Douglas McIlroy, “Engineering a Sort Function”, Software: * Practice and Experience, 23(11), pages 1249−1265, 1993. * * @param x * the big array to be sorted. */ public static void quickSort(final float[][] x) { quickSort(x, 0, FloatBigArrays.length(x)); } /** * Searches a range of the specified big array for the specified value using the * binary search algorithm. The range must be sorted prior to making this call. * If it is not sorted, the results are undefined. If the range contains * multiple elements with the specified value, there is no guarantee which one * will be found. * * @param a * the big array to be searched. * @param from * the index of the first element (inclusive) to be searched. * @param to * the index of the last element (exclusive) to be searched. * @param key * the value to be searched for. * @return index of the search key, if it is contained in the big array; * otherwise, (-(insertion point) - 1). The insertion * point is defined as the the point at which the value would be * inserted into the big array: the index of the first element greater * than the key, or the length of the big array, if all elements in the * big array are less than the specified key. Note that this guarantees * that the return value will be >= 0 if and only if the key is * found. * @see java.util.Arrays */ public static long binarySearch(final float[][] a, long from, long to, final float key) { float midVal; to--; while (from <= to) { final long mid = (from + to) >>> 1; midVal = get(a, mid); if (midVal < key) from = mid + 1; else if (midVal > key) to = mid - 1; else return mid; } return -(from + 1); } /** * Searches a big array for the specified value using the binary search * algorithm. The range must be sorted prior to making this call. If it is not * sorted, the results are undefined. If the range contains multiple elements * with the specified value, there is no guarantee which one will be found. * * @param a * the big array to be searched. * @param key * the value to be searched for. * @return index of the search key, if it is contained in the big array; * otherwise, (-(insertion point) - 1). The insertion * point is defined as the the point at which the value would be * inserted into the big array: the index of the first element greater * than the key, or the length of the big array, if all elements in the * big array are less than the specified key. Note that this guarantees * that the return value will be >= 0 if and only if the key is * found. * @see java.util.Arrays */ public static long binarySearch(final float[][] a, final float key) { return binarySearch(a, 0, FloatBigArrays.length(a), key); } /** * Searches a range of the specified big array for the specified value using the * binary search algorithm and a specified comparator. The range must be sorted * following the comparator prior to making this call. If it is not sorted, the * results are undefined. If the range contains multiple elements with the * specified value, there is no guarantee which one will be found. * * @param a * the big array to be searched. * @param from * the index of the first element (inclusive) to be searched. * @param to * the index of the last element (exclusive) to be searched. * @param key * the value to be searched for. * @param c * a comparator. * @return index of the search key, if it is contained in the big array; * otherwise, (-(insertion point) - 1). The insertion * point is defined as the the point at which the value would be * inserted into the big array: the index of the first element greater * than the key, or the length of the big array, if all elements in the * big array are less than the specified key. Note that this guarantees * that the return value will be >= 0 if and only if the key is * found. * @see java.util.Arrays */ public static long binarySearch(final float[][] a, long from, long to, final float key, final FloatComparator c) { float midVal; to--; while (from <= to) { final long mid = (from + to) >>> 1; midVal = get(a, mid); final int cmp = c.compare(midVal, key); if (cmp < 0) from = mid + 1; else if (cmp > 0) to = mid - 1; else return mid; // key found } return -(from + 1); } /** * Searches a big array for the specified value using the binary search * algorithm and a specified comparator. The range must be sorted following the * comparator prior to making this call. If it is not sorted, the results are * undefined. If the range contains multiple elements with the specified value, * there is no guarantee which one will be found. * * @param a * the big array to be searched. * @param key * the value to be searched for. * @param c * a comparator. * @return index of the search key, if it is contained in the big array; * otherwise, (-(insertion point) - 1). The insertion * point is defined as the the point at which the value would be * inserted into the big array: the index of the first element greater * than the key, or the length of the big array, if all elements in the * big array are less than the specified key. Note that this guarantees * that the return value will be >= 0 if and only if the key is * found. * @see java.util.Arrays */ public static long binarySearch(final float[][] a, final float key, final FloatComparator c) { return binarySearch(a, 0, FloatBigArrays.length(a), key, c); } /** The size of a digit used during radix sort (must be a power of 2). */ private static final int DIGIT_BITS = 8; /** The mask to extract a digit of {@link #DIGIT_BITS} bits. */ private static final int DIGIT_MASK = (1 << DIGIT_BITS) - 1; /** The number of digits per element. */ private static final int DIGITS_PER_ELEMENT = Float.SIZE / DIGIT_BITS; /** * This method fixes negative numbers so that the combination * exponent/significand is lexicographically sorted. */ private static final long fixFloat(final float f) { final long i = Float.floatToRawIntBits(f); return i >= 0 ? i : i ^ 0x7FFFFFFF; } /** * Sorts the specified big array using radix sort. * *

* The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, * Keith Bostic and M. Douglas McIlroy, “Engineering radix sort”, * Computing Systems, 6(1), pages 5−27 (1993), and further improved * using the digit-oracle idea described by Juha Kärkkäinen and Tommi * Rantala in “Engineering radix sort for strings”, String * Processing and Information Retrieval, 15th International Symposium, * volume 5280 of Lecture Notes in Computer Science, pages 3−14, Springer * (2008). * *

* This implementation is significantly faster than quicksort already at small * sizes (say, more than 10000 elements), but it can only sort in ascending * order. It will allocate a support array of bytes with the same number of * elements as the array to be sorted. * * @param a * the big array to be sorted. */ public static void radixSort(final float[][] a) { radixSort(a, 0, FloatBigArrays.length(a)); } /** * Sorts the specified big array using radix sort. * *

* The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, * Keith Bostic and M. Douglas McIlroy, “Engineering radix sort”, * Computing Systems, 6(1), pages 5−27 (1993), and further improved * using the digit-oracle idea described by Juha Kärkkäinen and Tommi * Rantala in “Engineering radix sort for strings”, String * Processing and Information Retrieval, 15th International Symposium, * volume 5280 of Lecture Notes in Computer Science, pages 3−14, Springer * (2008). * *

* This implementation is significantly faster than quicksort already at small * sizes (say, more than 10000 elements), but it can only sort in ascending * order. It will allocate a support array of bytes with the same number of * elements as the array to be sorted. * * @param a * the big array to be sorted. * @param from * the index of the first element (inclusive) to be sorted. * @param to * the index of the last element (exclusive) to be sorted. */ public static void radixSort(final float[][] a, final long from, final long to) { final int maxLevel = DIGITS_PER_ELEMENT - 1; final int stackSize = ((1 << DIGIT_BITS) - 1) * (DIGITS_PER_ELEMENT - 1) + 1; final long[] offsetStack = new long[stackSize]; int offsetPos = 0; final long[] lengthStack = new long[stackSize]; int lengthPos = 0; final int[] levelStack = new int[stackSize]; int levelPos = 0; offsetStack[offsetPos++] = from; lengthStack[lengthPos++] = to - from; levelStack[levelPos++] = 0; final long[] count = new long[1 << DIGIT_BITS]; final long[] pos = new long[1 << DIGIT_BITS]; final byte[][] digit = ByteBigArrays.newBigArray(to - from); while (offsetPos > 0) { final long first = offsetStack[--offsetPos]; final long length = lengthStack[--lengthPos]; final int level = levelStack[--levelPos]; final int signMask = level % DIGITS_PER_ELEMENT == 0 ? 1 << DIGIT_BITS - 1 : 0; if (length < MEDIUM) { selectionSort(a, first, first + length); continue; } final int shift = (DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT) * DIGIT_BITS; // This is the shift // that extract the // right byte from a // key // Count keys. for (long i = length; i-- != 0;) ByteBigArrays.set(digit, i, (byte) (((fixFloat(FloatBigArrays.get(a, first + i)) >>> shift) & DIGIT_MASK) ^ signMask)); for (long i = length; i-- != 0;) count[ByteBigArrays.get(digit, i) & 0xFF]++; // Compute cumulative distribution and push non-singleton keys on stack. int lastUsed = -1; long p = 0; for (int i = 0; i < 1 << DIGIT_BITS; i++) { if (count[i] != 0) { lastUsed = i; if (level < maxLevel && count[i] > 1) { // System.err.println(" Pushing " + new StackEntry(first + pos[i - 1], first + // pos[i], level + 1)); offsetStack[offsetPos++] = p + first; lengthStack[lengthPos++] = count[i]; levelStack[levelPos++] = level + 1; } } pos[i] = (p += count[i]); } // When all slots are OK, the last slot is necessarily OK. final long end = length - count[lastUsed]; count[lastUsed] = 0; // i moves through the start of each block int c = -1; for (long i = 0, d; i < end; i += count[c], count[c] = 0) { float t = FloatBigArrays.get(a, i + first); c = ByteBigArrays.get(digit, i) & 0xFF; while ((d = --pos[c]) > i) { final float z = t; final int zz = c; t = FloatBigArrays.get(a, d + first); c = ByteBigArrays.get(digit, d) & 0xFF; FloatBigArrays.set(a, d + first, z); ByteBigArrays.set(digit, d, (byte) zz); } FloatBigArrays.set(a, i + first, t); } } } private static void selectionSort(final float[][] a, final float[][] b, final long from, final long to) { for (long i = from; i < to - 1; i++) { long m = i; for (long j = i + 1; j < to; j++) if ((Float.compare((FloatBigArrays.get(a, j)), (FloatBigArrays.get(a, m))) < 0) || (Float.compare((FloatBigArrays.get(a, j)), (FloatBigArrays.get(a, m))) == 0) && (Float.compare((FloatBigArrays.get(b, j)), (FloatBigArrays.get(b, m))) < 0)) m = j; if (m != i) { float t = FloatBigArrays.get(a, i); FloatBigArrays.set(a, i, FloatBigArrays.get(a, m)); FloatBigArrays.set(a, m, t); t = FloatBigArrays.get(b, i); FloatBigArrays.set(b, i, FloatBigArrays.get(b, m)); FloatBigArrays.set(b, m, t); } } } /** * Sorts the specified pair of big arrays lexicographically using radix sort. *

* The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, * Keith Bostic and M. Douglas McIlroy, “Engineering radix sort”, * Computing Systems, 6(1), pages 5−27 (1993), and further improved * using the digit-oracle idea described by Juha Kärkkäinen and Tommi * Rantala in “Engineering radix sort for strings”, String * Processing and Information Retrieval, 15th International Symposium, * volume 5280 of Lecture Notes in Computer Science, pages 3−14, Springer * (2008). * *

* This method implements a lexicographical sorting of the arguments. * Pairs of elements in the same position in the two provided arrays will be * considered a single key, and permuted accordingly. In the end, either * {@code a[i] < a[i + 1]} or {@code a[i] == a[i + 1]} and * {@code b[i] <= b[i + 1]}. * *

* This implementation is significantly faster than quicksort already at small * sizes (say, more than 10000 elements), but it can only sort in ascending * order. It will allocate a support array of bytes with the same number of * elements as the arrays to be sorted. * * @param a * the first big array to be sorted. * @param b * the second big array to be sorted. */ public static void radixSort(final float[][] a, final float[][] b) { radixSort(a, b, 0, FloatBigArrays.length(a)); } /** * Sorts the specified pair of big arrays lexicographically using radix sort. * *

* The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, * Keith Bostic and M. Douglas McIlroy, “Engineering radix sort”, * Computing Systems, 6(1), pages 5−27 (1993), and further improved * using the digit-oracle idea described by Juha Kärkkäinen and Tommi * Rantala in “Engineering radix sort for strings”, String * Processing and Information Retrieval, 15th International Symposium, * volume 5280 of Lecture Notes in Computer Science, pages 3−14, Springer * (2008). * *

* This method implements a lexicographical sorting of the arguments. * Pairs of elements in the same position in the two provided arrays will be * considered a single key, and permuted accordingly. In the end, either * {@code a[i] < a[i + 1]} or {@code a[i] == a[i + 1]} and * {@code b[i] <= b[i + 1]}. * *

* This implementation is significantly faster than quicksort already at small * sizes (say, more than 10000 elements), but it can only sort in ascending * order. It will allocate a support array of bytes with the same number of * elements as the arrays to be sorted. * * @param a * the first big array to be sorted. * @param b * the second big array to be sorted. * @param from * the index of the first element (inclusive) to be sorted. * @param to * the index of the last element (exclusive) to be sorted. */ public static void radixSort(final float[][] a, final float[][] b, final long from, final long to) { final int layers = 2; if (FloatBigArrays.length(a) != FloatBigArrays.length(b)) throw new IllegalArgumentException("Array size mismatch."); final int maxLevel = DIGITS_PER_ELEMENT * layers - 1; final int stackSize = ((1 << DIGIT_BITS) - 1) * (layers * DIGITS_PER_ELEMENT - 1) + 1; final long[] offsetStack = new long[stackSize]; int offsetPos = 0; final long[] lengthStack = new long[stackSize]; int lengthPos = 0; final int[] levelStack = new int[stackSize]; int levelPos = 0; offsetStack[offsetPos++] = from; lengthStack[lengthPos++] = to - from; levelStack[levelPos++] = 0; final long[] count = new long[1 << DIGIT_BITS]; final long[] pos = new long[1 << DIGIT_BITS]; final byte[][] digit = ByteBigArrays.newBigArray(to - from); while (offsetPos > 0) { final long first = offsetStack[--offsetPos]; final long length = lengthStack[--lengthPos]; final int level = levelStack[--levelPos]; final int signMask = level % DIGITS_PER_ELEMENT == 0 ? 1 << DIGIT_BITS - 1 : 0; if (length < MEDIUM) { selectionSort(a, b, first, first + length); continue; } final float[][] k = level < DIGITS_PER_ELEMENT ? a : b; // This is the key array final int shift = (DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT) * DIGIT_BITS; // This is the shift // that extract the // right byte from a // key // Count keys. for (long i = length; i-- != 0;) ByteBigArrays.set(digit, i, (byte) (((fixFloat(FloatBigArrays.get(k, first + i)) >>> shift) & DIGIT_MASK) ^ signMask)); for (long i = length; i-- != 0;) count[ByteBigArrays.get(digit, i) & 0xFF]++; // Compute cumulative distribution and push non-singleton keys on stack. int lastUsed = -1; long p = 0; for (int i = 0; i < 1 << DIGIT_BITS; i++) { if (count[i] != 0) { lastUsed = i; if (level < maxLevel && count[i] > 1) { offsetStack[offsetPos++] = p + first; lengthStack[lengthPos++] = count[i]; levelStack[levelPos++] = level + 1; } } pos[i] = (p += count[i]); } // When all slots are OK, the last slot is necessarily OK. final long end = length - count[lastUsed]; count[lastUsed] = 0; // i moves through the start of each block int c = -1; for (long i = 0, d; i < end; i += count[c], count[c] = 0) { float t = FloatBigArrays.get(a, i + first); float u = FloatBigArrays.get(b, i + first); c = ByteBigArrays.get(digit, i) & 0xFF; while ((d = --pos[c]) > i) { float z = t; final int zz = c; t = FloatBigArrays.get(a, d + first); FloatBigArrays.set(a, d + first, z); z = u; u = FloatBigArrays.get(b, d + first); FloatBigArrays.set(b, d + first, z); c = ByteBigArrays.get(digit, d) & 0xFF; ByteBigArrays.set(digit, d, (byte) zz); } FloatBigArrays.set(a, i + first, t); FloatBigArrays.set(b, i + first, u); } } } /** * Shuffles the specified big array fragment using the specified pseudorandom * number generator. * * @param a * the big array to be shuffled. * @param from * the index of the first element (inclusive) to be shuffled. * @param to * the index of the last element (exclusive) to be shuffled. * @param random * a pseudorandom number generator. * @return {@code a}. */ public static float[][] shuffle(final float[][] a, final long from, final long to, final Random random) { for (long i = to - from; i-- != 0;) { final long p = (random.nextLong() & 0x7FFFFFFFFFFFFFFFL) % (i + 1); final float t = get(a, from + i); set(a, from + i, get(a, from + p)); set(a, from + p, t); } return a; } /** * Shuffles the specified big array using the specified pseudorandom number * generator. * * @param a * the big array to be shuffled. * @param random * a pseudorandom number generator. * @return {@code a}. */ public static float[][] shuffle(final float[][] a, final Random random) { for (long i = length(a); i-- != 0;) { final long p = (random.nextLong() & 0x7FFFFFFFFFFFFFFFL) % (i + 1); final float t = get(a, i); set(a, i, get(a, p)); set(a, p, t); } return a; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy