All Downloads are FREE. Search and download functionalities are using the official Maven repository.

drv.Arrays.drv Maven / Gradle / Ivy

Go to download

fastutil extends the Java Collections Framework by providing type-specific maps, sets, lists and priority queues with a small memory footprint and fast access and insertion; provides also big (64-bit) arrays, sets and lists, and fast, practical I/O classes for binary and text files.

There is a newer version: 8.5.15
Show newest version
/*
 * Copyright (C) 2002-2017 Sebastiano Vigna
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 *
 *
 * For the sorting and binary search code:
 *
 * Copyright (C) 1999 CERN - European Organization for Nuclear Research.
 *
 *   Permission to use, copy, modify, distribute and sell this software and
 *   its documentation for any purpose is hereby granted without fee,
 *   provided that the above copyright notice appear in all copies and that
 *   both that copyright notice and this permission notice appear in
 *   supporting documentation. CERN makes no representations about the
 *   suitability of this software for any purpose. It is provided "as is"
 *   without expressed or implied warranty.
 */

package PACKAGE;

import it.unimi.dsi.fastutil.Arrays;
import it.unimi.dsi.fastutil.Hash;
import java.util.Random;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.RecursiveAction;

#if ! KEY_CLASS_Integer
import it.unimi.dsi.fastutil.ints.IntArrays;
#endif

#if KEYS_PRIMITIVE

#if ! KEY_CLASS_Boolean
import java.util.concurrent.ExecutorCompletionService;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.atomic.AtomicInteger;
#endif

/** A class providing static methods and objects that do useful things with type-specific arrays.
 *
 * 

In particular, the {@code forceCapacity()}, {@code ensureCapacity()}, {@code grow()}, * {@code trim()} and {@code setLength()} methods allow to handle * arrays much like array lists. This can be very useful when efficiency (or * syntactic simplicity) reasons make array lists unsuitable. * *

Note that {@link it.unimi.dsi.fastutil.io.BinIO} and {@link it.unimi.dsi.fastutil.io.TextIO} * contain several methods make it possible to load and save arrays of primitive types as sequences * of elements in {@link java.io.DataInput} format (i.e., not as objects) or as sequences of lines of text. * *

Sorting

* *

There are several sorting methods available. The main theme is that of letting you choose * the sorting algorithm you prefer (i.e., trading stability of mergesort for no memory allocation in quicksort). * Several algorithms provide a parallel version, that will use the {@linkplain Runtime#availableProcessors() number of cores available}. * Some algorithms also provide an explicit indirect sorting facility, which makes it possible * to sort an array using the values in another array as comparator. * *

All comparison-based algorithm have an implementation based on a type-specific comparator. * *

As a general rule, sequential radix sort is significantly faster than quicksort or mergesort, in particular * on random-looking data. In * the parallel case, up to a few cores parallel radix sort is still the fastest, but at some point quicksort * exploits parallelism better. * *

If you are fine with not knowing exactly which algorithm will be run (in particular, not knowing exactly whether a support array will be allocated), * the dual-pivot parallel sorts in {@link java.util.Arrays} * are about 50% faster than the classical single-pivot implementation used here. * *

In any case, if sorting time is important I suggest that you benchmark your sorting load * with your data distribution and on your architecture. * * @see java.util.Arrays */ public final class ARRAYS { #else import java.util.Comparator; /** A class providing static methods and objects that do useful things with type-specific arrays. * * In particular, the {@code ensureCapacity()}, {@code grow()}, * {@code trim()} and {@code setLength()} methods allow to handle * arrays much like array lists. This can be very useful when efficiency (or * syntactic simplicity) reasons make array lists unsuitable. * *

Warning: if your array is not of type {@code Object[]}, * {@link #ensureCapacity(Object[],int,int)} and {@link #grow(Object[],int,int)} * will use {@linkplain java.lang.reflect.Array#newInstance(Class,int) reflection} * to preserve your array type. Reflection is significantly slower than using {@code new}. * This phenomenon is particularly * evident in the first growth phases of an array reallocated with doubling (or similar) logic. * *

Sorting

* *

There are several sorting methods available. The main theme is that of letting you choose * the sorting algorithm you prefer (i.e., trading stability of mergesort for no memory allocation in quicksort). * Several algorithms provide a parallel version, that will use the {@linkplain Runtime#availableProcessors() number of cores available}. * *

All comparison-based algorithm have an implementation based on a type-specific comparator. * *

If you are fine with not knowing exactly which algorithm will be run (in particular, not knowing exactly whether a support array will be allocated), * the dual-pivot parallel sorts in {@link java.util.Arrays} * are about 50% faster than the classical single-pivot implementation used here. * *

In any case, if sorting time is important I suggest that you benchmark your sorting load * with your data distribution and on your architecture. * * @see java.util.Arrays */ public final class ARRAYS { #endif private ARRAYS() {} /** A static, final, empty array. */ public static final KEY_TYPE[] EMPTY_ARRAY = {}; /** A static, final, empty array to be used as default array in allocations. An * object distinct from {@link #EMPTY_ARRAY} makes it possible to have different * behaviors depending on whether the user required an empty allocation, or we are * just lazily delaying allocation. * * @see java.util.ArrayList */ public static final KEY_TYPE[] DEFAULT_EMPTY_ARRAY = {}; #if KEY_CLASS_Object /** Creates a new array using a the given one as prototype. * *

This method returns a new array of the given length whose element * are of the same class as of those of {@code prototype}. In case * of an empty array, it tries to return {@link #EMPTY_ARRAY}, if possible. * * @param prototype an array that will be used to type the new one. * @param length the length of the new array. * @return a new array of given type and length. */ SUPPRESS_WARNINGS_KEY_UNCHECKED private static K[] newArray(final K[] prototype, final int length) { final Class klass = prototype.getClass(); if (klass == Object[].class) return (K[])(length == 0 ? EMPTY_ARRAY : new Object[length]); return (K[])java.lang.reflect.Array.newInstance(klass.getComponentType(), length); } #endif /** Forces an array to contain the given number of entries, preserving just a part of the array. * * @param array an array. * @param length the new minimum length for this array. * @param preserve the number of elements of the array that must be preserved in case a new allocation is necessary. * @return an array with {@code length} entries whose first {@code preserve} * entries are the same as those of {@code array}. */ public static KEY_GENERIC KEY_GENERIC_TYPE[] forceCapacity(final KEY_GENERIC_TYPE[] array, final int length, final int preserve) { final KEY_GENERIC_TYPE t[] = #if KEY_CLASS_Object newArray(array, length); #else new KEY_TYPE[length]; #endif System.arraycopy(array, 0, t, 0, preserve); return t; } /** Ensures that an array can contain the given number of entries. * *

If you cannot foresee whether this array will need again to be * enlarged, you should probably use {@code grow()} instead. * * @param array an array. * @param length the new minimum length for this array. * @return {@code array}, if it contains {@code length} entries or more; otherwise, * an array with {@code length} entries whose first {@code array.length} * entries are the same as those of {@code array}. */ public static KEY_GENERIC KEY_GENERIC_TYPE[] ensureCapacity(final KEY_GENERIC_TYPE[] array, final int length) { return ensureCapacity(array, length, array.length); } /** Ensures that an array can contain the given number of entries, preserving just a part of the array. * * @param array an array. * @param length the new minimum length for this array. * @param preserve the number of elements of the array that must be preserved in case a new allocation is necessary. * @return {@code array}, if it can contain {@code length} entries or more; otherwise, * an array with {@code length} entries whose first {@code preserve} * entries are the same as those of {@code array}. */ public static KEY_GENERIC KEY_GENERIC_TYPE[] ensureCapacity(final KEY_GENERIC_TYPE[] array, final int length, final int preserve) { return length > array.length ? forceCapacity(array, length, preserve) : array; } /** Grows the given array to the maximum between the given length and * the current length increased by 50%, provided that the given * length is larger than the current length. * *

If you want complete control on the array growth, you * should probably use {@code ensureCapacity()} instead. * * @param array an array. * @param length the new minimum length for this array. * @return {@code array}, if it can contain {@code length} * entries; otherwise, an array with * max({@code length},{@code array.length}/φ) entries whose first * {@code array.length} entries are the same as those of {@code array}. * */ public static KEY_GENERIC KEY_GENERIC_TYPE[] grow(final KEY_GENERIC_TYPE[] array, final int length) { return grow(array, length, array.length); } /** Grows the given array to the maximum between the given length and * the current length increased by 50%, provided that the given * length is larger than the current length, preserving just a part of the array. * *

If you want complete control on the array growth, you * should probably use {@code ensureCapacity()} instead. * * @param array an array. * @param length the new minimum length for this array. * @param preserve the number of elements of the array that must be preserved in case a new allocation is necessary. * @return {@code array}, if it can contain {@code length} * entries; otherwise, an array with * max({@code length},{@code array.length}/φ) entries whose first * {@code preserve} entries are the same as those of {@code array}. * */ public static KEY_GENERIC KEY_GENERIC_TYPE[] grow(final KEY_GENERIC_TYPE[] array, final int length, final int preserve) { if (length > array.length) { final int newLength = (int)Math.max(Math.min((long)array.length + (array.length >> 1), Arrays.MAX_ARRAY_SIZE), length); final KEY_GENERIC_TYPE t[] = #if KEY_CLASS_Object newArray(array, newLength); #else new KEY_TYPE[newLength]; #endif System.arraycopy(array, 0, t, 0, preserve); return t; } return array; } /** Trims the given array to the given length. * * @param array an array. * @param length the new maximum length for the array. * @return {@code array}, if it contains {@code length} * entries or less; otherwise, an array with * {@code length} entries whose entries are the same as * the first {@code length} entries of {@code array}. * */ public static KEY_GENERIC KEY_GENERIC_TYPE[] trim(final KEY_GENERIC_TYPE[] array, final int length) { if (length >= array.length) return array; final KEY_GENERIC_TYPE t[] = #if KEY_CLASS_Object newArray(array, length); #else length == 0 ? EMPTY_ARRAY : new KEY_TYPE[length]; #endif System.arraycopy(array, 0, t, 0, length); return t; } /** Sets the length of the given array. * * @param array an array. * @param length the new length for the array. * @return {@code array}, if it contains exactly {@code length} * entries; otherwise, if it contains more than * {@code length} entries, an array with {@code length} entries * whose entries are the same as the first {@code length} entries of * {@code array}; otherwise, an array with {@code length} entries * whose first {@code array.length} entries are the same as those of * {@code array}. * */ public static KEY_GENERIC KEY_GENERIC_TYPE[] setLength(final KEY_GENERIC_TYPE[] array, final int length) { if (length == array.length) return array; if (length < array.length) return trim(array, length); return ensureCapacity(array, length); } /** Returns a copy of a portion of an array. * * @param array an array. * @param offset the first element to copy. * @param length the number of elements to copy. * @return a new array containing {@code length} elements of {@code array} starting at {@code offset}. */ public static KEY_GENERIC KEY_GENERIC_TYPE[] copy(final KEY_GENERIC_TYPE[] array, final int offset, final int length) { ensureOffsetLength(array, offset, length); final KEY_GENERIC_TYPE[] a = #if KEY_CLASS_Object newArray(array, length); #else length == 0 ? EMPTY_ARRAY : new KEY_TYPE[length]; #endif System.arraycopy(array, offset, a, 0, length); return a; } /** Returns a copy of an array. * * @param array an array. * @return a copy of {@code array}. */ public static KEY_GENERIC KEY_GENERIC_TYPE[] copy(final KEY_GENERIC_TYPE[] array) { return array.clone(); } /** Fills the given array with the given value. * * @param array an array. * @param value the new value for all elements of the array. * @deprecated Please use the corresponding {@link java.util.Arrays} method. */ @Deprecated public static KEY_GENERIC void fill(final KEY_GENERIC_TYPE[] array, final KEY_GENERIC_TYPE value) { int i = array.length; while(i-- != 0) array[i] = value; } /** Fills a portion of the given array with the given value. * * @param array an array. * @param from the starting index of the portion to fill (inclusive). * @param to the end index of the portion to fill (exclusive). * @param value the new value for all elements of the specified portion of the array. * @deprecated Please use the corresponding {@link java.util.Arrays} method. */ @Deprecated public static KEY_GENERIC void fill(final KEY_GENERIC_TYPE[] array, final int from, int to, final KEY_GENERIC_TYPE value) { ensureFromTo(array, from, to); if (from == 0) while(to-- != 0) array[to] = value; else for(int i = from; i < to; i++) array[i] = value; } /** Returns true if the two arrays are elementwise equal. * * @param a1 an array. * @param a2 another array. * @return true if the two arrays are of the same length, and their elements are equal. * @deprecated Please use the corresponding {@link java.util.Arrays} method, which is intrinsified in recent JVMs. */ @Deprecated public static KEY_GENERIC boolean equals(final KEY_GENERIC_TYPE[] a1, final KEY_GENERIC_TYPE a2[]) { int i = a1.length; if (i != a2.length) return false; while(i-- != 0) if (! KEY_EQUALS(a1[i], a2[i])) return false; return true; } /** Ensures that a range given by its first (inclusive) and last (exclusive) elements fits an array. * *

