drv.OpenHashSet.drv Maven / Gradle / Ivy
Show all versions of fastutil Show documentation
/*
* Copyright (C) 2002-2017 Sebastiano Vigna
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package PACKAGE;
import it.unimi.dsi.fastutil.Hash;
import it.unimi.dsi.fastutil.HashCommon;
import static it.unimi.dsi.fastutil.HashCommon.arraySize;
import static it.unimi.dsi.fastutil.HashCommon.maxFill;
import java.util.Arrays;
import java.util.Collection;
import java.util.Iterator;
import java.util.NoSuchElementException;
#ifdef Linked
#if KEYS_REFERENCE
import java.util.Comparator;
#endif
/** A type-specific linked hash set with with a fast, small-footprint implementation.
*
* Instances of this class use a hash table to represent a set. The table is
* filled up to a specified load factor, and then doubled in size to
* accommodate new entries. If the table is emptied below one fourth
* of the load factor, it is halved in size; however, the table is never reduced to a
* size smaller than that at creation time: this approach makes it
* possible to create sets with a large capacity in which insertions and
* deletions do not cause immediately rehashing. Moreover, halving is
* not performed when deleting entries from an iterator, as it would interfere
* with the iteration process.
*
*
Note that {@link #clear()} does not modify the hash table size.
* Rather, a family of {@linkplain #trim() trimming
* methods} lets you control the size of the table; this is particularly useful
* if you reuse instances of this class.
*
*
Iterators generated by this set will enumerate elements in the same order in which they
* have been added to the set (addition of elements already present
* in the set does not change the iteration order). Note that this order has nothing in common with the natural
* order of the keys. The order is kept by means of a doubly linked list, represented
* via an array of longs parallel to the table.
*
*
This class implements the interface of a sorted set, so to allow easy
* access of the iteration order: for instance, you can get the first element
* in iteration order with {@code first()} without having to create an
* iterator; however, this class partially violates the {@link java.util.SortedSet}
* contract because all subset methods throw an exception and {@link
* #comparator()} returns always {@code null}.
*
*
Additional methods, such as {@code addAndMoveToFirst()}, make it easy
* to use instances of this class as a cache (e.g., with LRU policy).
*
*
The iterators provided by this class are type-specific {@linkplain
* java.util.ListIterator list iterators}, and can be started at any
* element which is in the set (if the provided element
* is not in the set, a {@link NoSuchElementException} exception will be thrown).
* If, however, the provided element is not the first or last element in the
* set, the first access to the list index will require linear time, as in the worst case
* the entire set must be scanned in iteration order to retrieve the positional
* index of the starting element. If you use just the methods of a type-specific {@link it.unimi.dsi.fastutil.BidirectionalIterator},
* however, all operations will be performed in constant time.
*
* @see Hash
* @see HashCommon
*/
public class OPEN_HASH_SET KEY_GENERIC extends ABSTRACT_SORTED_SET KEY_GENERIC implements java.io.Serializable, Cloneable, Hash {
#else
#ifdef Custom
/** A type-specific hash set with a fast, small-footprint implementation whose {@linkplain it.unimi.dsi.fastutil.Hash.Strategy hashing strategy}
* is specified at creation time.
*
*
Instances of this class use a hash table to represent a set. The table is
* filled up to a specified load factor, and then doubled in size to
* accommodate new entries. If the table is emptied below one fourth
* of the load factor, it is halved in size; however, the table is never reduced to a
* size smaller than that at creation time: this approach makes it
* possible to create sets with a large capacity in which insertions and
* deletions do not cause immediately rehashing. Moreover, halving is
* not performed when deleting entries from an iterator, as it would interfere
* with the iteration process.
*
*
Note that {@link #clear()} does not modify the hash table size.
* Rather, a family of {@linkplain #trim() trimming
* methods} lets you control the size of the table; this is particularly useful
* if you reuse instances of this class.
*
* @see Hash
* @see HashCommon
*/
public class OPEN_HASH_SET KEY_GENERIC extends ABSTRACT_SET KEY_GENERIC implements java.io.Serializable, Cloneable, Hash {
#else
/** A type-specific hash set with with a fast, small-footprint implementation.
*
*
Instances of this class use a hash table to represent a set. The table is
* filled up to a specified load factor, and then doubled in size to
* accommodate new entries. If the table is emptied below one fourth
* of the load factor, it is halved in size; however, the table is never reduced to a
* size smaller than that at creation time: this approach makes it
* possible to create sets with a large capacity in which insertions and
* deletions do not cause immediately rehashing. Moreover, halving is
* not performed when deleting entries from an iterator, as it would interfere
* with the iteration process.
*
*
Note that {@link #clear()} does not modify the hash table size.
* Rather, a family of {@linkplain #trim() trimming
* methods} lets you control the size of the table; this is particularly useful
* if you reuse instances of this class.
*
* @see Hash
* @see HashCommon
*/
public class OPEN_HASH_SET KEY_GENERIC extends ABSTRACT_SET KEY_GENERIC implements java.io.Serializable, Cloneable, Hash {
#endif
#endif
private static final long serialVersionUID = 0L;
private static final boolean ASSERTS = ASSERTS_VALUE;
/** The array of keys. */
protected transient KEY_GENERIC_TYPE[] key;
/** The mask for wrapping a position counter. */
protected transient int mask;
/** Whether this set contains the null key. */
protected transient boolean containsNull;
#ifdef Custom
/** The hash strategy of this custom set. */
protected STRATEGY KEY_SUPER_GENERIC strategy;
#endif
#ifdef Linked
/** The index of the first entry in iteration order. It is valid iff {@link #size} is nonzero; otherwise, it contains -1. */
protected transient int first = -1;
/** The index of the last entry in iteration order. It is valid iff {@link #size} is nonzero; otherwise, it contains -1. */
protected transient int last = -1;
/** For each entry, the next and the previous entry in iteration order,
* stored as {@code ((prev & 0xFFFFFFFFL) << 32) | (next & 0xFFFFFFFFL)}.
* The first entry contains predecessor -1, and the last entry
* contains successor -1. */
protected transient long[] link;
#endif
/** The current table size. Note that an additional element is allocated for storing the null key. */
protected transient int n;
/** Threshold after which we rehash. It must be the table size times {@link #f}. */
protected transient int maxFill;
/** We never resize below this threshold, which is the construction-time {#n}. */
protected final transient int minN;
/** Number of entries in the set (including the null key, if present). */
protected int size;
/** The acceptable load factor. */
protected final float f;
#ifdef Custom
/** Creates a new hash set.
*
*
The actual table size will be the least power of two greater than {@code expected}/{@code f}.
*
* @param expected the expected number of elements in the hash set.
* @param f the load factor.
* @param strategy the strategy.
*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
public OPEN_HASH_SET(final int expected, final float f, final STRATEGY KEY_SUPER_GENERIC strategy) {
this.strategy = strategy;
#else
/** Creates a new hash set.
*
*
The actual table size will be the least power of two greater than {@code expected}/{@code f}.
*
* @param expected the expected number of elements in the hash set.
* @param f the load factor.
*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
public OPEN_HASH_SET(final int expected, final float f) {
#endif
if (f <= 0 || f > 1) throw new IllegalArgumentException("Load factor must be greater than 0 and smaller than or equal to 1");
if (expected < 0) throw new IllegalArgumentException("The expected number of elements must be nonnegative");
this.f = f;
minN = n = arraySize(expected, f);
mask = n - 1;
maxFill = maxFill(n, f);
key = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[n + 1];
#ifdef Linked
link = new long[n + 1];
#endif
}
#ifdef Custom
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor.
*
* @param expected the expected number of elements in the hash set.
* @param strategy the strategy.
*/
public OPEN_HASH_SET(final int expected, final STRATEGY KEY_SUPER_GENERIC strategy) {
this(expected, DEFAULT_LOAD_FACTOR, strategy);
}
#else
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor.
*
* @param expected the expected number of elements in the hash set.
*/
public OPEN_HASH_SET(final int expected) {
this(expected, DEFAULT_LOAD_FACTOR);
}
#endif
#ifdef Custom
/** Creates a new hash set with initial expected {@link Hash#DEFAULT_INITIAL_SIZE} elements
* and {@link Hash#DEFAULT_LOAD_FACTOR} as load factor.
* @param strategy the strategy.
*/
public OPEN_HASH_SET(final STRATEGY KEY_SUPER_GENERIC strategy) {
this(DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR, strategy);
}
#else
/** Creates a new hash set with initial expected {@link Hash#DEFAULT_INITIAL_SIZE} elements
* and {@link Hash#DEFAULT_LOAD_FACTOR} as load factor.
*/
public OPEN_HASH_SET() {
this(DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR);
}
#endif
#ifdef Custom
/** Creates a new hash set copying a given collection.
*
* @param c a {@link Collection} to be copied into the new hash set.
* @param f the load factor.
* @param strategy the strategy.
*/
public OPEN_HASH_SET(final Collection extends KEY_GENERIC_CLASS> c, final float f, final STRATEGY KEY_SUPER_GENERIC strategy) {
this(c.size(), f, strategy);
addAll(c);
}
#else
/** Creates a new hash set copying a given collection.
*
* @param c a {@link Collection} to be copied into the new hash set.
* @param f the load factor.
*/
public OPEN_HASH_SET(final Collection extends KEY_GENERIC_CLASS> c, final float f) {
this(c.size(), f);
addAll(c);
}
#endif
#ifdef Custom
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor
* copying a given collection.
*
* @param c a {@link Collection} to be copied into the new hash set.
* @param strategy the strategy.
*/
public OPEN_HASH_SET(final Collection extends KEY_GENERIC_CLASS> c, final STRATEGY KEY_SUPER_GENERIC strategy) {
this(c, DEFAULT_LOAD_FACTOR, strategy);
}
#else
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor
* copying a given collection.
*
* @param c a {@link Collection} to be copied into the new hash set.
*/
public OPEN_HASH_SET(final Collection extends KEY_GENERIC_CLASS> c) {
this(c, DEFAULT_LOAD_FACTOR);
}
#endif
#ifdef Custom
/** Creates a new hash set copying a given type-specific collection.
*
* @param c a type-specific collection to be copied into the new hash set.
* @param f the load factor.
* @param strategy the strategy.
*/
public OPEN_HASH_SET(final COLLECTION KEY_EXTENDS_GENERIC c, final float f, STRATEGY KEY_SUPER_GENERIC strategy) {
this(c.size(), f, strategy);
addAll(c);
}
#else
/** Creates a new hash set copying a given type-specific collection.
*
* @param c a type-specific collection to be copied into the new hash set.
* @param f the load factor.
*/
public OPEN_HASH_SET(final COLLECTION KEY_EXTENDS_GENERIC c, final float f) {
this(c.size(), f);
addAll(c);
}
#endif
#ifdef Custom
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor
* copying a given type-specific collection.
*
* @param c a type-specific collection to be copied into the new hash set.
* @param strategy the strategy.
*/
public OPEN_HASH_SET(final COLLECTION KEY_EXTENDS_GENERIC c, final STRATEGY KEY_SUPER_GENERIC strategy) {
this(c, DEFAULT_LOAD_FACTOR, strategy);
}
#else
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor
* copying a given type-specific collection.
*
* @param c a type-specific collection to be copied into the new hash set.
*/
public OPEN_HASH_SET(final COLLECTION KEY_EXTENDS_GENERIC c) {
this(c, DEFAULT_LOAD_FACTOR);
}
#endif
#ifdef Custom
/** Creates a new hash set using elements provided by a type-specific iterator.
*
* @param i a type-specific iterator whose elements will fill the set.
* @param f the load factor.
* @param strategy the strategy.
*/
public OPEN_HASH_SET(final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i, final float f, final STRATEGY KEY_SUPER_GENERIC strategy) {
this(DEFAULT_INITIAL_SIZE, f, strategy);
while(i.hasNext()) add(i.NEXT_KEY());
}
#else
/** Creates a new hash set using elements provided by a type-specific iterator.
*
* @param i a type-specific iterator whose elements will fill the set.
* @param f the load factor.
*/
public OPEN_HASH_SET(final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i, final float f) {
this(DEFAULT_INITIAL_SIZE, f);
while(i.hasNext()) add(i.NEXT_KEY());
}
#endif
#ifdef Custom
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using elements provided by a type-specific iterator.
*
* @param i a type-specific iterator whose elements will fill the set.
* @param strategy the strategy.
*/
public OPEN_HASH_SET(final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i, final STRATEGY KEY_SUPER_GENERIC strategy) {
this(i, DEFAULT_LOAD_FACTOR, strategy);
}
#else
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using elements provided by a type-specific iterator.
*
* @param i a type-specific iterator whose elements will fill the set.
*/
public OPEN_HASH_SET(final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i) {
this(i, DEFAULT_LOAD_FACTOR);
}
#endif
#if KEYS_PRIMITIVE
#ifdef Custom
/** Creates a new hash set using elements provided by an iterator.
*
* @param i an iterator whose elements will fill the set.
* @param f the load factor.
* @param strategy the strategy.
*/
public OPEN_HASH_SET(final Iterator> i, final float f, final STRATEGY KEY_SUPER_GENERIC strategy) {
this(ITERATORS.AS_KEY_ITERATOR(i), f, strategy);
}
#else
/** Creates a new hash set using elements provided by an iterator.
*
* @param i an iterator whose elements will fill the set.
* @param f the load factor.
*/
public OPEN_HASH_SET(final Iterator> i, final float f) {
this(ITERATORS.AS_KEY_ITERATOR(i), f);
}
#endif
#ifdef Custom
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using elements provided by an iterator.
*
* @param i an iterator whose elements will fill the set.
* @param strategy the strategy.
*/
public OPEN_HASH_SET(final Iterator> i, final STRATEGY KEY_SUPER_GENERIC strategy) {
this(ITERATORS.AS_KEY_ITERATOR(i), strategy);
}
#else
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using elements provided by an iterator.
*
* @param i an iterator whose elements will fill the set.
*/
public OPEN_HASH_SET(final Iterator> i) {
this(ITERATORS.AS_KEY_ITERATOR(i));
}
#endif
#endif
#ifdef Custom
/** Creates a new hash set and fills it with the elements of a given array.
*
* @param a an array whose elements will be used to fill the set.
* @param offset the first element to use.
* @param length the number of elements to use.
* @param f the load factor.
* @param strategy the strategy.
*/
public OPEN_HASH_SET(final KEY_GENERIC_TYPE[] a, final int offset, final int length, final float f, final STRATEGY KEY_SUPER_GENERIC strategy) {
this(length < 0 ? 0 : length, f, strategy);
ARRAYS.ensureOffsetLength(a, offset, length);
for(int i = 0; i < length; i++) add(a[offset + i]);
}
#else
/** Creates a new hash set and fills it with the elements of a given array.
*
* @param a an array whose elements will be used to fill the set.
* @param offset the first element to use.
* @param length the number of elements to use.
* @param f the load factor.
*/
public OPEN_HASH_SET(final KEY_GENERIC_TYPE[] a, final int offset, final int length, final float f) {
this(length < 0 ? 0 : length, f);
ARRAYS.ensureOffsetLength(a, offset, length);
for(int i = 0; i < length; i++) add(a[offset + i]);
}
#endif
#ifdef Custom
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor and fills it with the elements of a given array.
*
* @param a an array whose elements will be used to fill the set.
* @param offset the first element to use.
* @param length the number of elements to use.
* @param strategy the strategy.
*/
public OPEN_HASH_SET(final KEY_GENERIC_TYPE[] a, final int offset, final int length, final STRATEGY KEY_SUPER_GENERIC strategy) {
this(a, offset, length, DEFAULT_LOAD_FACTOR, strategy);
}
#else
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor and fills it with the elements of a given array.
*
* @param a an array whose elements will be used to fill the set.
* @param offset the first element to use.
* @param length the number of elements to use.
*/
public OPEN_HASH_SET(final KEY_GENERIC_TYPE[] a, final int offset, final int length) {
this(a, offset, length, DEFAULT_LOAD_FACTOR);
}
#endif
#ifdef Custom
/** Creates a new hash set copying the elements of an array.
*
* @param a an array to be copied into the new hash set.
* @param f the load factor.
* @param strategy the strategy.
*/
public OPEN_HASH_SET(final KEY_GENERIC_TYPE[] a, final float f, final STRATEGY KEY_SUPER_GENERIC strategy) {
this(a, 0, a.length, f, strategy);
}
#else
/** Creates a new hash set copying the elements of an array.
*
* @param a an array to be copied into the new hash set.
* @param f the load factor.
*/
public OPEN_HASH_SET(final KEY_GENERIC_TYPE[] a, final float f) {
this(a, 0, a.length, f);
}
#endif
#ifdef Custom
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor
* copying the elements of an array.
*
* @param a an array to be copied into the new hash set.
* @param strategy the strategy.
*/
public OPEN_HASH_SET(final KEY_GENERIC_TYPE[] a, final STRATEGY KEY_SUPER_GENERIC strategy) {
this(a, DEFAULT_LOAD_FACTOR, strategy);
}
#else
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor
* copying the elements of an array.
*
* @param a an array to be copied into the new hash set.
*/
public OPEN_HASH_SET(final KEY_GENERIC_TYPE[] a) {
this(a, DEFAULT_LOAD_FACTOR);
}
#endif
#ifdef Custom
/** Returns the hashing strategy.
*
* @return the hashing strategy of this custom hash set.
*/
public STRATEGY KEY_SUPER_GENERIC strategy() {
return strategy;
}
#endif
private int realSize() {
return containsNull ? size - 1 : size;
}
private void ensureCapacity(final int capacity) {
final int needed = arraySize(capacity, f);
if (needed > n) rehash(needed);
}
private void tryCapacity(final long capacity) {
final int needed = (int)Math.min(1 << 30, Math.max(2, HashCommon.nextPowerOfTwo((long)Math.ceil(capacity / f))));
if (needed > n) rehash(needed);
}
#if KEYS_PRIMITIVE
@Override
public boolean addAll(COLLECTION c) {
if (f <= .5) ensureCapacity(c.size()); // The resulting collection will be sized for c.size() elements
else tryCapacity(size() + c.size()); // The resulting collection will be tentatively sized for size() + c.size() elements
return super.addAll(c);
}
#endif
@Override
public boolean addAll(Collection extends KEY_GENERIC_CLASS> c) {
// The resulting collection will be at least c.size() big
if (f <= .5) ensureCapacity(c.size()); // The resulting collection will be sized for c.size() elements
else tryCapacity(size() + c.size()); // The resulting collection will be tentatively sized for size() + c.size() elements
return super.addAll(c);
}
@Override
public boolean add(final KEY_GENERIC_TYPE k) {
int pos;
if (KEY_EQUALS_NULL(k)) {
if (containsNull) return false;
#ifdef Linked
pos = n;
#endif
containsNull = true;
#ifdef Custom
key[n] = k;
#endif
}
else {
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = this.key;
// The starting point.
if (! KEY_IS_NULL(curr = key[pos = KEY2INTHASH(k) & mask])) {
if (KEY_EQUALS_NOT_NULL(curr, k)) return false;
while(! KEY_IS_NULL(curr = key[pos = (pos + 1) & mask]))
if (KEY_EQUALS_NOT_NULL(curr, k)) return false;
}
key[pos] = k;
}
#ifdef Linked
if (size == 0) {
first = last = pos;
// Special case of SET_UPPER_LOWER(link[pos], -1, -1);
link[pos] = -1L;
}
else {
SET_NEXT(link[last], pos);
SET_UPPER_LOWER(link[pos], last, -1);
last = pos;
}
#endif
if (size++ >= maxFill) rehash(arraySize(size + 1, f));
if (ASSERTS) checkTable();
return true;
}
#if KEY_CLASS_Object
/** Add a random element if not present, get the existing value if already present.
*
* This is equivalent to (but faster than) doing a:
*
* K exist = set.get(k);
* if (exist == null) {
* set.add(k);
* exist = k;
* }
*
*/
public KEY_GENERIC_TYPE addOrGet(final KEY_GENERIC_TYPE k) {
int pos;
if (KEY_EQUALS_NULL(k)) {
if (containsNull) return key [n];
#ifdef Linked
pos = n;
#endif
containsNull = true;
#ifdef Custom
key [n] = k;
#endif
}
else {
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = this.key;
// The starting point.
if (! KEY_IS_NULL(curr = key[pos = KEY2INTHASH(k) & mask])) {
if (KEY_EQUALS_NOT_NULL(curr, k)) return curr;
while(! KEY_IS_NULL(curr = key[pos = (pos + 1) & mask]))
if (KEY_EQUALS_NOT_NULL(curr, k)) return curr;
}
key[pos] = k;
}
#ifdef Linked
if (size == 0) {
first = last = pos;
// Special case of SET_UPPER_LOWER(link[pos], -1, -1);
link[pos] = -1L;
}
else {
SET_NEXT(link[last], pos);
SET_UPPER_LOWER(link[pos], last, -1);
last = pos;
}
#endif
if (size++ >= maxFill) rehash(arraySize(size + 1, f));
if (ASSERTS) checkTable();
return k;
}
#endif
/** Shifts left entries with the specified hash code, starting at the specified position,
* and empties the resulting free entry.
*
* @param pos a starting position.
*/
protected final void shiftKeys(int pos) {
// Shift entries with the same hash.
int last, slot;
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = this.key;
for(;;) {
pos = ((last = pos) + 1) & mask;
for(;;) {
if (KEY_IS_NULL(curr = key[pos])) {
key[last] = KEY_NULL;
return;
}
slot = KEY2INTHASH(curr) & mask;
if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break;
pos = (pos + 1) & mask;
}
key[last] = curr;
#ifdef Linked
fixPointers(pos, last);
#endif
}
}
private boolean removeEntry(final int pos) {
size--;
#ifdef Linked
fixPointers(pos);
#endif
shiftKeys(pos);
if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2);
return true;
}
private boolean removeNullEntry() {
containsNull = false;
key[n] = KEY_NULL;
size--;
#ifdef Linked
fixPointers(n);
#endif
if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2);
return true;
}
SUPPRESS_WARNINGS_KEY_UNCHECKED
@Override
public boolean remove(final KEY_TYPE k) {
if (KEY_EQUALS_NULL(KEY_GENERIC_CAST k)) {
if (containsNull) return removeNullEntry();
return false;
}
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = this.key;
int pos;
// The starting point.
if (KEY_IS_NULL(curr = key[pos = KEY2INTHASH_CAST(k) & mask])) return false;
if (KEY_EQUALS_NOT_NULL_CAST(k, curr)) return removeEntry(pos);
while(true) {
if (KEY_IS_NULL(curr = key[pos = (pos + 1) & mask])) return false;
if (KEY_EQUALS_NOT_NULL_CAST(k, curr)) return removeEntry(pos);
}
}
SUPPRESS_WARNINGS_KEY_UNCHECKED
@Override
public boolean contains(final KEY_TYPE k) {
if (KEY_EQUALS_NULL(KEY_GENERIC_CAST k)) return containsNull;
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = this.key;
int pos;
// The starting point.
if (KEY_IS_NULL(curr = key[pos = KEY2INTHASH_CAST(k) & mask])) return false;
if (KEY_EQUALS_NOT_NULL_CAST(k, curr)) return true;
while(true) {
if (KEY_IS_NULL(curr = key[pos = (pos + 1) & mask])) return false;
if (KEY_EQUALS_NOT_NULL_CAST(k, curr)) return true;
}
}
#if KEY_CLASS_Object
/** Returns the element of this set that is equal to the given key, or {@code null}.
* @return the element of this set that is equal to the given key, or {@code null}.
*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
public K get(final Object k) {
if (KEY_EQUALS_NULL(KEY_GENERIC_CAST k)) return key[n]; // This is correct independently of the value of containsNull and of the set being custom
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = this.key;
int pos;
// The starting point.
if (KEY_IS_NULL(curr = key[pos = KEY2INTHASH_CAST(k) & mask])) return null;
if (KEY_EQUALS_NOT_NULL_CAST(k, curr)) return curr;
// There's always an unused entry.
while(true) {
if (KEY_IS_NULL(curr = key[pos = (pos + 1) & mask])) return null;
if (KEY_EQUALS_NOT_NULL_CAST(k, curr)) return curr;
}
}
#endif
#ifdef Linked
/** Removes the first key in iteration order.
* @return the first key.
* @throws NoSuchElementException is this set is empty.
*/
public KEY_GENERIC_TYPE REMOVE_FIRST_KEY() {
if (size == 0) throw new NoSuchElementException();
final int pos = first;
// Abbreviated version of fixPointers(pos)
first = GET_NEXT(link[pos]);
if (0 <= first) {
// Special case of SET_PREV(link[first], -1)
link[first] |= (-1 & 0xFFFFFFFFL) << 32;
}
final KEY_GENERIC_TYPE k = key[pos];
size--;
if (KEY_EQUALS_NULL(k)) {
containsNull = false;
key[n] = KEY_NULL;
}
else shiftKeys(pos);
if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2);
return k;
}
/** Removes the the last key in iteration order.
* @return the last key.
* @throws NoSuchElementException is this set is empty.
*/
public KEY_GENERIC_TYPE REMOVE_LAST_KEY() {
if (size == 0) throw new NoSuchElementException();
final int pos = last;
// Abbreviated version of fixPointers(pos)
last = GET_PREV(link[pos]);
if (0 <= last) {
// Special case of SET_NEXT(link[last], -1)
link[last] |= -1 & 0xFFFFFFFFL;
}
final KEY_GENERIC_TYPE k = key[pos];
size--;
if (KEY_EQUALS_NULL(k)) {
containsNull = false;
key[n] = KEY_NULL;
}
else shiftKeys(pos);
if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2);
return k;
}
private void moveIndexToFirst(final int i) {
if (size == 1 || first == i) return;
if (last == i) {
last = GET_PREV(link[i]);
// Special case of SET_NEXT(link[last], -1);
link[last] |= -1 & 0xFFFFFFFFL;
}
else {
final long linki = link[i];
final int prev = GET_PREV(linki);
final int next = GET_NEXT(linki);
COPY_NEXT(link[prev], linki);
COPY_PREV(link[next], linki);
}
SET_PREV(link[first], i);
SET_UPPER_LOWER(link[i], -1, first);
first = i;
}
private void moveIndexToLast(final int i) {
if (size == 1 || last == i) return;
if (first == i) {
first = GET_NEXT(link[i]);
// Special case of SET_PREV(link[first], -1);
link[first] |= (-1 & 0xFFFFFFFFL) << 32;
}
else {
final long linki = link[i];
final int prev = GET_PREV(linki);
final int next = GET_NEXT(linki);
COPY_NEXT(link[prev], linki);
COPY_PREV(link[next], linki);
}
SET_NEXT(link[last], i);
SET_UPPER_LOWER(link[i], last, -1);
last = i;
}
/** Adds a key to the set; if the key is already present, it is moved to the first position of the iteration order.
*
* @param k the key.
* @return true if the key was not present.
*/
public boolean addAndMoveToFirst(final KEY_GENERIC_TYPE k) {
int pos;
if (KEY_EQUALS_NULL(k)) {
if (containsNull) {
moveIndexToFirst(n);
return false;
}
containsNull = true;
pos = n;
}
else {
// The starting point.
final KEY_GENERIC_TYPE key[] = this.key;
pos = KEY2INTHASH(k) & mask;
// There's always an unused entry. TODO
while(! KEY_IS_NULL(key[pos])) {
if (KEY_EQUALS_NOT_NULL(k, key[pos])) {
moveIndexToFirst(pos);
return false;
}
pos = (pos + 1) & mask;
}
}
key[pos] = k;
if (size == 0) {
first = last = pos;
// Special case of SET_UPPER_LOWER(link[pos], -1, -1);
link[pos] = -1L;
}
else {
SET_PREV(link[first], pos);
SET_UPPER_LOWER(link[pos], -1, first);
first = pos;
}
if (size++ >= maxFill) rehash(arraySize(size, f));
if (ASSERTS) checkTable();
return true;
}
/** Adds a key to the set; if the key is already present, it is moved to the last position of the iteration order.
*
* @param k the key.
* @return true if the key was not present.
*/
public boolean addAndMoveToLast(final KEY_GENERIC_TYPE k) {
int pos;
if (KEY_EQUALS_NULL(k)) {
if (containsNull) {
moveIndexToLast(n);
return false;
}
containsNull = true;
pos = n;
}
else {
// The starting point.
final KEY_GENERIC_TYPE key[] = this.key;
pos = KEY2INTHASH(k) & mask;
// There's always an unused entry.
while(! KEY_IS_NULL(key[pos])) {
if (KEY_EQUALS_NOT_NULL(k, key[pos])) {
moveIndexToLast(pos);
return false;
}
pos = (pos + 1) & mask;
}
}
key[pos] = k;
if (size == 0) {
first = last = pos;
// Special case of SET_UPPER_LOWER(link[pos], -1, -1);
link[pos] = -1L;
}
else {
SET_NEXT(link[last], pos);
SET_UPPER_LOWER(link[pos], last, -1);
last = pos;
}
if (size++ >= maxFill) rehash(arraySize(size, f));
if (ASSERTS) checkTable();
return true;
}
#endif
/* Removes all elements from this set.
*
* To increase object reuse, this method does not change the table size.
* If you want to reduce the table size, you must use {@link #trim()}.
*
*/
@Override
public void clear() {
if (size == 0) return;
size = 0;
containsNull = false;
Arrays.fill(key, KEY_NULL);
#ifdef Linked
first = last = -1;
#endif
}
@Override
public int size() {
return size;
}
@Override
public boolean isEmpty() {
return size == 0;
}
#ifdef Linked
/** Modifies the {@link #link} vector so that the given entry is removed.
* This method will complete in constant time.
*
* @param i the index of an entry.
*/
protected void fixPointers(final int i) {
if (size == 0) {
first = last = -1;
return;
}
if (first == i) {
first = GET_NEXT(link[i]);
if (0 <= first) {
// Special case of SET_PREV(link[first], -1)
link[first] |= (-1 & 0xFFFFFFFFL) << 32;
}
return;
}
if (last == i) {
last = GET_PREV(link[i]);
if (0 <= last) {
// Special case of SET_NEXT(link[last], -1)
link[last] |= -1 & 0xFFFFFFFFL;
}
return;
}
final long linki = link[i];
final int prev = GET_PREV(linki);
final int next = GET_NEXT(linki);
COPY_NEXT(link[prev], linki);
COPY_PREV(link[next], linki);
}
/** Modifies the {@link #link} vector for a shift from s to d.
* This method will complete in constant time.
*
* @param s the source position.
* @param d the destination position.
*/
protected void fixPointers(int s, int d) {
if (size == 1) {
first = last = d;
// Special case of SET(link[d], -1, -1)
link[d] = -1L;
return;
}
if (first == s) {
first = d;
SET_PREV(link[GET_NEXT(link[s])], d);
link[d] = link[s];
return;
}
if (last == s) {
last = d;
SET_NEXT(link[GET_PREV(link[s])], d);
link[d] = link[s];
return;
}
final long links = link[s];
final int prev = GET_PREV(links);
final int next = GET_NEXT(links);
SET_NEXT(link[prev], d);
SET_PREV(link[next], d);
link[d] = links;
}
/** Returns the first element of this set in iteration order.
*
* @return the first element in iteration order.
*/
@Override
public KEY_GENERIC_TYPE FIRST() {
if (size == 0) throw new NoSuchElementException();
return key[first];
}
/** Returns the last element of this set in iteration order.
*
* @return the last element in iteration order.
*/
@Override
public KEY_GENERIC_TYPE LAST() {
if (size == 0) throw new NoSuchElementException();
return key[last];
}
/** {@inheritDoc}
*
This implementation just throws an {@link UnsupportedOperationException}.*/
@Override
public SORTED_SET KEY_GENERIC tailSet(KEY_GENERIC_TYPE from) { throw new UnsupportedOperationException(); }
/** {@inheritDoc}
*
This implementation just throws an {@link UnsupportedOperationException}.*/
@Override
public SORTED_SET KEY_GENERIC headSet(KEY_GENERIC_TYPE to) { throw new UnsupportedOperationException(); }
/** {@inheritDoc}
*
This implementation just throws an {@link UnsupportedOperationException}.*/
@Override
public SORTED_SET KEY_GENERIC subSet(KEY_GENERIC_TYPE from, KEY_GENERIC_TYPE to) { throw new UnsupportedOperationException(); }
/** {@inheritDoc}
*
This implementation just returns {@code null}.*/
@Override
public KEY_COMPARATOR KEY_SUPER_GENERIC comparator() { return null; }
/** A list iterator over a linked set.
*
*
This class provides a list iterator over a linked hash set. The constructor runs in constant time.
*/
private class SetIterator implements KEY_LIST_ITERATOR KEY_GENERIC {
/** The entry that will be returned by the next call to {@link java.util.ListIterator#previous()} (or {@code null} if no previous entry exists). */
int prev = -1;
/** The entry that will be returned by the next call to {@link java.util.ListIterator#next()} (or {@code null} if no next entry exists). */
int next = -1;
/** The last entry that was returned (or -1 if we did not iterate or used {@link #remove()}). */
int curr = -1;
/** The current index (in the sense of a {@link java.util.ListIterator}). When -1, we do not know the current index.*/
int index = -1;
SetIterator() {
next = first;
index = 0;
}
SetIterator(KEY_GENERIC_TYPE from) {
if (KEY_EQUALS_NULL(from)) {
if (OPEN_HASH_SET.this.containsNull) {
next = GET_NEXT(link[n]);
prev = n;
return;
}
else throw new NoSuchElementException("The key " + from + " does not belong to this set.");
}
if (KEY_EQUALS(key[last], from)) {
prev = last;
index = size;
return;
}
// The starting point.
final KEY_GENERIC_TYPE key[] = OPEN_HASH_SET.this.key;
int pos = KEY2INTHASH(from) & mask;
// There's always an unused entry.
while(! KEY_IS_NULL(key[pos])) {
if (KEY_EQUALS_NOT_NULL(key[pos], from)) {
// Note: no valid index known.
next = GET_NEXT(link[pos]);
prev = pos;
return;
}
pos = (pos + 1) & mask;
}
throw new NoSuchElementException("The key " + from + " does not belong to this set.");
}
@Override
public boolean hasNext() { return next != -1; }
@Override
public boolean hasPrevious() { return prev != -1; }
@Override
public KEY_GENERIC_TYPE NEXT_KEY() {
if (! hasNext()) throw new NoSuchElementException();
curr = next;
next = GET_NEXT(link[curr]);
prev = curr;
if (index >= 0) index++;
if (ASSERTS) assert curr == n || ! KEY_IS_NULL(key[curr]) : "Position " + curr + " is not used";
return key[curr];
}
@Override
public KEY_GENERIC_TYPE PREV_KEY() {
if (! hasPrevious()) throw new NoSuchElementException();
curr = prev;
prev = GET_PREV(link[curr]);
next = curr;
if (index >= 0) index--;
return key[curr];
}
private final void ensureIndexKnown() {
if (index >= 0) return;
if (prev == -1) {
index = 0;
return;
}
if (next == -1) {
index = size;
return;
}
int pos = first;
index = 1;
while(pos != prev) {
pos = GET_NEXT(link[pos]);
index++;
}
}
@Override
public int nextIndex() {
ensureIndexKnown();
return index;
}
@Override
public int previousIndex() {
ensureIndexKnown();
return index - 1;
}
@Override
public void remove() {
ensureIndexKnown();
if (curr == -1) throw new IllegalStateException();
if (curr == prev) {
/* If the last operation was a next(), we are removing an entry that preceeds
the current index, and thus we must decrement it. */
index--;
prev = GET_PREV(link[curr]);
}
else
next = GET_NEXT(link[curr]);
size--;
/* Now we manually fix the pointers. Because of our knowledge of next
and prev, this is going to be faster than calling fixPointers(). */
if (prev == -1) first = next;
else
SET_NEXT(link[prev], next);
if (next == -1) last = prev;
else
SET_PREV(link[next], prev);
int last, slot, pos = curr;
curr = -1;
if (pos == n) {
OPEN_HASH_SET.this.containsNull = false;
OPEN_HASH_SET.this.key[n] = KEY_NULL;
}
else {
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = OPEN_HASH_SET.this.key;
// We have to horribly duplicate the shiftKeys() code because we need to update next/prev.
for(;;) {
pos = ((last = pos) + 1) & mask;
for(;;) {
if (KEY_IS_NULL(curr = key[pos])) {
key[last] = KEY_NULL;
return;
}
slot = KEY2INTHASH(curr) & mask;
if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break;
pos = (pos + 1) & mask;
}
key[last] = curr;
if (next == pos) next = last;
if (prev == pos) prev = last;
fixPointers(pos, last);
}
}
}
}
/** Returns a type-specific list iterator on the elements in this set, starting from a given element of the set.
* Please see the class documentation for implementation details.
*
* @param from an element to start from.
* @return a type-specific list iterator starting at the given element.
* @throws IllegalArgumentException if {@code from} does not belong to the set.
*/
@Override
public KEY_LIST_ITERATOR KEY_GENERIC iterator(KEY_GENERIC_TYPE from) {
return new SetIterator(from);
}
/** Returns a type-specific list iterator on the elements in this set, starting from the first element.
* Please see the class documentation for implementation details.
*
* @return a type-specific list iterator starting at the first element.
*/
@Override
public KEY_LIST_ITERATOR KEY_GENERIC iterator() {
return new SetIterator();
}
#else
/** An iterator over a hash set. */
private class SetIterator implements KEY_ITERATOR KEY_GENERIC {
/** The index of the last entry returned, if positive or zero; initially, {@link #n}. If negative, the last
element returned was that of index {@code - pos - 1} from the {@link #wrapped} list. */
int pos = n;
/** The index of the last entry that has been returned (more precisely, the value of {@link #pos} if {@link #pos} is positive,
or {@link Integer#MIN_VALUE} if {@link #pos} is negative). It is -1 if either
we did not return an entry yet, or the last returned entry has been removed. */
int last = -1;
/** A downward counter measuring how many entries must still be returned. */
int c = size;
/** A boolean telling us whether we should return the null key. */
boolean mustReturnNull = OPEN_HASH_SET.this.containsNull;
/** A lazily allocated list containing elements that have wrapped around the table because of removals. */
ARRAY_LIST KEY_GENERIC wrapped;
@Override
public boolean hasNext() {
return c != 0;
}
@Override
public KEY_GENERIC_TYPE NEXT_KEY() {
if (! hasNext()) throw new NoSuchElementException();
c--;
if (mustReturnNull) {
mustReturnNull = false;
last = n;
return key[n];
}
final KEY_GENERIC_TYPE key[] = OPEN_HASH_SET.this.key;
for(;;) {
if (--pos < 0) {
// We are just enumerating elements from the wrapped list.
last = Integer.MIN_VALUE;
return wrapped.GET_KEY(- pos - 1);
}
if (! KEY_IS_NULL(key[pos])) return key[last = pos];
}
}
/** Shifts left entries with the specified hash code, starting at the specified position,
* and empties the resulting free entry.
*
* @param pos a starting position.
*/
private final void shiftKeys(int pos) {
// Shift entries with the same hash.
int last, slot;
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = OPEN_HASH_SET.this.key;
for(;;) {
pos = ((last = pos) + 1) & mask;
for(;;) {
if (KEY_IS_NULL(curr = key[pos])) {
key[last] = KEY_NULL;
return;
}
slot = KEY2INTHASH(curr) & mask;
if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break;
pos = (pos + 1) & mask;
}
if (pos < last) { // Wrapped entry.
if (wrapped == null) wrapped = new ARRAY_LIST KEY_GENERIC_DIAMOND(2);
wrapped.add(key[pos]);
}
key[last] = curr;
}
}
@Override
public void remove() {
if (last == -1) throw new IllegalStateException();
if (last == n) {
OPEN_HASH_SET.this.containsNull = false;
OPEN_HASH_SET.this.key[n] = KEY_NULL;
}
else if (pos >= 0) shiftKeys(last);
else {
// We're removing wrapped entries.
#if KEYS_REFERENCE
OPEN_HASH_SET.this.remove(wrapped.set(- pos - 1, null));
#else
OPEN_HASH_SET.this.remove(wrapped.GET_KEY(- pos - 1));
#endif
last = -1; // Note that we must not decrement size
return;
}
size--;
last = -1; // You can no longer remove this entry.
if (ASSERTS) checkTable();
}
}
@Override
public KEY_ITERATOR KEY_GENERIC iterator() {
return new SetIterator();
}
#endif
/** Rehashes this set, making the table as small as possible.
*
*
This method rehashes the table to the smallest size satisfying the
* load factor. It can be used when the set will not be changed anymore, so
* to optimize access speed and size.
*
*
If the table size is already the minimum possible, this method
* does nothing.
*
* @return true if there was enough memory to trim the set.
* @see #trim(int)
*/
public boolean trim() {
final int l = arraySize(size, f);
if (l >= n || size > maxFill(l, f)) return true;
try {
rehash(l);
}
catch(OutOfMemoryError cantDoIt) { return false; }
return true;
}
/** Rehashes this set if the table is too large.
*
*
Let N be the smallest table size that can hold
* max(n,{@link #size()})
entries, still satisfying the load factor. If the current
* table size is smaller than or equal to N, this method does
* nothing. Otherwise, it rehashes this set in a table of size
* N.
*
*
This method is useful when reusing sets. {@linkplain #clear() Clearing a
* set} leaves the table size untouched. If you are reusing a set
* many times, you can call this method with a typical
* size to avoid keeping around a very large table just
* because of a few large transient sets.
*
* @param n the threshold for the trimming.
* @return true if there was enough memory to trim the set.
* @see #trim()
*/
public boolean trim(final int n) {
final int l = HashCommon.nextPowerOfTwo((int)Math.ceil(n / f));
if (l >= n || size > maxFill(l, f)) return true;
try {
rehash(l);
}
catch(OutOfMemoryError cantDoIt) { return false; }
return true;
}
/** Rehashes the set.
*
*
This method implements the basic rehashing strategy, and may be
* overriden by subclasses implementing different rehashing strategies (e.g.,
* disk-based rehashing). However, you should not override this method
* unless you understand the internal workings of this class.
*
* @param newN the new size
*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
protected void rehash(final int newN) {
final KEY_GENERIC_TYPE key[] = this.key;
final int mask = newN - 1; // Note that this is used by the hashing macro
final KEY_GENERIC_TYPE newKey[] = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[newN + 1];
#ifdef Linked
int i = first, prev = -1, newPrev = -1, t, pos;
final long link[] = this.link;
final long newLink[] = new long[newN + 1];
first = -1;
for(int j = size; j-- != 0;) {
if (KEY_EQUALS_NULL(key[i])) pos = newN;
else {
pos = KEY2INTHASH(key[i]) & mask;
while (! KEY_IS_NULL(newKey[pos])) pos = (pos + 1) & mask;
}
newKey[pos] = key[i];
if (prev != -1) {
SET_NEXT(newLink[newPrev], pos);
SET_PREV(newLink[pos], newPrev);
newPrev = pos;
}
else {
newPrev = first = pos;
// Special case of SET(newLink[pos], -1, -1);
newLink[pos] = -1L;
}
t = i;
i = GET_NEXT(link[i]);
prev = t;
}
this.link = newLink;
this.last = newPrev;
if (newPrev != -1)
// Special case of SET_NEXT(newLink[newPrev], -1);
newLink[newPrev] |= -1 & 0xFFFFFFFFL;
#else
int i = n, pos;
for(int j = realSize(); j-- != 0;) {
while(KEY_IS_NULL(key[--i]));
if (! KEY_IS_NULL(newKey[pos = KEY2INTHASH(key[i]) & mask]))
while (! KEY_IS_NULL(newKey[pos = (pos + 1) & mask]));
newKey[pos] = key[i];
}
#endif
n = newN;
this.mask = mask;
maxFill = maxFill(n, f);
this.key = newKey;
}
/** Returns a deep copy of this set.
*
*
This method performs a deep copy of this hash set; the data stored in the
* set, however, is not cloned. Note that this makes a difference only for object keys.
*
* @return a deep copy of this set.
*/
@Override
SUPPRESS_WARNINGS_KEY_UNCHECKED
public OPEN_HASH_SET KEY_GENERIC clone() {
OPEN_HASH_SET KEY_GENERIC c;
try {
c = (OPEN_HASH_SET KEY_GENERIC)super.clone();
}
catch(CloneNotSupportedException cantHappen) {
throw new InternalError();
}
c.key = key.clone();
c.containsNull = containsNull;
#ifdef Linked
c.link = link.clone();
#endif
#ifdef Custom
c.strategy = strategy;
#endif
return c;
}
/** Returns a hash code for this set.
*
* This method overrides the generic method provided by the superclass.
* Since {@code equals()} is not overriden, it is important
* that the value returned by this method is the same value as
* the one returned by the overriden method.
*
* @return a hash code for this set.
*/
@Override
public int hashCode() {
int h = 0;
for(int j = realSize(), i = 0; j-- != 0;) {
while(KEY_IS_NULL(key[i])) i++;
#if KEYS_REFERENCE
if (this != key[i])
#endif
h += KEY2JAVAHASH_NOT_NULL(key[i]);
i++;
}
// Zero / null have hash zero.
return h;
}
private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException {
final KEY_ITERATOR KEY_GENERIC i = iterator();
s.defaultWriteObject();
for(int j = size; j-- != 0;) s.WRITE_KEY(i.NEXT_KEY());
}
SUPPRESS_WARNINGS_KEY_UNCHECKED
private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
n = arraySize(size, f);
maxFill = maxFill(n, f);
mask = n - 1;
final KEY_GENERIC_TYPE key[] = this.key = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[n + 1];
#ifdef Linked
final long link[] = this.link = new long[n + 1];
int prev = -1;
first = last = -1;
#endif
KEY_GENERIC_TYPE k;
for(int i = size, pos; i-- != 0;) {
k = KEY_GENERIC_CAST s.READ_KEY();
if (KEY_EQUALS_NULL(k)) {
pos = n;
containsNull = true;
}
else {
if (! KEY_IS_NULL(key[pos = KEY2INTHASH(k) & mask]))
while (! KEY_IS_NULL(key[pos = (pos + 1) & mask]));
}
key[pos] = k;
#ifdef Linked
if (first != -1) {
SET_NEXT(link[prev], pos);
SET_PREV(link[pos], prev);
prev = pos;
}
else {
prev = first = pos;
// Special case of SET_PREV(newLink[pos], -1);
link[pos] |= (-1L & 0xFFFFFFFFL) << 32;
}
#endif
}
#ifdef Linked
last = prev;
if (prev != -1)
// Special case of SET_NEXT(link[prev], -1);
link[prev] |= -1 & 0xFFFFFFFFL;
#endif
if (ASSERTS) checkTable();
}
#ifdef ASSERTS_CODE
private void checkTable() {
assert (n & -n) == n : "Table length is not a power of two: " + n;
assert n == key.length - 1;
int n = key.length - 1;
while(n-- != 0)
if (! KEY_IS_NULL(key[n]) && ! contains(key[n]))
throw new AssertionError("Hash table has key " + key[n] + " marked as occupied, but the key does not belong to the table");
#if KEYS_PRIMITIVE
java.util.HashSet s = new java.util.HashSet ();
#else
java.util.HashSet