This method may be used whenever an array range check is needed. * * @param a an array. * @param from a start index (inclusive). * @param to an end index (exclusive). * @throws IllegalArgumentException if {@code from} is greater than {@code to}. * @throws ArrayIndexOutOfBoundsException if {@code from} or {@code to} are greater than the array length or negative. */ public static KEY_GENERIC void ensureFromTo(final KEY_GENERIC_TYPE[] a, final int from, final int to) { Arrays.ensureFromTo(a.length, from, to); } /** Ensures that a range given by an offset and a length fits an array. * *

This method may be used whenever an array range check is needed. * * @param a an array. * @param offset a start index. * @param length a length (the number of elements in the range). * @throws IllegalArgumentException if {@code length} is negative. * @throws ArrayIndexOutOfBoundsException if {@code offset} is negative or {@code offset}+{@code length} is greater than the array length. */ public static KEY_GENERIC void ensureOffsetLength(final KEY_GENERIC_TYPE[] a, final int offset, final int length) { Arrays.ensureOffsetLength(a.length, offset, length); } /** Ensures that two arrays are of the same length. * * @param a an array. * @param b another array. * @throws IllegalArgumentException if the two argument arrays are not of the same length. */ public static KEY_GENERIC void ensureSameLength(final KEY_GENERIC_TYPE[] a, final KEY_GENERIC_TYPE[] b) { if (a.length != b.length) throw new IllegalArgumentException("Array size mismatch: " + a.length + " != " + b.length); } private static final int QUICKSORT_NO_REC = 16; private static final int PARALLEL_QUICKSORT_NO_FORK = 8192; private static final int QUICKSORT_MEDIAN_OF_9 = 128; private static final int MERGESORT_NO_REC = 16; /** Swaps two elements of an anrray. * * @param x an array. * @param a a position in {@code x}. * @param b another position in {@code x}. */ public static KEY_GENERIC void swap(final KEY_GENERIC_TYPE x[], final int a, final int b) { final KEY_GENERIC_TYPE t = x[a]; x[a] = x[b]; x[b] = t; } /** Swaps two sequences of elements of an array. * * @param x an array. * @param a a position in {@code x}. * @param b another position in {@code x}. * @param n the number of elements to exchange starting at {@code a} and {@code b}. */ public static KEY_GENERIC void swap(final KEY_GENERIC_TYPE[] x, int a, int b, final int n) { for(int i = 0; i < n; i++, a++, b++) swap(x, a, b); } private static KEY_GENERIC int med3(final KEY_GENERIC_TYPE x[], final int a, final int b, final int c, KEY_COMPARATOR KEY_GENERIC comp) { final int ab = comp.compare(x[a], x[b]); final int ac = comp.compare(x[a], x[c]); final int bc = comp.compare(x[b], x[c]); return (ab < 0 ? (bc < 0 ? b : ac < 0 ? c : a) : (bc > 0 ? b : ac > 0 ? c : a)); } private static KEY_GENERIC void selectionSort(final KEY_GENERIC_TYPE[] a, final int from, final int to, final KEY_COMPARATOR KEY_GENERIC comp) { for(int i = from; i < to - 1; i++) { int m = i; for(int j = i + 1; j < to; j++) if (comp.compare(a[j], a[m]) < 0) m = j; if (m != i) { final KEY_GENERIC_TYPE u = a[i]; a[i] = a[m]; a[m] = u; } } } private static KEY_GENERIC void insertionSort(final KEY_GENERIC_TYPE[] a, final int from, final int to, final KEY_COMPARATOR KEY_GENERIC comp) { for (int i = from; ++i < to;) { KEY_GENERIC_TYPE t = a[i]; int j = i; for (KEY_GENERIC_TYPE u = a[j - 1]; comp.compare(t, u) < 0; u = a[--j - 1]) { a[j] = u; if (from == j - 1) { --j; break; } } a[j] = t; } } /** Sorts the specified range of elements according to the order induced by the specified * comparator using quicksort. * *

The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas * McIlroy, “Engineering a Sort Function”, Software: Practice and Experience, 23(11), pages * 1249−1265, 1993. * *

Note that this implementation does not allocate any object, contrarily to the implementation * used to sort primitive types in {@link java.util.Arrays}, which switches to mergesort on large inputs. * * @param x the array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. * @param comp the comparator to determine the sorting order. * */ public static KEY_GENERIC void quickSort(final KEY_GENERIC_TYPE[] x, final int from, final int to, final KEY_COMPARATOR KEY_GENERIC comp) { final int len = to - from; // Selection sort on smallest arrays if (len < QUICKSORT_NO_REC) { selectionSort(x, from, to, comp); return; } // Choose a partition element, v int m = from + len / 2; int l = from; int n = to - 1; if (len > QUICKSORT_MEDIAN_OF_9) { // Big arrays, pseudomedian of 9 int s = len / 8; l = med3(x, l, l + s, l + 2 * s, comp); m = med3(x, m - s, m, m + s, comp); n = med3(x, n - 2 * s, n - s, n, comp); } m = med3(x, l, m, n, comp); // Mid-size, med of 3 final KEY_GENERIC_TYPE v = x[m]; // Establish Invariant: v* (v)* v* int a = from, b = a, c = to - 1, d = c; while(true) { int comparison; while (b <= c && (comparison = comp.compare(x[b], v)) <= 0) { if (comparison == 0) swap(x, a++, b); b++; } while (c >= b && (comparison = comp.compare(x[c], v)) >=0) { if (comparison == 0) swap(x, c, d--); c--; } if (b > c) break; swap(x, b++, c--); } // Swap partition elements back to middle int s; s = Math.min(a - from, b - a); swap(x, from, b - s, s); s = Math.min(d - c, to - d - 1); swap(x, b, to - s, s); // Recursively sort non-partition-elements if ((s = b - a) > 1) quickSort(x, from, from + s, comp); if ((s = d - c) > 1) quickSort(x, to - s, to, comp); } /** Sorts an array according to the order induced by the specified * comparator using quicksort. * *

The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas * McIlroy, “Engineering a Sort Function”, Software: Practice and Experience, 23(11), pages * 1249−1265, 1993. * *

Note that this implementation does not allocate any object, contrarily to the implementation * used to sort primitive types in {@link java.util.Arrays}, which switches to mergesort on large inputs. * * @param x the array to be sorted. * @param comp the comparator to determine the sorting order. * */ public static KEY_GENERIC void quickSort(final KEY_GENERIC_TYPE[] x, final KEY_COMPARATOR KEY_GENERIC comp) { quickSort(x, 0, x.length, comp); } protected static class ForkJoinQuickSortComp KEY_GENERIC extends RecursiveAction { private static final long serialVersionUID = 1L; private final int from; private final int to; private final KEY_GENERIC_TYPE[] x; private final KEY_COMPARATOR KEY_GENERIC comp; public ForkJoinQuickSortComp(final KEY_GENERIC_TYPE[] x , final int from , final int to, final KEY_COMPARATOR KEY_GENERIC comp) { this.from = from; this.to = to; this.x = x; this.comp = comp; } @Override protected void compute() { final KEY_GENERIC_TYPE[] x = this.x; final int len = to - from; if (len < PARALLEL_QUICKSORT_NO_FORK) { quickSort(x, from, to, comp); return; } // Choose a partition element, v int m = from + len / 2; int l = from; int n = to - 1; int s = len / 8; l = med3(x, l, l + s, l + 2 * s, comp); m = med3(x, m - s, m, m + s, comp); n = med3(x, n - 2 * s, n - s, n, comp); m = med3(x, l, m, n, comp); final KEY_GENERIC_TYPE v = x[m]; // Establish Invariant: v* (v)* v* int a = from, b = a, c = to - 1, d = c; while (true) { int comparison; while (b <= c && (comparison = comp.compare(x[b], v)) <= 0) { if (comparison == 0) swap(x, a++, b); b++; } while (c >= b && (comparison = comp.compare(x[c], v)) >= 0) { if (comparison == 0) swap(x, c, d--); c--; } if (b > c) break; swap(x, b++, c--); } // Swap partition elements back to middle int t; s = Math.min(a - from, b - a); swap(x, from, b - s, s); s = Math.min(d - c, to - d - 1); swap(x, b, to - s, s); // Recursively sort non-partition-elements s = b - a; t = d - c; if (s > 1 && t > 1) invokeAll(new ForkJoinQuickSortComp KEY_GENERIC_DIAMOND(x, from, from + s, comp), new ForkJoinQuickSortComp KEY_GENERIC_DIAMOND(x, to - t, to, comp)); else if (s > 1) invokeAll(new ForkJoinQuickSortComp KEY_GENERIC_DIAMOND(x, from, from + s, comp)); else invokeAll(new ForkJoinQuickSortComp KEY_GENERIC_DIAMOND(x, to - t, to, comp)); } } /** Sorts the specified range of elements according to the order induced by the specified * comparator using a parallel quicksort. * *

The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas * McIlroy, “Engineering a Sort Function”, Software: Practice and Experience, 23(11), pages * 1249−1265, 1993. * *

This implementation uses a {@link ForkJoinPool} executor service with * {@link Runtime#availableProcessors()} parallel threads. * * @param x the array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. * @param comp the comparator to determine the sorting order. */ public static KEY_GENERIC void parallelQuickSort(final KEY_GENERIC_TYPE[] x, final int from, final int to, final KEY_COMPARATOR KEY_GENERIC comp) { if (to - from < PARALLEL_QUICKSORT_NO_FORK) quickSort(x, from, to, comp); else { final ForkJoinPool pool = new ForkJoinPool(Runtime.getRuntime().availableProcessors()); pool.invoke(new ForkJoinQuickSortComp KEY_GENERIC_DIAMOND(x, from, to, comp)); pool.shutdown(); } } /** Sorts an array according to the order induced by the specified * comparator using a parallel quicksort. * *

The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas * McIlroy, “Engineering a Sort Function”, Software: Practice and Experience, 23(11), pages * 1249−1265, 1993. * *

This implementation uses a {@link ForkJoinPool} executor service with * {@link Runtime#availableProcessors()} parallel threads. * * @param x the array to be sorted. * @param comp the comparator to determine the sorting order. */ public static KEY_GENERIC void parallelQuickSort(final KEY_GENERIC_TYPE[] x, final KEY_COMPARATOR KEY_GENERIC comp) { parallelQuickSort(x, 0, x.length, comp); } SUPPRESS_WARNINGS_KEY_UNCHECKED private static KEY_GENERIC int med3(final KEY_GENERIC_TYPE x[], final int a, final int b, final int c) { final int ab = KEY_CMP(x[a], x[b]); final int ac = KEY_CMP(x[a], x[c]); final int bc = KEY_CMP(x[b], x[c]); return (ab < 0 ? (bc < 0 ? b : ac < 0 ? c : a) : (bc > 0 ? b : ac > 0 ? c : a)); } SUPPRESS_WARNINGS_KEY_UNCHECKED private static KEY_GENERIC void selectionSort(final KEY_GENERIC_TYPE[] a, final int from, final int to) { for(int i = from; i < to - 1; i++) { int m = i; for(int j = i + 1; j < to; j++) if (KEY_LESS(a[j], a[m])) m = j; if (m != i) { final KEY_GENERIC_TYPE u = a[i]; a[i] = a[m]; a[m] = u; } } } SUPPRESS_WARNINGS_KEY_UNCHECKED private static KEY_GENERIC void insertionSort(final KEY_GENERIC_TYPE[] a, final int from, final int to) { for (int i = from; ++i < to;) { KEY_GENERIC_TYPE t = a[i]; int j = i; for (KEY_GENERIC_TYPE u = a[j - 1]; KEY_LESS(t, u); u = a[--j - 1]) { a[j] = u; if (from == j - 1) { --j; break; } } a[j] = t; } } /** Sorts the specified range of elements according to the natural ascending order using quicksort. * *

The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas * McIlroy, “Engineering a Sort Function”, Software: Practice and Experience, 23(11), pages * 1249−1265, 1993. * *

Note that this implementation does not allocate any object, contrarily to the implementation * used to sort primitive types in {@link java.util.Arrays}, which switches to mergesort on large inputs. * * @param x the array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. */ SUPPRESS_WARNINGS_KEY_UNCHECKED public static KEY_GENERIC void quickSort(final KEY_GENERIC_TYPE[] x, final int from, final int to) { final int len = to - from; // Selection sort on smallest arrays if (len < QUICKSORT_NO_REC) { selectionSort(x, from, to); return; } // Choose a partition element, v int m = from + len / 2; int l = from; int n = to - 1; if (len > QUICKSORT_MEDIAN_OF_9) { // Big arrays, pseudomedian of 9 int s = len / 8; l = med3(x, l, l + s, l + 2 * s); m = med3(x, m - s, m, m + s); n = med3(x, n - 2 * s, n - s, n); } m = med3(x, l, m, n); // Mid-size, med of 3 final KEY_GENERIC_TYPE v = x[m]; // Establish Invariant: v* (v)* v* int a = from, b = a, c = to - 1, d = c; while(true) { int comparison; while (b <= c && (comparison = KEY_CMP(x[b], v)) <= 0) { if (comparison == 0) swap(x, a++, b); b++; } while (c >= b && (comparison = KEY_CMP(x[c], v)) >=0) { if (comparison == 0) swap(x, c, d--); c--; } if (b > c) break; swap(x, b++, c--); } // Swap partition elements back to middle int s; s = Math.min(a - from, b - a); swap(x, from, b - s, s); s = Math.min(d - c, to - d - 1); swap(x, b, to - s, s); // Recursively sort non-partition-elements if ((s = b - a) > 1) quickSort(x, from, from + s); if ((s = d - c) > 1) quickSort(x, to - s, to); } /** Sorts an array according to the natural ascending order using quicksort. * *

The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas * McIlroy, “Engineering a Sort Function”, Software: Practice and Experience, 23(11), pages * 1249−1265, 1993. * *

Note that this implementation does not allocate any object, contrarily to the implementation * used to sort primitive types in {@link java.util.Arrays}, which switches to mergesort on large inputs. * * @param x the array to be sorted. * */ public static KEY_GENERIC void quickSort(final KEY_GENERIC_TYPE[] x) { quickSort(x, 0, x.length); } protected static class ForkJoinQuickSort KEY_GENERIC extends RecursiveAction { private static final long serialVersionUID = 1L; private final int from; private final int to; private final KEY_GENERIC_TYPE[] x; public ForkJoinQuickSort(final KEY_GENERIC_TYPE[] x , final int from , final int to) { this.from = from; this.to = to; this.x = x; } @Override SUPPRESS_WARNINGS_KEY_UNCHECKED protected void compute() { final KEY_GENERIC_TYPE[] x = this.x; final int len = to - from; if (len < PARALLEL_QUICKSORT_NO_FORK) { quickSort(x, from, to); return; } // Choose a partition element, v int m = from + len / 2; int l = from; int n = to - 1; int s = len / 8; l = med3(x, l, l + s, l + 2 * s); m = med3(x, m - s, m, m + s); n = med3(x, n - 2 * s, n - s, n); m = med3(x, l, m, n); final KEY_GENERIC_TYPE v = x[m]; // Establish Invariant: v* (v)* v* int a = from, b = a, c = to - 1, d = c; while (true) { int comparison; while (b <= c && (comparison = KEY_CMP(x[b], v)) <= 0) { if (comparison == 0) swap(x, a++, b); b++; } while (c >= b && (comparison = KEY_CMP(x[c], v)) >= 0) { if (comparison == 0) swap(x, c, d--); c--; } if (b > c) break; swap(x, b++, c--); } // Swap partition elements back to middle int t; s = Math.min(a - from, b - a); swap(x, from, b - s, s); s = Math.min(d - c, to - d - 1); swap(x, b, to - s, s); // Recursively sort non-partition-elements s = b - a; t = d - c; if (s > 1 && t > 1) invokeAll(new ForkJoinQuickSort KEY_GENERIC_DIAMOND(x, from, from + s), new ForkJoinQuickSort KEY_GENERIC_DIAMOND(x, to - t, to)); else if (s > 1) invokeAll(new ForkJoinQuickSort KEY_GENERIC_DIAMOND(x, from, from + s)); else invokeAll(new ForkJoinQuickSort KEY_GENERIC_DIAMOND(x, to - t, to)); } } /** Sorts the specified range of elements according to the natural ascending order using a parallel quicksort. * *

The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas * McIlroy, “Engineering a Sort Function”, Software: Practice and Experience, 23(11), pages * 1249−1265, 1993. * *

This implementation uses a {@link ForkJoinPool} executor service with * {@link Runtime#availableProcessors()} parallel threads. * * @param x the array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. */ public static KEY_GENERIC void parallelQuickSort(final KEY_GENERIC_TYPE[] x, final int from, final int to) { if (to - from < PARALLEL_QUICKSORT_NO_FORK) quickSort(x, from, to); else { final ForkJoinPool pool = new ForkJoinPool(Runtime.getRuntime().availableProcessors()); pool.invoke(new ForkJoinQuickSort KEY_GENERIC_DIAMOND(x, from, to)); pool.shutdown(); } } /** Sorts an array according to the natural ascending order using a parallel quicksort. * *

The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas * McIlroy, “Engineering a Sort Function”, Software: Practice and Experience, 23(11), pages * 1249−1265, 1993. * *

This implementation uses a {@link ForkJoinPool} executor service with * {@link Runtime#availableProcessors()} parallel threads. * * @param x the array to be sorted. * */ public static KEY_GENERIC void parallelQuickSort(final KEY_GENERIC_TYPE[] x) { parallelQuickSort(x, 0, x.length); } SUPPRESS_WARNINGS_KEY_UNCHECKED private static KEY_GENERIC int med3Indirect(final int perm[], final KEY_GENERIC_TYPE x[], final int a, final int b, final int c) { final KEY_GENERIC_TYPE aa = x[perm[a]]; final KEY_GENERIC_TYPE bb = x[perm[b]]; final KEY_GENERIC_TYPE cc = x[perm[c]]; final int ab = KEY_CMP(aa, bb); final int ac = KEY_CMP(aa, cc); final int bc = KEY_CMP(bb, cc); return (ab < 0 ? (bc < 0 ? b : ac < 0 ? c : a) : (bc > 0 ? b : ac > 0 ? c : a)); } SUPPRESS_WARNINGS_KEY_UNCHECKED private static KEY_GENERIC void insertionSortIndirect(final int[] perm, final KEY_GENERIC_TYPE[] a, final int from, final int to) { for (int i = from; ++i < to;) { int t = perm[i]; int j = i; for (int u = perm[j - 1]; KEY_LESS(a[t], a[u]); u = perm[--j - 1]) { perm[j] = u; if (from == j - 1) { --j; break; } } perm[j] = t; } } /** Sorts the specified range of elements according to the natural ascending order using indirect quicksort. * *

The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas * McIlroy, “Engineering a Sort Function”, Software: Practice and Experience, 23(11), pages * 1249−1265, 1993. * *

This method implement an indirect sort. The elements of {@code perm} (which must * be exactly the numbers in the interval {@code [0..perm.length)}) will be permuted so that * {@code x[perm[i]] ≤ x[perm[i + 1]]}. * *

Note that this implementation does not allocate any object, contrarily to the implementation * used to sort primitive types in {@link java.util.Arrays}, which switches to mergesort on large inputs. * * @param perm a permutation array indexing {@code x}. * @param x the array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. */ SUPPRESS_WARNINGS_KEY_UNCHECKED public static KEY_GENERIC void quickSortIndirect(final int[] perm, final KEY_GENERIC_TYPE[] x, final int from, final int to) { final int len = to - from; // Selection sort on smallest arrays if (len < QUICKSORT_NO_REC) { insertionSortIndirect(perm, x, from, to); return; } // Choose a partition element, v int m = from + len / 2; int l = from; int n = to - 1; if (len > QUICKSORT_MEDIAN_OF_9) { // Big arrays, pseudomedian of 9 int s = len / 8; l = med3Indirect(perm, x, l, l + s, l + 2 * s); m = med3Indirect(perm, x, m - s, m, m + s); n = med3Indirect(perm, x, n - 2 * s, n - s, n); } m = med3Indirect(perm, x, l, m, n); // Mid-size, med of 3 final KEY_GENERIC_TYPE v = x[perm[m]]; // Establish Invariant: v* (v)* v* int a = from, b = a, c = to - 1, d = c; while(true) { int comparison; while (b <= c && (comparison = KEY_CMP(x[perm[b]], v)) <= 0) { if (comparison == 0) IntArrays.swap(perm, a++, b); b++; } while (c >= b && (comparison = KEY_CMP(x[perm[c]], v)) >=0) { if (comparison == 0) IntArrays.swap(perm, c, d--); c--; } if (b > c) break; IntArrays.swap(perm, b++, c--); } // Swap partition elements back to middle int s; s = Math.min(a - from, b - a); IntArrays.swap(perm, from, b - s, s); s = Math.min(d - c, to - d - 1); IntArrays.swap(perm, b, to - s, s); // Recursively sort non-partition-elements if ((s = b - a) > 1) quickSortIndirect(perm, x, from, from + s); if ((s = d - c) > 1) quickSortIndirect(perm, x, to - s, to); } /** Sorts an array according to the natural ascending order using indirect quicksort. * *

The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas * McIlroy, “Engineering a Sort Function”, Software: Practice and Experience, 23(11), pages * 1249−1265, 1993. * *

This method implement an indirect sort. The elements of {@code perm} (which must * be exactly the numbers in the interval {@code [0..perm.length)}) will be permuted so that * {@code x[perm[i]] ≤ x[perm[i + 1]]}. * *

Note that this implementation does not allocate any object, contrarily to the implementation * used to sort primitive types in {@link java.util.Arrays}, which switches to mergesort on large inputs. * * @param perm a permutation array indexing {@code x}. * @param x the array to be sorted. */ public static KEY_GENERIC void quickSortIndirect(final int perm[], final KEY_GENERIC_TYPE[] x) { quickSortIndirect(perm, x, 0, x.length); } protected static class ForkJoinQuickSortIndirect KEY_GENERIC extends RecursiveAction { private static final long serialVersionUID = 1L; private final int from; private final int to; private final int[] perm; private final KEY_GENERIC_TYPE[] x; public ForkJoinQuickSortIndirect(final int perm[], final KEY_GENERIC_TYPE[] x , final int from , final int to) { this.from = from; this.to = to; this.x = x; this.perm = perm; } @Override SUPPRESS_WARNINGS_KEY_UNCHECKED protected void compute() { final KEY_GENERIC_TYPE[] x = this.x; final int len = to - from; if (len < PARALLEL_QUICKSORT_NO_FORK) { quickSortIndirect(perm, x, from, to); return; } // Choose a partition element, v int m = from + len / 2; int l = from; int n = to - 1; int s = len / 8; l = med3Indirect(perm, x, l, l + s, l + 2 * s); m = med3Indirect(perm, x, m - s, m, m + s); n = med3Indirect(perm, x, n - 2 * s, n - s, n); m = med3Indirect(perm, x, l, m, n); final KEY_GENERIC_TYPE v = x[perm[m]]; // Establish Invariant: v* (v)* v* int a = from, b = a, c = to - 1, d = c; while (true) { int comparison; while (b <= c && (comparison = KEY_CMP(x[perm[b]], v)) <= 0) { if (comparison == 0) IntArrays.swap(perm, a++, b); b++; } while (c >= b && (comparison = KEY_CMP(x[perm[c]], v)) >= 0) { if (comparison == 0) IntArrays.swap(perm, c, d--); c--; } if (b > c) break; IntArrays.swap(perm, b++, c--); } // Swap partition elements back to middle int t; s = Math.min(a - from, b - a); IntArrays.swap(perm, from, b - s, s); s = Math.min(d - c, to - d - 1); IntArrays.swap(perm, b, to - s, s); // Recursively sort non-partition-elements s = b - a; t = d - c; if (s > 1 && t > 1) invokeAll(new ForkJoinQuickSortIndirect KEY_GENERIC_DIAMOND(perm, x, from, from + s), new ForkJoinQuickSortIndirect KEY_GENERIC_DIAMOND(perm, x, to - t, to)); else if (s > 1) invokeAll(new ForkJoinQuickSortIndirect KEY_GENERIC_DIAMOND(perm, x, from, from + s)); else invokeAll(new ForkJoinQuickSortIndirect KEY_GENERIC_DIAMOND(perm, x, to - t, to)); } } /** Sorts the specified range of elements according to the natural ascending order using a parallel indirect quicksort. * *

The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas * McIlroy, “Engineering a Sort Function”, Software: Practice and Experience, 23(11), pages * 1249−1265, 1993. * *

This method implement an indirect sort. The elements of {@code perm} (which must * be exactly the numbers in the interval {@code [0..perm.length)}) will be permuted so that * {@code x[perm[i]] ≤ x[perm[i + 1]]}. * *

This implementation uses a {@link ForkJoinPool} executor service with * {@link Runtime#availableProcessors()} parallel threads. * * @param perm a permutation array indexing {@code x}. * @param x the array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. */ public static KEY_GENERIC void parallelQuickSortIndirect(final int[] perm, final KEY_GENERIC_TYPE[] x, final int from, final int to) { if (to - from < PARALLEL_QUICKSORT_NO_FORK) quickSortIndirect(perm, x, from, to); else { final ForkJoinPool pool = new ForkJoinPool(Runtime.getRuntime().availableProcessors()); pool.invoke(new ForkJoinQuickSortIndirect KEY_GENERIC_DIAMOND(perm, x, from, to)); pool.shutdown(); } } /** Sorts an array according to the natural ascending order using a parallel indirect quicksort. * *

The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas * McIlroy, “Engineering a Sort Function”, Software: Practice and Experience, 23(11), pages * 1249−1265, 1993. * *

This method implement an indirect sort. The elements of {@code perm} (which must * be exactly the numbers in the interval {@code [0..perm.length)}) will be permuted so that * {@code x[perm[i]] ≤ x[perm[i + 1]]}. * *

This implementation uses a {@link ForkJoinPool} executor service with * {@link Runtime#availableProcessors()} parallel threads. * * @param perm a permutation array indexing {@code x}. * @param x the array to be sorted. * */ public static KEY_GENERIC void parallelQuickSortIndirect(final int perm[], final KEY_GENERIC_TYPE[] x) { parallelQuickSortIndirect(perm, x, 0, x.length); } /** Stabilizes a permutation. * *

This method can be used to stabilize the permutation generated by an indirect sorting, assuming that * initially the permutation array was in ascending order (e.g., the identity, as usually happens). This method * scans the permutation, and for each non-singleton block of elements with the same associated values in {@code x}, * permutes them in ascending order. The resulting permutation corresponds to a stable sort. * *

Usually combining an unstable indirect sort and this method is more efficient than using a stable sort, * as most stable sort algorithms require a support array. * *

More precisely, assuming that {@code x[perm[i]] ≤ x[perm[i + 1]]}, after * stabilization we will also have that {@code x[perm[i]] = x[perm[i + 1]]} implies * {@code perm[i] ≤ perm[i + 1]}. * * @param perm a permutation array indexing {@code x} so that it is sorted. * @param x the sorted array to be stabilized. * @param from the index of the first element (inclusive) to be stabilized. * @param to the index of the last element (exclusive) to be stabilized. */ public static KEY_GENERIC void stabilize(final int perm[], final KEY_GENERIC_TYPE[] x, final int from, final int to) { int curr = from; for(int i = from + 1; i < to; i++) { if (x[perm[i]] != x[perm[curr]]) { if (i - curr > 1) IntArrays.parallelQuickSort(perm, curr, i); curr = i; } } if (to - curr > 1) IntArrays.parallelQuickSort(perm, curr, to); } /** Stabilizes a permutation. * *

This method can be used to stabilize the permutation generated by an indirect sorting, assuming that * initially the permutation array was in ascending order (e.g., the identity, as usually happens). This method * scans the permutation, and for each non-singleton block of elements with the same associated values in {@code x}, * permutes them in ascending order. The resulting permutation corresponds to a stable sort. * *

Usually combining an unstable indirect sort and this method is more efficient than using a stable sort, * as most stable sort algorithms require a support array. * *

More precisely, assuming that {@code x[perm[i]] ≤ x[perm[i + 1]]}, after * stabilization we will also have that {@code x[perm[i]] = x[perm[i + 1]]} implies * {@code perm[i] ≤ perm[i + 1]}. * * @param perm a permutation array indexing {@code x} so that it is sorted. * @param x the sorted array to be stabilized. */ public static KEY_GENERIC void stabilize(final int perm[], final KEY_GENERIC_TYPE[] x) { stabilize(perm, x, 0, perm.length); } SUPPRESS_WARNINGS_KEY_UNCHECKED private static KEY_GENERIC int med3(final KEY_GENERIC_TYPE x[], final KEY_GENERIC_TYPE[] y, final int a, final int b, final int c) { int t; final int ab = (t = KEY_CMP(x[a], x[b])) == 0 ? KEY_CMP(y[a], y[b]) : t; final int ac = (t = KEY_CMP(x[a], x[c])) == 0 ? KEY_CMP(y[a], y[c]) : t; final int bc = (t = KEY_CMP(x[b], x[c])) == 0 ? KEY_CMP(y[b], y[c]) : t; return (ab < 0 ? (bc < 0 ? b : ac < 0 ? c : a) : (bc > 0 ? b : ac > 0 ? c : a)); } private static KEY_GENERIC void swap(final KEY_GENERIC_TYPE x[], final KEY_GENERIC_TYPE[] y, final int a, final int b) { final KEY_GENERIC_TYPE t = x[a]; final KEY_GENERIC_TYPE u = y[a]; x[a] = x[b]; y[a] = y[b]; x[b] = t; y[b] = u; } private static KEY_GENERIC void swap(final KEY_GENERIC_TYPE[] x, final KEY_GENERIC_TYPE[] y, int a, int b, final int n) { for (int i = 0; i < n; i++, a++, b++) swap(x, y, a, b); } SUPPRESS_WARNINGS_KEY_UNCHECKED private static KEY_GENERIC void selectionSort(final KEY_GENERIC_TYPE[] a, final KEY_GENERIC_TYPE[] b, final int from, final int to) { for(int i = from; i < to - 1; i++) { int m = i, u; for(int j = i + 1; j < to; j++) if ((u = KEY_CMP(a[j], a[m])) < 0 || u == 0 && KEY_LESS(b[j], b[m])) m = j; if (m != i) { KEY_GENERIC_TYPE t = a[i]; a[i] = a[m]; a[m] = t; t = b[i]; b[i] = b[m]; b[m] = t; } } } /** Sorts the specified range of elements of two arrays according to the natural lexicographical * ascending order using quicksort. * *

The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas * McIlroy, “Engineering a Sort Function”, Software: Practice and Experience, 23(11), pages * 1249−1265, 1993. * *

This method implements a lexicographical sorting of the arguments. Pairs of * elements in the same position in the two provided arrays will be considered a single key, and * permuted accordingly. In the end, either {@code x[i] < x[i + 1]} or x[i] * == x[i + 1] and {@code y[i] ≤ y[i + 1]}. * * @param x the first array to be sorted. * @param y the second array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. */ SUPPRESS_WARNINGS_KEY_UNCHECKED public static KEY_GENERIC void quickSort(final KEY_GENERIC_TYPE[] x, final KEY_GENERIC_TYPE[] y, final int from, final int to) { final int len = to - from; if (len < QUICKSORT_NO_REC) { selectionSort(x, y, from, to); return; } // Choose a partition element, v int m = from + len / 2; int l = from; int n = to - 1; if (len > QUICKSORT_MEDIAN_OF_9) { // Big arrays, pseudomedian of 9 int s = len / 8; l = med3(x, y, l, l + s, l + 2 * s); m = med3(x, y, m - s, m, m + s); n = med3(x, y, n - 2 * s, n - s, n); } m = med3(x, y, l, m, n); // Mid-size, med of 3 final KEY_GENERIC_TYPE v = x[m], w = y[m]; // Establish Invariant: v* (v)* v* int a = from, b = a, c = to - 1, d = c; while (true) { int comparison, t; while (b <= c && (comparison = (t = KEY_CMP(x[b], v)) == 0 ? KEY_CMP(y[b], w) : t) <= 0) { if (comparison == 0) swap(x, y, a++, b); b++; } while (c >= b && (comparison = (t = KEY_CMP(x[c], v)) == 0 ? KEY_CMP(y[c], w) : t) >= 0) { if (comparison == 0) swap(x, y, c, d--); c--; } if (b > c) break; swap(x, y, b++, c--); } // Swap partition elements back to middle int s; s = Math.min(a - from, b - a); swap(x, y, from, b - s, s); s = Math.min(d - c, to - d - 1); swap(x, y, b, to - s, s); // Recursively sort non-partition-elements if ((s = b - a) > 1) quickSort(x, y, from, from + s); if ((s = d - c) > 1) quickSort(x, y, to - s, to); } /** Sorts two arrays according to the natural lexicographical ascending order using quicksort. * *

The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas * McIlroy, “Engineering a Sort Function”, Software: Practice and Experience, 23(11), pages * 1249−1265, 1993. * *

This method implements a lexicographical sorting of the arguments. Pairs of * elements in the same position in the two provided arrays will be considered a single key, and * permuted accordingly. In the end, either {@code x[i] < x[i + 1]} or x[i] * == x[i + 1] and {@code y[i] ≤ y[i + 1]}. * * @param x the first array to be sorted. * @param y the second array to be sorted. */ public static KEY_GENERIC void quickSort(final KEY_GENERIC_TYPE[] x, final KEY_GENERIC_TYPE[] y) { ensureSameLength(x, y); quickSort(x, y, 0, x.length); } protected static class ForkJoinQuickSort2 KEY_GENERIC extends RecursiveAction { private static final long serialVersionUID = 1L; private final int from; private final int to; private final KEY_GENERIC_TYPE[] x, y; public ForkJoinQuickSort2(final KEY_GENERIC_TYPE[] x, final KEY_GENERIC_TYPE[] y, final int from , final int to) { this.from = from; this.to = to; this.x = x; this.y = y; } @Override SUPPRESS_WARNINGS_KEY_UNCHECKED protected void compute() { final KEY_GENERIC_TYPE[] x = this.x; final KEY_GENERIC_TYPE[] y = this.y; final int len = to - from; if (len < PARALLEL_QUICKSORT_NO_FORK) { quickSort(x, y, from, to); return; } // Choose a partition element, v int m = from + len / 2; int l = from; int n = to - 1; int s = len / 8; l = med3(x, y, l, l + s, l + 2 * s); m = med3(x, y, m - s, m, m + s); n = med3(x, y, n - 2 * s, n - s, n); m = med3(x, y, l, m, n); final KEY_GENERIC_TYPE v = x[m], w = y[m]; // Establish Invariant: v* (v)* v* int a = from, b = a, c = to - 1, d = c; while (true) { int comparison, t; while (b <= c && (comparison = (t = KEY_CMP(x[b], v)) == 0 ? KEY_CMP(y[b], w) : t) <= 0) { if (comparison == 0) swap(x, y, a++, b); b++; } while (c >= b && (comparison = (t = KEY_CMP(x[c], v)) == 0 ? KEY_CMP(y[c], w) : t) >= 0) { if (comparison == 0) swap(x, y, c, d--); c--; } if (b > c) break; swap(x, y, b++, c--); } // Swap partition elements back to middle int t; s = Math.min(a - from, b - a); swap(x, y, from, b - s, s); s = Math.min(d - c, to - d - 1); swap(x, y, b, to - s, s); s = b - a; t = d - c; // Recursively sort non-partition-elements if (s > 1 && t > 1) invokeAll(new ForkJoinQuickSort2 KEY_GENERIC_DIAMOND(x, y, from, from + s), new ForkJoinQuickSort2 KEY_GENERIC_DIAMOND(x, y, to - t, to)); else if (s > 1) invokeAll(new ForkJoinQuickSort2 KEY_GENERIC_DIAMOND(x, y, from, from + s)); else invokeAll(new ForkJoinQuickSort2 KEY_GENERIC_DIAMOND(x, y, to - t, to)); } } /** Sorts the specified range of elements of two arrays according to the natural lexicographical * ascending order using a parallel quicksort. * *

The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas * McIlroy, “Engineering a Sort Function”, Software: Practice and Experience, 23(11), pages * 1249−1265, 1993. * *

This method implements a lexicographical sorting of the arguments. Pairs of * elements in the same position in the two provided arrays will be considered a single key, and * permuted accordingly. In the end, either {@code x[i] < x[i + 1]} or x[i] * == x[i + 1] and {@code y[i] ≤ y[i + 1]}. * *

This implementation uses a {@link ForkJoinPool} executor service with * {@link Runtime#availableProcessors()} parallel threads. * * @param x the first array to be sorted. * @param y the second array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. */ public static KEY_GENERIC void parallelQuickSort(final KEY_GENERIC_TYPE[] x, final KEY_GENERIC_TYPE[] y, final int from, final int to) { if (to - from < PARALLEL_QUICKSORT_NO_FORK) quickSort(x, y, from, to); final ForkJoinPool pool = new ForkJoinPool(Runtime.getRuntime().availableProcessors()); pool.invoke(new ForkJoinQuickSort2 KEY_GENERIC_DIAMOND(x, y, from, to)); pool.shutdown(); } /** Sorts two arrays according to the natural lexicographical * ascending order using a parallel quicksort. * *

The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas * McIlroy, “Engineering a Sort Function”, Software: Practice and Experience, 23(11), pages * 1249−1265, 1993. * *

This method implements a lexicographical sorting of the arguments. Pairs of * elements in the same position in the two provided arrays will be considered a single key, and * permuted accordingly. In the end, either {@code x[i] < x[i + 1]} or x[i] * == x[i + 1] and {@code y[i] ≤ y[i + 1]}. * *

This implementation uses a {@link ForkJoinPool} executor service with * {@link Runtime#availableProcessors()} parallel threads. * * @param x the first array to be sorted. * @param y the second array to be sorted. */ public static KEY_GENERIC void parallelQuickSort(final KEY_GENERIC_TYPE[] x, final KEY_GENERIC_TYPE[] y) { ensureSameLength(x, y); parallelQuickSort(x, y, 0, x.length); } /** Sorts the specified range of elements according to the natural ascending order using mergesort, using a given pre-filled support array. * *

This sort is guaranteed to be stable: equal elements will not be reordered as a result * of the sort. Moreover, no support arrays will be allocated. * @param a the array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. * @param supp a support array containing at least {@code to} elements, and whose entries are identical to those * of {@code a} in the specified range. */ SUPPRESS_WARNINGS_KEY_UNCHECKED public static KEY_GENERIC void mergeSort(final KEY_GENERIC_TYPE a[], final int from, final int to, final KEY_GENERIC_TYPE supp[]) { int len = to - from; // Insertion sort on smallest arrays if (len < MERGESORT_NO_REC) { insertionSort(a, from, to); return; } // Recursively sort halves of a into supp final int mid = (from + to) >>> 1; mergeSort(supp, from, mid, a); mergeSort(supp, mid, to, a); // If list is already sorted, just copy from supp to a. This is an // optimization that results in faster sorts for nearly ordered lists. if (KEY_LESSEQ(supp[mid - 1], supp[mid])) { System.arraycopy(supp, from, a, from, len); return; } // Merge sorted halves (now in supp) into a for(int i = from, p = from, q = mid; i < to; i++) { if (q >= to || p < mid && KEY_LESSEQ(supp[p], supp[q])) a[i] = supp[p++]; else a[i] = supp[q++]; } } /** Sorts the specified range of elements according to the natural ascending order using mergesort. * *

This sort is guaranteed to be stable: equal elements will not be reordered as a result * of the sort. An array as large as {@code a} will be allocated by this method. * @param a the array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. */ public static KEY_GENERIC void mergeSort(final KEY_GENERIC_TYPE a[], final int from, final int to) { mergeSort(a, from, to, a.clone()); } /** Sorts an array according to the natural ascending order using mergesort. * *

This sort is guaranteed to be stable: equal elements will not be reordered as a result * of the sort. An array as large as {@code a} will be allocated by this method. * @param a the array to be sorted. */ public static KEY_GENERIC void mergeSort(final KEY_GENERIC_TYPE a[]) { mergeSort(a, 0, a.length); } /** Sorts the specified range of elements according to the order induced by the specified * comparator using mergesort, using a given pre-filled support array. * *

This sort is guaranteed to be stable: equal elements will not be reordered as a result * of the sort. Moreover, no support arrays will be allocated. * @param a the array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. * @param comp the comparator to determine the sorting order. * @param supp a support array containing at least {@code to} elements, and whose entries are identical to those * of {@code a} in the specified range. */ public static KEY_GENERIC void mergeSort(final KEY_GENERIC_TYPE a[], final int from, final int to, KEY_COMPARATOR KEY_GENERIC comp, final KEY_GENERIC_TYPE supp[]) { int len = to - from; // Insertion sort on smallest arrays if (len < MERGESORT_NO_REC) { insertionSort(a, from, to, comp); return; } // Recursively sort halves of a into supp final int mid = (from + to) >>> 1; mergeSort(supp, from, mid, comp, a); mergeSort(supp, mid, to, comp, a); // If list is already sorted, just copy from supp to a. This is an // optimization that results in faster sorts for nearly ordered lists. if (comp.compare(supp[mid - 1], supp[mid]) <= 0) { System.arraycopy(supp, from, a, from, len); return; } // Merge sorted halves (now in supp) into a for(int i = from, p = from, q = mid; i < to; i++) { if (q >= to || p < mid && comp.compare(supp[p], supp[q]) <= 0) a[i] = supp[p++]; else a[i] = supp[q++]; } } /** Sorts the specified range of elements according to the order induced by the specified * comparator using mergesort. * *

This sort is guaranteed to be stable: equal elements will not be reordered as a result * of the sort. An array as large as {@code a} will be allocated by this method. * * @param a the array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. * @param comp the comparator to determine the sorting order. */ public static KEY_GENERIC void mergeSort(final KEY_GENERIC_TYPE a[], final int from, final int to, KEY_COMPARATOR KEY_GENERIC comp) { mergeSort(a, from, to, comp, a.clone()); } /** Sorts an array according to the order induced by the specified * comparator using mergesort. * *

This sort is guaranteed to be stable: equal elements will not be reordered as a result * of the sort. An array as large as {@code a} will be allocated by this method. * @param a the array to be sorted. * @param comp the comparator to determine the sorting order. */ public static KEY_GENERIC void mergeSort(final KEY_GENERIC_TYPE a[], KEY_COMPARATOR KEY_GENERIC comp) { mergeSort(a, 0, a.length, comp); } #if ! KEY_CLASS_Boolean /** * Searches a range of the specified array for the specified value using * the binary search algorithm. The range must be sorted prior to making this call. * If it is not sorted, the results are undefined. If the range contains multiple elements with * the specified value, there is no guarantee which one will be found. * * @param a the array to be searched. * @param from the index of the first element (inclusive) to be searched. * @param to the index of the last element (exclusive) to be searched. * @param key the value to be searched for. * @return index of the search key, if it is contained in the array; * otherwise, {@code (-(insertion point) - 1)}. The insertion * point is defined as the the point at which the value would * be inserted into the array: the index of the first * element greater than the key, or the length of the array, if all * elements in the array are less than the specified key. Note * that this guarantees that the return value will be ≥ 0 if * and only if the key is found. * @see java.util.Arrays */ SUPPRESS_WARNINGS_KEY_UNCHECKED public static KEY_GENERIC int binarySearch(final KEY_GENERIC_TYPE[] a, int from, int to, final KEY_GENERIC_TYPE key) { KEY_GENERIC_TYPE midVal; to--; while (from <= to) { final int mid = (from + to) >>> 1; midVal = a[mid]; #if KEYS_PRIMITIVE if (midVal < key) from = mid + 1; else if (midVal > key) to = mid - 1; else return mid; #else final int cmp = ((Comparable KEY_SUPER_GENERIC)midVal).compareTo(key); if (cmp < 0) from = mid + 1; else if (cmp > 0) to = mid - 1; else return mid; #endif } return -(from + 1); } /** * Searches an array for the specified value using * the binary search algorithm. The range must be sorted prior to making this call. * If it is not sorted, the results are undefined. If the range contains multiple elements with * the specified value, there is no guarantee which one will be found. * * @param a the array to be searched. * @param key the value to be searched for. * @return index of the search key, if it is contained in the array; * otherwise, {@code (-(insertion point) - 1)}. The insertion * point is defined as the the point at which the value would * be inserted into the array: the index of the first * element greater than the key, or the length of the array, if all * elements in the array are less than the specified key. Note * that this guarantees that the return value will be ≥ 0 if * and only if the key is found. * @see java.util.Arrays */ public static KEY_GENERIC int binarySearch(final KEY_GENERIC_TYPE[] a, final KEY_GENERIC_TYPE key) { return binarySearch(a, 0, a.length, key); } /** * Searches a range of the specified array for the specified value using * the binary search algorithm and a specified comparator. The range must be sorted following the comparator prior to making this call. * If it is not sorted, the results are undefined. If the range contains multiple elements with * the specified value, there is no guarantee which one will be found. * * @param a the array to be searched. * @param from the index of the first element (inclusive) to be searched. * @param to the index of the last element (exclusive) to be searched. * @param key the value to be searched for. * @param c a comparator. * @return index of the search key, if it is contained in the array; * otherwise, {@code (-(insertion point) - 1)}. The insertion * point is defined as the the point at which the value would * be inserted into the array: the index of the first * element greater than the key, or the length of the array, if all * elements in the array are less than the specified key. Note * that this guarantees that the return value will be ≥ 0 if * and only if the key is found. * @see java.util.Arrays */ public static KEY_GENERIC int binarySearch(final KEY_GENERIC_TYPE[] a, int from, int to, final KEY_GENERIC_TYPE key, final KEY_COMPARATOR KEY_GENERIC c) { KEY_GENERIC_TYPE midVal; to--; while (from <= to) { final int mid = (from + to) >>> 1; midVal = a[mid]; final int cmp = c.compare(midVal, key); if (cmp < 0) from = mid + 1; else if (cmp > 0) to = mid - 1; else return mid; // key found } return -(from + 1); } /** * Searches an array for the specified value using * the binary search algorithm and a specified comparator. The range must be sorted following the comparator prior to making this call. * If it is not sorted, the results are undefined. If the range contains multiple elements with * the specified value, there is no guarantee which one will be found. * * @param a the array to be searched. * @param key the value to be searched for. * @param c a comparator. * @return index of the search key, if it is contained in the array; * otherwise, {@code (-(insertion point) - 1)}. The insertion * point is defined as the the point at which the value would * be inserted into the array: the index of the first * element greater than the key, or the length of the array, if all * elements in the array are less than the specified key. Note * that this guarantees that the return value will be ≥ 0 if * and only if the key is found. * @see java.util.Arrays */ public static KEY_GENERIC int binarySearch(final KEY_GENERIC_TYPE[] a, final KEY_GENERIC_TYPE key, final KEY_COMPARATOR KEY_GENERIC c) { return binarySearch(a, 0, a.length, key, c); } #if KEYS_PRIMITIVE /** The size of a digit used during radix sort (must be a power of 2). */ private static final int DIGIT_BITS = 8; /** The mask to extract a digit of {@link #DIGIT_BITS} bits. */ private static final int DIGIT_MASK = (1 << DIGIT_BITS) - 1; /** The number of digits per element. */ private static final int DIGITS_PER_ELEMENT = KEY_CLASS.SIZE / DIGIT_BITS; private static final int RADIXSORT_NO_REC = 1024; private static final int PARALLEL_RADIXSORT_NO_FORK = 1024; /** This method fixes negative numbers so that the combination exponent/significand is lexicographically sorted. */ #if KEY_CLASS_Double private static final long fixDouble(final double d) { final long l = Double.doubleToLongBits(d); return l >= 0 ? l : l ^ 0x7FFFFFFFFFFFFFFFL; } #elif KEY_CLASS_Float private static final int fixFloat(final float f) { final int i = Float.floatToIntBits(f); return i >= 0 ? i : i ^ 0x7FFFFFFF; } #endif /** Sorts the specified array using radix sort. * *

The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas * McIlroy, “Engineering radix sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

This implementation is significantly faster than quicksort * already at small sizes (say, more than 10000 elements), but it can only * sort in ascending order. * * @param a the array to be sorted. */ public static void radixSort(final KEY_TYPE[] a) { radixSort(a, 0, a.length); } /** Sorts the specified range of an array using radix sort. * *

The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas * McIlroy, “Engineering radix sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

This implementation is significantly faster than quicksort * already at small sizes (say, more than 10000 elements), but it can only * sort in ascending order. * * @param a the array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. */ public static void radixSort(final KEY_TYPE[] a, final int from, final int to) { if (to - from < RADIXSORT_NO_REC) { quickSort(a, from, to); return; } final int maxLevel = DIGITS_PER_ELEMENT - 1; final int stackSize = ((1 << DIGIT_BITS) - 1) * (DIGITS_PER_ELEMENT - 1) + 1; int stackPos = 0; final int[] offsetStack = new int[stackSize]; final int[] lengthStack = new int[stackSize]; final int[] levelStack = new int[stackSize]; offsetStack[stackPos] = from; lengthStack[stackPos] = to - from; levelStack[stackPos++] = 0; final int[] count = new int[1 << DIGIT_BITS]; final int[] pos = new int[1 << DIGIT_BITS]; while(stackPos > 0) { final int first = offsetStack[--stackPos]; final int length = lengthStack[stackPos]; final int level = levelStack[stackPos]; #if KEY_CLASS_Character final int signMask = 0; #else final int signMask = level % DIGITS_PER_ELEMENT == 0 ? 1 << DIGIT_BITS - 1 : 0; #endif final int shift = (DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT) * DIGIT_BITS; // This is the shift that extract the right byte from a key // Count keys. for(int i = first + length; i-- != first;) count[INT(KEY2LEXINT(a[i]) >>> shift & DIGIT_MASK ^ signMask)]++; // Compute cumulative distribution int lastUsed = -1; for (int i = 0, p = first; i < 1 << DIGIT_BITS; i++) { if (count[i] != 0) lastUsed = i; pos[i] = (p += count[i]); } final int end = first + length - count[lastUsed]; // i moves through the start of each block for(int i = first, c = -1, d; i <= end; i += count[c], count[c] = 0) { KEY_TYPE t = a[i]; c = INT(KEY2LEXINT(t) >>> shift & DIGIT_MASK ^ signMask); if (i < end) { // When all slots are OK, the last slot is necessarily OK. while ((d = --pos[c]) > i) { final KEY_TYPE z = t; t = a[d]; a[d] = z; c = INT(KEY2LEXINT(t) >>> shift & DIGIT_MASK ^ signMask); } a[i] = t; } if (level < maxLevel && count[c] > 1) { if (count[c] < RADIXSORT_NO_REC) quickSort(a, i, i + count[c]); else { offsetStack[stackPos] = i; lengthStack[stackPos] = count[c]; levelStack[stackPos++] = level + 1; } } } } } protected static final class Segment { protected final int offset, length, level; protected Segment(final int offset, final int length, final int level) { this.offset = offset; this.length = length; this.level = level; } @Override public String toString() { return "Segment [offset=" + offset + ", length=" + length + ", level=" + level + "]"; } } protected static final Segment POISON_PILL = new Segment(-1, -1, -1); /** Sorts the specified range of an array using parallel radix sort. * *

The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas * McIlroy, “Engineering radix sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

This implementation uses a pool of {@link Runtime#availableProcessors()} threads. * * @param a the array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. */ public static void parallelRadixSort(final KEY_TYPE[] a, final int from, final int to) { if (to - from < PARALLEL_RADIXSORT_NO_FORK) { quickSort(a, from, to); return; } final int maxLevel = DIGITS_PER_ELEMENT - 1; final LinkedBlockingQueue queue = new LinkedBlockingQueue<>(); queue.add(new Segment(from, to - from, 0)); final AtomicInteger queueSize = new AtomicInteger(1); final int numberOfThreads = Runtime.getRuntime().availableProcessors(); final ExecutorService executorService = Executors.newFixedThreadPool(numberOfThreads, Executors.defaultThreadFactory()); final ExecutorCompletionService executorCompletionService = new ExecutorCompletionService<>(executorService); for(int j = numberOfThreads; j-- != 0;) executorCompletionService.submit(() -> { final int[] count = new int[1 << DIGIT_BITS]; final int[] pos = new int[1 << DIGIT_BITS]; for(;;) { if (queueSize.get() == 0) for(int i = numberOfThreads; i-- != 0;) queue.add(POISON_PILL); final Segment segment = queue.take(); if (segment == POISON_PILL) return null; final int first = segment.offset; final int length = segment.length; final int level = segment.level; #if KEY_CLASS_Character final int signMask = 0; #else final int signMask = level % DIGITS_PER_ELEMENT == 0 ? 1 << DIGIT_BITS - 1 : 0; #endif final int shift = (DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT) * DIGIT_BITS; // This is the shift that extract the right byte from a key // Count keys. for(int i = first + length; i-- != first;) count[INT(KEY2LEXINT(a[i]) >>> shift & DIGIT_MASK ^ signMask)]++; // Compute cumulative distribution int lastUsed = -1; for(int i = 0, p = first; i < 1 << DIGIT_BITS; i++) { if (count[i] != 0) lastUsed = i; pos[i] = (p += count[i]); } final int end = first + length - count[lastUsed]; // i moves through the start of each block for(int i = first, c = -1, d; i <= end; i += count[c], count[c] = 0) { KEY_TYPE t = a[i]; c = INT(KEY2LEXINT(t) >>> shift & DIGIT_MASK ^ signMask); if (i < end) { while((d = --pos[c]) > i) { final KEY_TYPE z = t; t = a[d]; a[d] = z; c = INT(KEY2LEXINT(t) >>> shift & DIGIT_MASK ^ signMask); } a[i] = t; } if (level < maxLevel && count[c] > 1) { if (count[c] < PARALLEL_RADIXSORT_NO_FORK) quickSort(a, i, i + count[c]); else { queueSize.incrementAndGet(); queue.add(new Segment(i, count[c], level + 1)); } } } queueSize.decrementAndGet(); } }); Throwable problem = null; for(int i = numberOfThreads; i-- != 0;) try { executorCompletionService.take().get(); } catch(Exception e) { problem = e.getCause(); // We keep only the last one. They will be logged anyway. } executorService.shutdown(); if (problem != null) throw (problem instanceof RuntimeException) ? (RuntimeException)problem : new RuntimeException(problem); } /** Sorts the specified array using parallel radix sort. * *

The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas * McIlroy, “Engineering radix sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

This implementation uses a pool of {@link Runtime#availableProcessors()} threads. * * @param a the array to be sorted. */ public static void parallelRadixSort(final KEY_TYPE[] a) { parallelRadixSort(a, 0, a.length); } /** Sorts the specified array using indirect radix sort. * *

The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas * McIlroy, “Engineering radix sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

This method implement an indirect sort. The elements of {@code perm} (which must * be exactly the numbers in the interval {@code [0..perm.length)}) will be permuted so that * {@code a[perm[i]] ≤ a[perm[i + 1]]}. * *

This implementation will allocate, in the stable case, a support array as large as {@code perm} (note that the stable * version is slightly faster). * * @param perm a permutation array indexing {@code a}. * @param a the array to be sorted. * @param stable whether the sorting algorithm should be stable. */ public static void radixSortIndirect(final int[] perm, final KEY_TYPE[] a, final boolean stable) { radixSortIndirect(perm, a, 0, perm.length, stable); } /** Sorts the specified array using indirect radix sort. * *

The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas * McIlroy, “Engineering radix sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

This method implement an indirect sort. The elements of {@code perm} (which must * be exactly the numbers in the interval {@code [0..perm.length)}) will be permuted so that * {@code a[perm[i]] ≤ a[perm[i + 1]]}. * *

This implementation will allocate, in the stable case, a support array as large as {@code perm} (note that the stable * version is slightly faster). * * @param perm a permutation array indexing {@code a}. * @param a the array to be sorted. * @param from the index of the first element of {@code perm} (inclusive) to be permuted. * @param to the index of the last element of {@code perm} (exclusive) to be permuted. * @param stable whether the sorting algorithm should be stable. */ public static void radixSortIndirect(final int[] perm, final KEY_TYPE[] a, final int from, final int to, final boolean stable) { if (to - from < RADIXSORT_NO_REC) { insertionSortIndirect(perm, a, from, to); return; } final int maxLevel = DIGITS_PER_ELEMENT - 1; final int stackSize = ((1 << DIGIT_BITS) - 1) * (DIGITS_PER_ELEMENT - 1) + 1; int stackPos = 0; final int[] offsetStack = new int[stackSize]; final int[] lengthStack = new int[stackSize]; final int[] levelStack = new int[stackSize]; offsetStack[stackPos] = from; lengthStack[stackPos] = to - from; levelStack[stackPos++] = 0; final int[] count = new int[1 << DIGIT_BITS]; final int[] pos = new int[1 << DIGIT_BITS]; final int[] support = stable ? new int[perm.length] : null; while(stackPos > 0) { final int first = offsetStack[--stackPos]; final int length = lengthStack[stackPos]; final int level = levelStack[stackPos]; #if KEY_CLASS_Character final int signMask = 0; #else final int signMask = level % DIGITS_PER_ELEMENT == 0 ? 1 << DIGIT_BITS - 1 : 0; #endif final int shift = (DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT) * DIGIT_BITS; // This is the shift that extract the right byte from a key // Count keys. for(int i = first + length; i-- != first;) count[INT(KEY2LEXINT(a[perm[i]]) >>> shift & DIGIT_MASK ^ signMask)]++; // Compute cumulative distribution int lastUsed = -1; for (int i = 0, p = stable ? 0 : first; i < 1 << DIGIT_BITS; i++) { if (count[i] != 0) lastUsed = i; pos[i] = (p += count[i]); } if (stable) { for(int i = first + length; i-- != first;) support[--pos[INT(KEY2LEXINT(a[perm[i]]) >>> shift & DIGIT_MASK ^ signMask)]] = perm[i]; System.arraycopy(support, 0, perm, first, length); for(int i = 0, p = first; i <= lastUsed; i++) { if (level < maxLevel && count[i] > 1) { if (count[i] < RADIXSORT_NO_REC) insertionSortIndirect(perm, a, p, p + count[i]); else { offsetStack[stackPos] = p; lengthStack[stackPos] = count[i]; levelStack[stackPos++] = level + 1; } } p += count[i]; } java.util.Arrays.fill(count, 0); } else { final int end = first + length - count[lastUsed]; // i moves through the start of each block for(int i = first, c = -1, d; i <= end; i += count[c], count[c] = 0) { int t = perm[i]; c = INT(KEY2LEXINT(a[t]) >>> shift & DIGIT_MASK ^ signMask); if (i < end) { // When all slots are OK, the last slot is necessarily OK. while((d = --pos[c]) > i) { final int z = t; t = perm[d]; perm[d] = z; c = INT(KEY2LEXINT(a[t]) >>> shift & DIGIT_MASK ^ signMask); } perm[i] = t; } if (level < maxLevel && count[c] > 1) { if (count[c] < RADIXSORT_NO_REC) insertionSortIndirect(perm, a, i, i + count[c]); else { offsetStack[stackPos] = i; lengthStack[stackPos] = count[c]; levelStack[stackPos++] = level + 1; } } } } } } /** Sorts the specified range of an array using parallel indirect radix sort. * *

The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas * McIlroy, “Engineering radix sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

This method implement an indirect sort. The elements of {@code perm} (which must * be exactly the numbers in the interval {@code [0..perm.length)}) will be permuted so that * {@code a[perm[i]] ≤ a[perm[i + 1]]}. * *

This implementation uses a pool of {@link Runtime#availableProcessors()} threads. * * @param perm a permutation array indexing {@code a}. * @param a the array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. * @param stable whether the sorting algorithm should be stable. */ public static void parallelRadixSortIndirect(final int perm[], final KEY_TYPE[] a, final int from, final int to, final boolean stable) { if (to - from < PARALLEL_RADIXSORT_NO_FORK) { radixSortIndirect(perm, a, from, to, stable); return; } final int maxLevel = DIGITS_PER_ELEMENT - 1; final LinkedBlockingQueue queue = new LinkedBlockingQueue<>(); queue.add(new Segment(from, to - from, 0)); final AtomicInteger queueSize = new AtomicInteger(1); final int numberOfThreads = Runtime.getRuntime().availableProcessors(); final ExecutorService executorService = Executors.newFixedThreadPool(numberOfThreads, Executors.defaultThreadFactory()); final ExecutorCompletionService executorCompletionService = new ExecutorCompletionService<>(executorService); final int[] support = stable ? new int[perm.length] : null; for(int j = numberOfThreads; j-- != 0;) executorCompletionService.submit(() -> { final int[] count = new int[1 << DIGIT_BITS]; final int[] pos = new int[1 << DIGIT_BITS]; for(;;) { if (queueSize.get() == 0) for(int i = numberOfThreads; i-- != 0;) queue.add(POISON_PILL); final Segment segment = queue.take(); if (segment == POISON_PILL) return null; final int first = segment.offset; final int length = segment.length; final int level = segment.level; #if KEY_CLASS_Character final int signMask = 0; #else final int signMask = level % DIGITS_PER_ELEMENT == 0 ? 1 << DIGIT_BITS - 1 : 0; #endif final int shift = (DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT) * DIGIT_BITS; // This is the shift that extract the right byte from a key // Count keys. for(int i = first + length; i-- != first;) count[INT(KEY2LEXINT(a[perm[i]]) >>> shift & DIGIT_MASK ^ signMask)]++; // Compute cumulative distribution int lastUsed = -1; for (int i = 0, p = first; i < 1 << DIGIT_BITS; i++) { if (count[i] != 0) lastUsed = i; pos[i] = (p += count[i]); } if (stable) { for(int i = first + length; i-- != first;) support[--pos[INT(KEY2LEXINT(a[perm[i]]) >>> shift & DIGIT_MASK ^ signMask)]] = perm[i]; System.arraycopy(support, first, perm, first, length); for(int i = 0, p = first; i <= lastUsed; i++) { if (level < maxLevel && count[i] > 1) { if (count[i] < PARALLEL_RADIXSORT_NO_FORK) radixSortIndirect(perm, a, p, p + count[i], stable); else { queueSize.incrementAndGet(); queue.add(new Segment(p, count[i], level + 1)); } } p += count[i]; } java.util.Arrays.fill(count, 0); } else { final int end = first + length - count[lastUsed]; // i moves through the start of each block for(int i = first, c = -1, d; i <= end; i += count[c], count[c] = 0) { int t = perm[i]; c = INT(KEY2LEXINT(a[t]) >>> shift & DIGIT_MASK ^ signMask); if (i < end) { // When all slots are OK, the last slot is necessarily OK. while((d = --pos[c]) > i) { final int z = t; t = perm[d]; perm[d] = z; c = INT(KEY2LEXINT(a[t]) >>> shift & DIGIT_MASK ^ signMask); } perm[i] = t; } if (level < maxLevel && count[c] > 1) { if (count[c] < PARALLEL_RADIXSORT_NO_FORK) radixSortIndirect(perm, a, i, i + count[c], stable); else { queueSize.incrementAndGet(); queue.add(new Segment(i, count[c], level + 1)); } } } } queueSize.decrementAndGet(); } }); Throwable problem = null; for(int i = numberOfThreads; i-- != 0;) try { executorCompletionService.take().get(); } catch(Exception e) { problem = e.getCause(); // We keep only the last one. They will be logged anyway. } executorService.shutdown(); if (problem != null) throw (problem instanceof RuntimeException) ? (RuntimeException)problem : new RuntimeException(problem); } /** Sorts the specified array using parallel indirect radix sort. * *

The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas * McIlroy, “Engineering radix sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

This method implement an indirect sort. The elements of {@code perm} (which must * be exactly the numbers in the interval {@code [0..perm.length)}) will be permuted so that * {@code a[perm[i]] ≤ a[perm[i + 1]]}. * *

This implementation uses a pool of {@link Runtime#availableProcessors()} threads. * * @param perm a permutation array indexing {@code a}. * @param a the array to be sorted. * @param stable whether the sorting algorithm should be stable. */ public static void parallelRadixSortIndirect(final int perm[], final KEY_TYPE[] a, final boolean stable) { parallelRadixSortIndirect(perm, a, 0, a.length, stable); } /** Sorts the specified pair of arrays lexicographically using radix sort. *

The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas * McIlroy, “Engineering radix sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

This method implements a lexicographical sorting of the arguments. Pairs of elements * in the same position in the two provided arrays will be considered a single key, and permuted * accordingly. In the end, either {@code a[i] < a[i + 1]} or {@code a[i] == a[i + 1]} and {@code b[i] ≤ b[i + 1]}. * * @param a the first array to be sorted. * @param b the second array to be sorted. */ public static void radixSort(final KEY_TYPE[] a, final KEY_TYPE[] b) { ensureSameLength(a, b); radixSort(a, b, 0, a.length); } /** Sorts the specified range of elements of two arrays using radix sort. * *

The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas * McIlroy, “Engineering radix sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

This method implements a lexicographical sorting of the arguments. Pairs of elements * in the same position in the two provided arrays will be considered a single key, and permuted * accordingly. In the end, either {@code a[i] < a[i + 1]} or {@code a[i] == a[i + 1]} and {@code b[i] ≤ b[i + 1]}. * * @param a the first array to be sorted. * @param b the second array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. */ public static void radixSort(final KEY_TYPE[] a, final KEY_TYPE[] b, final int from, final int to) { if (to - from < RADIXSORT_NO_REC) { selectionSort(a, b, from, to); return; } final int layers = 2; final int maxLevel = DIGITS_PER_ELEMENT * layers - 1; final int stackSize = ((1 << DIGIT_BITS) - 1) * (layers * DIGITS_PER_ELEMENT - 1) + 1; int stackPos = 0; final int[] offsetStack = new int[stackSize]; final int[] lengthStack = new int[stackSize]; final int[] levelStack = new int[stackSize]; offsetStack[stackPos] = from; lengthStack[stackPos] = to - from; levelStack[stackPos++] = 0; final int[] count = new int[1 << DIGIT_BITS]; final int[] pos = new int[1 << DIGIT_BITS]; while(stackPos > 0) { final int first = offsetStack[--stackPos]; final int length = lengthStack[stackPos]; final int level = levelStack[stackPos]; #if KEY_CLASS_Character final int signMask = 0; #else final int signMask = level % DIGITS_PER_ELEMENT == 0 ? 1 << DIGIT_BITS - 1 : 0; #endif final KEY_TYPE[] k = level < DIGITS_PER_ELEMENT ? a : b; // This is the key array final int shift = (DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT) * DIGIT_BITS; // This is the shift that extract the right byte from a key // Count keys. for(int i = first + length; i-- != first;) count[INT(KEY2LEXINT(k[i]) >>> shift & DIGIT_MASK ^ signMask)]++; // Compute cumulative distribution int lastUsed = -1; for (int i = 0, p = first; i < 1 << DIGIT_BITS; i++) { if (count[i] != 0) lastUsed = i; pos[i] = (p += count[i]); } final int end = first + length - count[lastUsed]; // i moves through the start of each block for(int i = first, c = -1, d; i <= end; i += count[c], count[c] = 0) { KEY_TYPE t = a[i]; KEY_TYPE u = b[i]; c = INT(KEY2LEXINT(k[i]) >>> shift & DIGIT_MASK ^ signMask); if (i < end) { // When all slots are OK, the last slot is necessarily OK. while((d = --pos[c]) > i) { c = INT(KEY2LEXINT(k[d]) >>> shift & DIGIT_MASK ^ signMask); KEY_TYPE z = t; t = a[d]; a[d] = z; z = u; u = b[d]; b[d] = z; } a[i] = t; b[i] = u; } if (level < maxLevel && count[c] > 1) { if (count[c] < RADIXSORT_NO_REC) selectionSort(a, b, i, i + count[c]); else { offsetStack[stackPos] = i; lengthStack[stackPos] = count[c]; levelStack[stackPos++] = level + 1; } } } } } /** Sorts the specified range of elements of two arrays using a parallel radix sort. * *

The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas * McIlroy, “Engineering radix sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

This method implements a lexicographical sorting of the arguments. Pairs of elements * in the same position in the two provided arrays will be considered a single key, and permuted * accordingly. In the end, either {@code a[i] < a[i + 1]} or {@code a[i] == a[i + 1]} and {@code b[i] ≤ b[i + 1]}. * *

This implementation uses a pool of {@link Runtime#availableProcessors()} threads. * * @param a the first array to be sorted. * @param b the second array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. */ public static void parallelRadixSort(final KEY_TYPE[] a, final KEY_TYPE[] b, final int from, final int to) { if (to - from < PARALLEL_RADIXSORT_NO_FORK) { quickSort(a, b, from, to); return; } final int layers = 2; if (a.length != b.length) throw new IllegalArgumentException("Array size mismatch."); final int maxLevel = DIGITS_PER_ELEMENT * layers - 1; final LinkedBlockingQueue queue = new LinkedBlockingQueue<>(); queue.add(new Segment(from, to - from, 0)); final AtomicInteger queueSize = new AtomicInteger(1); final int numberOfThreads = Runtime.getRuntime().availableProcessors(); final ExecutorService executorService = Executors.newFixedThreadPool(numberOfThreads, Executors.defaultThreadFactory()); final ExecutorCompletionService executorCompletionService = new ExecutorCompletionService<>(executorService); for (int j = numberOfThreads; j-- != 0;) executorCompletionService.submit(() -> { final int[] count = new int[1 << DIGIT_BITS]; final int[] pos = new int[1 << DIGIT_BITS]; for (;;) { if (queueSize.get() == 0) for (int i = numberOfThreads; i-- != 0;) queue.add(POISON_PILL); final Segment segment = queue.take(); if (segment == POISON_PILL) return null; final int first = segment.offset; final int length = segment.length; final int level = segment.level; final int signMask = level % DIGITS_PER_ELEMENT == 0 ? 1 << DIGIT_BITS - 1 : 0; final KEY_TYPE[] k = level < DIGITS_PER_ELEMENT ? a : b; // This is the key array final int shift = (DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT) * DIGIT_BITS; // Count keys. for (int i = first + length; i-- != first;) count[INT(KEY2LEXINT(k[i]) >>> shift & DIGIT_MASK ^ signMask)]++; // Compute cumulative distribution int lastUsed = -1; for (int i = 0, p = first; i < 1 << DIGIT_BITS; i++) { if (count[i] != 0) lastUsed = i; pos[i] = (p += count[i]); } final int end = first + length - count[lastUsed]; for (int i = first, c = -1, d; i <= end; i += count[c], count[c] = 0) { KEY_TYPE t = a[i]; KEY_TYPE u = b[i]; c = INT(KEY2LEXINT(k[i]) >>> shift & DIGIT_MASK ^ signMask); if (i < end) { // When all slots are OK, the last slot is necessarily OK. while ((d = --pos[c]) > i) { c = INT(KEY2LEXINT(k[d]) >>> shift & DIGIT_MASK ^ signMask); final KEY_TYPE z = t; final KEY_TYPE w = u; t = a[d]; u = b[d]; a[d] = z; b[d] = w; } a[i] = t; b[i] = u; } if (level < maxLevel && count[c] > 1) { if (count[c] < PARALLEL_RADIXSORT_NO_FORK) quickSort(a, b, i, i + count[c]); else { queueSize.incrementAndGet(); queue.add(new Segment(i, count[c], level + 1)); } } } queueSize.decrementAndGet(); } }); Throwable problem = null; for (int i = numberOfThreads; i-- != 0;) try { executorCompletionService.take().get(); } catch (Exception e) { problem = e.getCause(); // We keep only the last one. They will be logged anyway. } executorService.shutdown(); if (problem != null) throw (problem instanceof RuntimeException) ? (RuntimeException)problem : new RuntimeException(problem); } /** Sorts two arrays using a parallel radix sort. * *

The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas * McIlroy, “Engineering radix sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

This method implements a lexicographical sorting of the arguments. Pairs of elements * in the same position in the two provided arrays will be considered a single key, and permuted * accordingly. In the end, either {@code a[i] < a[i + 1]} or {@code a[i] == a[i + 1]} and {@code b[i] ≤ b[i + 1]}. * *

This implementation uses a pool of {@link Runtime#availableProcessors()} threads. * * @param a the first array to be sorted. * @param b the second array to be sorted. */ public static void parallelRadixSort(final KEY_TYPE[] a, final KEY_TYPE[] b) { ensureSameLength(a, b); parallelRadixSort(a, b, 0, a.length); } private static KEY_GENERIC void insertionSortIndirect(final int[] perm, final KEY_TYPE[] a, final KEY_TYPE[] b, final int from, final int to) { for (int i = from; ++i < to;) { int t = perm[i]; int j = i; for (int u = perm[j - 1]; KEY_LESS(a[t], a[u]) || KEY_CMP_EQ(a[t], a[u]) && KEY_LESS(b[t], b[u]); u = perm[--j - 1]) { perm[j] = u; if (from == j - 1) { --j; break; } } perm[j] = t; } } /** Sorts the specified pair of arrays lexicographically using indirect radix sort. * *

The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas * McIlroy, “Engineering radix sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

This method implement an indirect sort. The elements of {@code perm} (which must * be exactly the numbers in the interval {@code [0..perm.length)}) will be permuted so that * {@code a[perm[i]] ≤ a[perm[i + 1]]} or {@code a[perm[i]] == a[perm[i + 1]]} and {@code b[perm[i]] ≤ b[perm[i + 1]]}. * *

This implementation will allocate, in the stable case, a further support array as large as {@code perm} (note that the stable * version is slightly faster). * * @param perm a permutation array indexing {@code a}. * @param a the array to be sorted. * @param b the second array to be sorted. * @param stable whether the sorting algorithm should be stable. */ public static void radixSortIndirect(final int[] perm, final KEY_TYPE[] a, final KEY_TYPE[] b, final boolean stable) { ensureSameLength(a, b); radixSortIndirect(perm, a, b, 0, a.length, stable); } /** Sorts the specified pair of arrays lexicographically using indirect radix sort. * *

The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas * McIlroy, “Engineering radix sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

This method implement an indirect sort. The elements of {@code perm} (which must * be exactly the numbers in the interval {@code [0..perm.length)}) will be permuted so that * {@code a[perm[i]] ≤ a[perm[i + 1]]} or {@code a[perm[i]] == a[perm[i + 1]]} and {@code b[perm[i]] ≤ b[perm[i + 1]]}. * *

This implementation will allocate, in the stable case, a further support array as large as {@code perm} (note that the stable * version is slightly faster). * * @param perm a permutation array indexing {@code a}. * @param a the array to be sorted. * @param b the second array to be sorted. * @param from the index of the first element of {@code perm} (inclusive) to be permuted. * @param to the index of the last element of {@code perm} (exclusive) to be permuted. * @param stable whether the sorting algorithm should be stable. */ public static void radixSortIndirect(final int[] perm, final KEY_TYPE[] a, final KEY_TYPE[] b, final int from, final int to, final boolean stable) { if (to - from < RADIXSORT_NO_REC) { insertionSortIndirect(perm, a, b, from, to); return; } final int layers = 2; final int maxLevel = DIGITS_PER_ELEMENT * layers - 1; final int stackSize = ((1 << DIGIT_BITS) - 1) * (layers * DIGITS_PER_ELEMENT - 1) + 1; int stackPos = 0; final int[] offsetStack = new int[stackSize]; final int[] lengthStack = new int[stackSize]; final int[] levelStack = new int[stackSize]; offsetStack[stackPos] = from; lengthStack[stackPos] = to - from; levelStack[stackPos++] = 0; final int[] count = new int[1 << DIGIT_BITS]; final int[] pos = new int[1 << DIGIT_BITS]; final int[] support = stable ? new int[perm.length] : null; while(stackPos > 0) { final int first = offsetStack[--stackPos]; final int length = lengthStack[stackPos]; final int level = levelStack[stackPos]; #if KEY_CLASS_Character final int signMask = 0; #else final int signMask = level % DIGITS_PER_ELEMENT == 0 ? 1 << DIGIT_BITS - 1 : 0; #endif final KEY_TYPE[] k = level < DIGITS_PER_ELEMENT ? a : b; // This is the key array final int shift = (DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT) * DIGIT_BITS; // This is the shift that extract the right byte from a key // Count keys. for(int i = first + length; i-- != first;) count[INT(KEY2LEXINT(k[perm[i]]) >>> shift & DIGIT_MASK ^ signMask)]++; // Compute cumulative distribution int lastUsed = -1; for (int i = 0, p = stable ? 0 : first; i < 1 << DIGIT_BITS; i++) { if (count[i] != 0) lastUsed = i; pos[i] = (p += count[i]); } if (stable) { for(int i = first + length; i-- != first;) support[--pos[INT(KEY2LEXINT(k[perm[i]]) >>> shift & DIGIT_MASK ^ signMask)]] = perm[i]; System.arraycopy(support, 0, perm, first, length); for(int i = 0, p = first; i < 1 << DIGIT_BITS; i++) { if (level < maxLevel && count[i] > 1) { if (count[i] < RADIXSORT_NO_REC) insertionSortIndirect(perm, a, b, p, p + count[i]); else { offsetStack[stackPos] = p; lengthStack[stackPos] = count[i]; levelStack[stackPos++] = level + 1; } } p += count[i]; } java.util.Arrays.fill(count, 0); } else { final int end = first + length - count[lastUsed]; // i moves through the start of each block for(int i = first, c = -1, d; i <= end; i += count[c], count[c] = 0) { int t = perm[i]; c = INT(KEY2LEXINT(k[t]) >>> shift & DIGIT_MASK ^ signMask); if (i < end) { // When all slots are OK, the last slot is necessarily OK. while((d = --pos[c]) > i) { final int z = t; t = perm[d]; perm[d] = z; c = INT(KEY2LEXINT(k[t]) >>> shift & DIGIT_MASK ^ signMask); } perm[i] = t; } if (level < maxLevel && count[c] > 1) { if (count[c] < RADIXSORT_NO_REC) insertionSortIndirect(perm, a, b, i, i + count[c]); else { offsetStack[stackPos] = i; lengthStack[stackPos] = count[c]; levelStack[stackPos++] = level + 1; } } } } } } private static void selectionSort(final KEY_TYPE[][] a, final int from, final int to, final int level) { final int layers = a.length; final int firstLayer = level / DIGITS_PER_ELEMENT; for(int i = from; i < to - 1; i++) { int m = i; for(int j = i + 1; j < to; j++) { for(int p = firstLayer; p < layers; p++) { if (a[p][j] < a[p][m]) { m = j; break; } else if (a[p][j] > a[p][m]) break; } } if (m != i) { for(int p = layers; p-- != 0;) { final KEY_TYPE u = a[p][i]; a[p][i] = a[p][m]; a[p][m] = u; } } } } /** Sorts the specified array of arrays lexicographically using radix sort. * *

The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas * McIlroy, “Engineering radix sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

This method implements a lexicographical sorting of the provided arrays. Tuples of elements * in the same position will be considered a single key, and permuted * accordingly. * * @param a an array containing arrays of equal length to be sorted lexicographically in parallel. */ public static void radixSort(final KEY_TYPE[][] a) { radixSort(a, 0, a[0].length); } /** Sorts the specified array of arrays lexicographically using radix sort. * *

The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas * McIlroy, “Engineering radix sort”, Computing Systems, 6(1), pages 5−27 (1993). * *

This method implements a lexicographical sorting of the provided arrays. Tuples of elements * in the same position will be considered a single key, and permuted * accordingly. * * @param a an array containing arrays of equal length to be sorted lexicographically in parallel. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. */ public static void radixSort(final KEY_TYPE[][] a, final int from, final int to) { if (to - from < RADIXSORT_NO_REC) { selectionSort(a, from, to, 0); return; } final int layers = a.length; final int maxLevel = DIGITS_PER_ELEMENT * layers - 1; for(int p = layers, l = a[0].length; p-- != 0;) if (a[p].length != l) throw new IllegalArgumentException("The array of index " + p + " has not the same length of the array of index 0."); final int stackSize = ((1 << DIGIT_BITS) - 1) * (layers * DIGITS_PER_ELEMENT - 1) + 1; int stackPos = 0; final int[] offsetStack = new int[stackSize]; final int[] lengthStack = new int[stackSize]; final int[] levelStack = new int[stackSize]; offsetStack[stackPos] = from; lengthStack[stackPos] = to - from; levelStack[stackPos++] = 0; final int[] count = new int[1 << DIGIT_BITS]; final int[] pos = new int[1 << DIGIT_BITS]; final KEY_TYPE[] t = new KEY_TYPE[layers]; while(stackPos > 0) { final int first = offsetStack[--stackPos]; final int length = lengthStack[stackPos]; final int level = levelStack[stackPos]; #if KEY_CLASS_Character final int signMask = 0; #else final int signMask = level % DIGITS_PER_ELEMENT == 0 ? 1 << DIGIT_BITS - 1 : 0; #endif final KEY_TYPE[] k = a[level / DIGITS_PER_ELEMENT]; // This is the key array final int shift = (DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT) * DIGIT_BITS; // This is the shift that extract the right byte from a key // Count keys. for(int i = first + length; i-- != first;) count[INT(KEY2LEXINT(k[i]) >>> shift & DIGIT_MASK ^ signMask)]++; // Compute cumulative distribution int lastUsed = -1; for (int i = 0, p = first; i < 1 << DIGIT_BITS; i++) { if (count[i] != 0) lastUsed = i; pos[i] = (p += count[i]); } final int end = first + length - count[lastUsed]; // i moves through the start of each block for(int i = first, c = -1, d; i <= end; i += count[c], count[c] = 0) { for(int p = layers; p-- != 0;) t[p] = a[p][i]; c = INT(KEY2LEXINT(k[i]) >>> shift & DIGIT_MASK ^ signMask); if (i < end) { // When all slots are OK, the last slot is necessarily OK. while((d = --pos[c]) > i) { c = INT(KEY2LEXINT(k[d]) >>> shift & DIGIT_MASK ^ signMask); for(int p = layers; p-- != 0;) { final KEY_TYPE u = t[p]; t[p] = a[p][d]; a[p][d] = u; } } for(int p = layers; p-- != 0;) a[p][i] = t[p]; } if (level < maxLevel && count[c] > 1) { if (count[c] < RADIXSORT_NO_REC) selectionSort(a, i, i + count[c], level + 1); else { offsetStack[stackPos] = i; lengthStack[stackPos] = count[c]; levelStack[stackPos++] = level + 1; } } } } } #endif #endif /** Shuffles the specified array fragment using the specified pseudorandom number generator. * * @param a the array to be shuffled. * @param from the index of the first element (inclusive) to be shuffled. * @param to the index of the last element (exclusive) to be shuffled. * @param random a pseudorandom number generator. * @return {@code a}. */ public static KEY_GENERIC KEY_GENERIC_TYPE[] shuffle(final KEY_GENERIC_TYPE[] a, final int from, final int to, final Random random) { for(int i = to - from; i-- != 0;) { final int p = random.nextInt(i + 1); final KEY_GENERIC_TYPE t = a[from + i]; a[from + i] = a[from + p]; a[from + p] = t; } return a; } /** Shuffles the specified array using the specified pseudorandom number generator. * * @param a the array to be shuffled. * @param random a pseudorandom number generator. * @return {@code a}. */ public static KEY_GENERIC KEY_GENERIC_TYPE[] shuffle(final KEY_GENERIC_TYPE[] a, final Random random) { for(int i = a.length; i-- != 0;) { final int p = random.nextInt(i + 1); final KEY_GENERIC_TYPE t = a[i]; a[i] = a[p]; a[p] = t; } return a; } /** Reverses the order of the elements in the specified array. * * @param a the array to be reversed. * @return {@code a}. */ public static KEY_GENERIC KEY_GENERIC_TYPE[] reverse(final KEY_GENERIC_TYPE[] a) { final int length = a.length; for(int i = length / 2; i-- != 0;) { final KEY_GENERIC_TYPE t = a[length - i - 1]; a[length - i - 1] = a[i]; a[i] = t; } return a; } /** Reverses the order of the elements in the specified array fragment. * * @param a the array to be reversed. * @param from the index of the first element (inclusive) to be reversed. * @param to the index of the last element (exclusive) to be reversed. * @return {@code a}. */ public static KEY_GENERIC KEY_GENERIC_TYPE[] reverse(final KEY_GENERIC_TYPE[] a, final int from, final int to) { final int length = to - from; for(int i = length / 2; i-- != 0;) { final KEY_GENERIC_TYPE t = a[from + length - i - 1]; a[from + length - i - 1] = a[from + i]; a[from + i] = t; } return a; } /** A type-specific content-based hash strategy for arrays. */ private static final class ArrayHashStrategy KEY_GENERIC implements Hash.Strategy, java.io.Serializable { private static final long serialVersionUID = -7046029254386353129L; @Override public int hashCode(final KEY_GENERIC_TYPE[] o) { return java.util.Arrays.hashCode(o); } @Override public boolean equals(final KEY_GENERIC_TYPE[] a, final KEY_GENERIC_TYPE[] b) { return java.util.Arrays.equals(a, b); } } /** A type-specific content-based hash strategy for arrays. * *

This hash strategy may be used in custom hash collections whenever keys are * arrays, and they must be considered equal by content. This strategy * will handle {@code null} correctly, and it is serializable. */ #if KEYS_PRIMITIVE public static final Hash.Strategy HASH_STRATEGY = new ArrayHashStrategy(); #else @SuppressWarnings({"rawtypes"}) public static final Hash.Strategy HASH_STRATEGY = new ArrayHashStrategy(); #endif }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy