it.unimi.dsi.fastutil.doubles.Double2FloatLinkedOpenHashMap Maven / Gradle / Ivy
Show all versions of fastutil Show documentation
/*
* Copyright (C) 2002-2017 Sebastiano Vigna
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package it.unimi.dsi.fastutil.doubles;
import it.unimi.dsi.fastutil.Hash;
import it.unimi.dsi.fastutil.HashCommon;
import static it.unimi.dsi.fastutil.HashCommon.arraySize;
import static it.unimi.dsi.fastutil.HashCommon.maxFill;
import java.util.Map;
import java.util.Arrays;
import java.util.NoSuchElementException;
import java.util.function.Consumer;
import it.unimi.dsi.fastutil.floats.FloatCollection;
import it.unimi.dsi.fastutil.floats.AbstractFloatCollection;
import it.unimi.dsi.fastutil.floats.FloatIterator;
import java.util.Comparator;
import it.unimi.dsi.fastutil.floats.FloatListIterator;
import it.unimi.dsi.fastutil.objects.AbstractObjectSortedSet;
import it.unimi.dsi.fastutil.objects.ObjectListIterator;
import it.unimi.dsi.fastutil.objects.ObjectBidirectionalIterator;
import it.unimi.dsi.fastutil.objects.ObjectSortedSet;
/**
* A type-specific linked hash map with with a fast, small-footprint
* implementation.
*
*
* Instances of this class use a hash table to represent a map. The table is
* filled up to a specified load factor, and then doubled in size to
* accommodate new entries. If the table is emptied below one fourth of
* the load factor, it is halved in size; however, the table is never reduced to
* a size smaller than that at creation time: this approach makes it possible to
* create maps with a large capacity in which insertions and deletions do not
* cause immediately rehashing. Moreover, halving is not performed when deleting
* entries from an iterator, as it would interfere with the iteration process.
*
*
* Note that {@link #clear()} does not modify the hash table size. Rather, a
* family of {@linkplain #trim() trimming methods} lets you control the size of
* the table; this is particularly useful if you reuse instances of this class.
*
*
* Iterators generated by this map will enumerate pairs in the same order in
* which they have been added to the map (addition of pairs whose key is already
* present in the map does not change the iteration order). Note that this order
* has nothing in common with the natural order of the keys. The order is kept
* by means of a doubly linked list, represented via an array of longs
* parallel to the table.
*
*
* This class implements the interface of a sorted map, so to allow easy access
* of the iteration order: for instance, you can get the first key in iteration
* order with {@code firstKey()} without having to create an iterator; however,
* this class partially violates the {@link java.util.SortedMap} contract
* because all submap methods throw an exception and {@link #comparator()}
* returns always {@code null}.
*
*
* Additional methods, such as {@code getAndMoveToFirst()}, make it easy to use
* instances of this class as a cache (e.g., with LRU policy).
*
*
* The iterators provided by the views of this class using are type-specific
* {@linkplain java.util.ListIterator list iterators}, and can be started at any
* element which is a key of the map, or a
* {@link NoSuchElementException} exception will be thrown. If, however, the
* provided element is not the first or last key in the map, the first access to
* the list index will require linear time, as in the worst case the entire key
* set must be scanned in iteration order to retrieve the positional index of
* the starting key. If you use just the methods of a type-specific
* {@link it.unimi.dsi.fastutil.BidirectionalIterator}, however, all operations
* will be performed in constant time.
*
* @see Hash
* @see HashCommon
*/
public class Double2FloatLinkedOpenHashMap extends AbstractDouble2FloatSortedMap
implements
java.io.Serializable,
Cloneable,
Hash {
private static final long serialVersionUID = 0L;
private static final boolean ASSERTS = false;
/** The array of keys. */
protected transient double[] key;
/** The array of values. */
protected transient float[] value;
/** The mask for wrapping a position counter. */
protected transient int mask;
/** Whether this map contains the key zero. */
protected transient boolean containsNullKey;
/**
* The index of the first entry in iteration order. It is valid iff
* {@link #size} is nonzero; otherwise, it contains -1.
*/
protected transient int first = -1;
/**
* The index of the last entry in iteration order. It is valid iff {@link #size}
* is nonzero; otherwise, it contains -1.
*/
protected transient int last = -1;
/**
* For each entry, the next and the previous entry in iteration order, stored as
* {@code ((prev & 0xFFFFFFFFL) << 32) | (next & 0xFFFFFFFFL)}. The first entry
* contains predecessor -1, and the last entry contains successor -1.
*/
protected transient long[] link;
/** The current table size. */
protected transient int n;
/**
* Threshold after which we rehash. It must be the table size times {@link #f}.
*/
protected transient int maxFill;
/**
* We never resize below this threshold, which is the construction-time {#n}.
*/
protected final transient int minN;
/** Number of entries in the set (including the key zero, if present). */
protected int size;
/** The acceptable load factor. */
protected final float f;
/** Cached set of entries. */
protected transient FastSortedEntrySet entries;
/** Cached set of keys. */
protected transient DoubleSortedSet keys;
/** Cached collection of values. */
protected transient FloatCollection values;
/**
* Creates a new hash map.
*
*
* The actual table size will be the least power of two greater than
* {@code expected}/{@code f}.
*
* @param expected
* the expected number of elements in the hash map.
* @param f
* the load factor.
*/
public Double2FloatLinkedOpenHashMap(final int expected, final float f) {
if (f <= 0 || f > 1)
throw new IllegalArgumentException("Load factor must be greater than 0 and smaller than or equal to 1");
if (expected < 0)
throw new IllegalArgumentException("The expected number of elements must be nonnegative");
this.f = f;
minN = n = arraySize(expected, f);
mask = n - 1;
maxFill = maxFill(n, f);
key = new double[n + 1];
value = new float[n + 1];
link = new long[n + 1];
}
/**
* Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor.
*
* @param expected
* the expected number of elements in the hash map.
*/
public Double2FloatLinkedOpenHashMap(final int expected) {
this(expected, DEFAULT_LOAD_FACTOR);
}
/**
* Creates a new hash map with initial expected
* {@link Hash#DEFAULT_INITIAL_SIZE} entries and
* {@link Hash#DEFAULT_LOAD_FACTOR} as load factor.
*/
public Double2FloatLinkedOpenHashMap() {
this(DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR);
}
/**
* Creates a new hash map copying a given one.
*
* @param m
* a {@link Map} to be copied into the new hash map.
* @param f
* the load factor.
*/
public Double2FloatLinkedOpenHashMap(final Map extends Double, ? extends Float> m, final float f) {
this(m.size(), f);
putAll(m);
}
/**
* Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor
* copying a given one.
*
* @param m
* a {@link Map} to be copied into the new hash map.
*/
public Double2FloatLinkedOpenHashMap(final Map extends Double, ? extends Float> m) {
this(m, DEFAULT_LOAD_FACTOR);
}
/**
* Creates a new hash map copying a given type-specific one.
*
* @param m
* a type-specific map to be copied into the new hash map.
* @param f
* the load factor.
*/
public Double2FloatLinkedOpenHashMap(final Double2FloatMap m, final float f) {
this(m.size(), f);
putAll(m);
}
/**
* Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor
* copying a given type-specific one.
*
* @param m
* a type-specific map to be copied into the new hash map.
*/
public Double2FloatLinkedOpenHashMap(final Double2FloatMap m) {
this(m, DEFAULT_LOAD_FACTOR);
}
/**
* Creates a new hash map using the elements of two parallel arrays.
*
* @param k
* the array of keys of the new hash map.
* @param v
* the array of corresponding values in the new hash map.
* @param f
* the load factor.
* @throws IllegalArgumentException
* if {@code k} and {@code v} have different lengths.
*/
public Double2FloatLinkedOpenHashMap(final double[] k, final float[] v, final float f) {
this(k.length, f);
if (k.length != v.length)
throw new IllegalArgumentException(
"The key array and the value array have different lengths (" + k.length + " and " + v.length + ")");
for (int i = 0; i < k.length; i++)
this.put(k[i], v[i]);
}
/**
* Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor
* using the elements of two parallel arrays.
*
* @param k
* the array of keys of the new hash map.
* @param v
* the array of corresponding values in the new hash map.
* @throws IllegalArgumentException
* if {@code k} and {@code v} have different lengths.
*/
public Double2FloatLinkedOpenHashMap(final double[] k, final float[] v) {
this(k, v, DEFAULT_LOAD_FACTOR);
}
private int realSize() {
return containsNullKey ? size - 1 : size;
}
private void ensureCapacity(final int capacity) {
final int needed = arraySize(capacity, f);
if (needed > n)
rehash(needed);
}
private void tryCapacity(final long capacity) {
final int needed = (int) Math.min(1 << 30,
Math.max(2, HashCommon.nextPowerOfTwo((long) Math.ceil(capacity / f))));
if (needed > n)
rehash(needed);
}
private float removeEntry(final int pos) {
final float oldValue = value[pos];
size--;
fixPointers(pos);
shiftKeys(pos);
if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE)
rehash(n / 2);
return oldValue;
}
private float removeNullEntry() {
containsNullKey = false;
final float oldValue = value[n];
size--;
fixPointers(n);
if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE)
rehash(n / 2);
return oldValue;
}
@Override
public void putAll(Map extends Double, ? extends Float> m) {
if (f <= .5)
ensureCapacity(m.size()); // The resulting map will be sized for m.size() elements
else
tryCapacity(size() + m.size()); // The resulting map will be tentatively sized for size() + m.size()
// elements
super.putAll(m);
}
private int find(final double k) {
if ((Double.doubleToLongBits(k) == 0))
return containsNullKey ? n : -(n + 1);
double curr;
final double[] key = this.key;
int pos;
// The starting point.
if ((Double.doubleToLongBits(
curr = key[pos = (int) it.unimi.dsi.fastutil.HashCommon.mix(Double.doubleToRawLongBits(k))
& mask]) == 0))
return -(pos + 1);
if ((Double.doubleToLongBits(k) == Double.doubleToLongBits(curr)))
return pos;
// There's always an unused entry.
while (true) {
if ((Double.doubleToLongBits(curr = key[pos = (pos + 1) & mask]) == 0))
return -(pos + 1);
if ((Double.doubleToLongBits(k) == Double.doubleToLongBits(curr)))
return pos;
}
}
private void insert(final int pos, final double k, final float v) {
if (pos == n)
containsNullKey = true;
key[pos] = k;
value[pos] = v;
if (size == 0) {
first = last = pos;
// Special case of SET_UPPER_LOWER(link[pos], -1, -1);
link[pos] = -1L;
} else {
link[last] ^= ((link[last] ^ (pos & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
link[pos] = ((last & 0xFFFFFFFFL) << 32) | (-1 & 0xFFFFFFFFL);
last = pos;
}
if (size++ >= maxFill)
rehash(arraySize(size + 1, f));
if (ASSERTS)
checkTable();
}
@Override
public float put(final double k, final float v) {
final int pos = find(k);
if (pos < 0) {
insert(-pos - 1, k, v);
return defRetValue;
}
final float oldValue = value[pos];
value[pos] = v;
return oldValue;
}
private float addToValue(final int pos, final float incr) {
final float oldValue = value[pos];
value[pos] = oldValue + incr;
return oldValue;
}
/**
* Adds an increment to value currently associated with a key.
*
*
* Note that this method respects the {@linkplain #defaultReturnValue() default
* return value} semantics: when called with a key that does not currently
* appears in the map, the key will be associated with the default return value
* plus the given increment.
*
* @param k
* the key.
* @param incr
* the increment.
* @return the old value, or the {@linkplain #defaultReturnValue() default
* return value} if no value was present for the given key.
*/
public float addTo(final double k, final float incr) {
int pos;
if ((Double.doubleToLongBits(k) == 0)) {
if (containsNullKey)
return addToValue(n, incr);
pos = n;
containsNullKey = true;
} else {
double curr;
final double[] key = this.key;
// The starting point.
if (!(Double.doubleToLongBits(
curr = key[pos = (int) it.unimi.dsi.fastutil.HashCommon.mix(Double.doubleToRawLongBits(k))
& mask]) == 0)) {
if ((Double.doubleToLongBits(curr) == Double.doubleToLongBits(k)))
return addToValue(pos, incr);
while (!(Double.doubleToLongBits(curr = key[pos = (pos + 1) & mask]) == 0))
if ((Double.doubleToLongBits(curr) == Double.doubleToLongBits(k)))
return addToValue(pos, incr);
}
}
key[pos] = k;
value[pos] = defRetValue + incr;
if (size == 0) {
first = last = pos;
// Special case of SET_UPPER_LOWER(link[pos], -1, -1);
link[pos] = -1L;
} else {
link[last] ^= ((link[last] ^ (pos & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
link[pos] = ((last & 0xFFFFFFFFL) << 32) | (-1 & 0xFFFFFFFFL);
last = pos;
}
if (size++ >= maxFill)
rehash(arraySize(size + 1, f));
if (ASSERTS)
checkTable();
return defRetValue;
}
/**
* Shifts left entries with the specified hash code, starting at the specified
* position, and empties the resulting free entry.
*
* @param pos
* a starting position.
*/
protected final void shiftKeys(int pos) {
// Shift entries with the same hash.
int last, slot;
double curr;
final double[] key = this.key;
for (;;) {
pos = ((last = pos) + 1) & mask;
for (;;) {
if ((Double.doubleToLongBits(curr = key[pos]) == 0)) {
key[last] = (0);
return;
}
slot = (int) it.unimi.dsi.fastutil.HashCommon.mix(Double.doubleToRawLongBits(curr)) & mask;
if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos)
break;
pos = (pos + 1) & mask;
}
key[last] = curr;
value[last] = value[pos];
fixPointers(pos, last);
}
}
@Override
public float remove(final double k) {
if ((Double.doubleToLongBits(k) == 0)) {
if (containsNullKey)
return removeNullEntry();
return defRetValue;
}
double curr;
final double[] key = this.key;
int pos;
// The starting point.
if ((Double.doubleToLongBits(
curr = key[pos = (int) it.unimi.dsi.fastutil.HashCommon.mix(Double.doubleToRawLongBits(k))
& mask]) == 0))
return defRetValue;
if ((Double.doubleToLongBits(k) == Double.doubleToLongBits(curr)))
return removeEntry(pos);
while (true) {
if ((Double.doubleToLongBits(curr = key[pos = (pos + 1) & mask]) == 0))
return defRetValue;
if ((Double.doubleToLongBits(k) == Double.doubleToLongBits(curr)))
return removeEntry(pos);
}
}
private float setValue(final int pos, final float v) {
final float oldValue = value[pos];
value[pos] = v;
return oldValue;
}
/**
* Removes the mapping associated with the first key in iteration order.
*
* @return the value previously associated with the first key in iteration
* order.
* @throws NoSuchElementException
* is this map is empty.
*/
public float removeFirstFloat() {
if (size == 0)
throw new NoSuchElementException();
final int pos = first;
// Abbreviated version of fixPointers(pos)
first = (int) link[pos];
if (0 <= first) {
// Special case of SET_PREV(link[first], -1)
link[first] |= (-1 & 0xFFFFFFFFL) << 32;
}
size--;
final float v = value[pos];
if (pos == n) {
containsNullKey = false;
} else
shiftKeys(pos);
if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE)
rehash(n / 2);
return v;
}
/**
* Removes the mapping associated with the last key in iteration order.
*
* @return the value previously associated with the last key in iteration order.
* @throws NoSuchElementException
* is this map is empty.
*/
public float removeLastFloat() {
if (size == 0)
throw new NoSuchElementException();
final int pos = last;
// Abbreviated version of fixPointers(pos)
last = (int) (link[pos] >>> 32);
if (0 <= last) {
// Special case of SET_NEXT(link[last], -1)
link[last] |= -1 & 0xFFFFFFFFL;
}
size--;
final float v = value[pos];
if (pos == n) {
containsNullKey = false;
} else
shiftKeys(pos);
if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE)
rehash(n / 2);
return v;
}
private void moveIndexToFirst(final int i) {
if (size == 1 || first == i)
return;
if (last == i) {
last = (int) (link[i] >>> 32);
// Special case of SET_NEXT(link[last], -1);
link[last] |= -1 & 0xFFFFFFFFL;
} else {
final long linki = link[i];
final int prev = (int) (linki >>> 32);
final int next = (int) linki;
link[prev] ^= ((link[prev] ^ (linki & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
link[next] ^= ((link[next] ^ (linki & 0xFFFFFFFF00000000L)) & 0xFFFFFFFF00000000L);
}
link[first] ^= ((link[first] ^ ((i & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L);
link[i] = ((-1 & 0xFFFFFFFFL) << 32) | (first & 0xFFFFFFFFL);
first = i;
}
private void moveIndexToLast(final int i) {
if (size == 1 || last == i)
return;
if (first == i) {
first = (int) link[i];
// Special case of SET_PREV(link[first], -1);
link[first] |= (-1 & 0xFFFFFFFFL) << 32;
} else {
final long linki = link[i];
final int prev = (int) (linki >>> 32);
final int next = (int) linki;
link[prev] ^= ((link[prev] ^ (linki & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
link[next] ^= ((link[next] ^ (linki & 0xFFFFFFFF00000000L)) & 0xFFFFFFFF00000000L);
}
link[last] ^= ((link[last] ^ (i & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
link[i] = ((last & 0xFFFFFFFFL) << 32) | (-1 & 0xFFFFFFFFL);
last = i;
}
/**
* Returns the value to which the given key is mapped; if the key is present, it
* is moved to the first position of the iteration order.
*
* @param k
* the key.
* @return the corresponding value, or the {@linkplain #defaultReturnValue()
* default return value} if no value was present for the given key.
*/
public float getAndMoveToFirst(final double k) {
if ((Double.doubleToLongBits(k) == 0)) {
if (containsNullKey) {
moveIndexToFirst(n);
return value[n];
}
return defRetValue;
}
double curr;
final double[] key = this.key;
int pos;
// The starting point.
if ((Double.doubleToLongBits(
curr = key[pos = (int) it.unimi.dsi.fastutil.HashCommon.mix(Double.doubleToRawLongBits(k))
& mask]) == 0))
return defRetValue;
if ((Double.doubleToLongBits(k) == Double.doubleToLongBits(curr))) {
moveIndexToFirst(pos);
return value[pos];
}
// There's always an unused entry.
while (true) {
if ((Double.doubleToLongBits(curr = key[pos = (pos + 1) & mask]) == 0))
return defRetValue;
if ((Double.doubleToLongBits(k) == Double.doubleToLongBits(curr))) {
moveIndexToFirst(pos);
return value[pos];
}
}
}
/**
* Returns the value to which the given key is mapped; if the key is present, it
* is moved to the last position of the iteration order.
*
* @param k
* the key.
* @return the corresponding value, or the {@linkplain #defaultReturnValue()
* default return value} if no value was present for the given key.
*/
public float getAndMoveToLast(final double k) {
if ((Double.doubleToLongBits(k) == 0)) {
if (containsNullKey) {
moveIndexToLast(n);
return value[n];
}
return defRetValue;
}
double curr;
final double[] key = this.key;
int pos;
// The starting point.
if ((Double.doubleToLongBits(
curr = key[pos = (int) it.unimi.dsi.fastutil.HashCommon.mix(Double.doubleToRawLongBits(k))
& mask]) == 0))
return defRetValue;
if ((Double.doubleToLongBits(k) == Double.doubleToLongBits(curr))) {
moveIndexToLast(pos);
return value[pos];
}
// There's always an unused entry.
while (true) {
if ((Double.doubleToLongBits(curr = key[pos = (pos + 1) & mask]) == 0))
return defRetValue;
if ((Double.doubleToLongBits(k) == Double.doubleToLongBits(curr))) {
moveIndexToLast(pos);
return value[pos];
}
}
}
/**
* Adds a pair to the map; if the key is already present, it is moved to the
* first position of the iteration order.
*
* @param k
* the key.
* @param v
* the value.
* @return the old value, or the {@linkplain #defaultReturnValue() default
* return value} if no value was present for the given key.
*/
public float putAndMoveToFirst(final double k, final float v) {
int pos;
if ((Double.doubleToLongBits(k) == 0)) {
if (containsNullKey) {
moveIndexToFirst(n);
return setValue(n, v);
}
containsNullKey = true;
pos = n;
} else {
double curr;
final double[] key = this.key;
// The starting point.
if (!(Double.doubleToLongBits(
curr = key[pos = (int) it.unimi.dsi.fastutil.HashCommon.mix(Double.doubleToRawLongBits(k))
& mask]) == 0)) {
if ((Double.doubleToLongBits(curr) == Double.doubleToLongBits(k))) {
moveIndexToFirst(pos);
return setValue(pos, v);
}
while (!(Double.doubleToLongBits(curr = key[pos = (pos + 1) & mask]) == 0))
if ((Double.doubleToLongBits(curr) == Double.doubleToLongBits(k))) {
moveIndexToFirst(pos);
return setValue(pos, v);
}
}
}
key[pos] = k;
value[pos] = v;
if (size == 0) {
first = last = pos;
// Special case of SET_UPPER_LOWER(link[pos], -1, -1);
link[pos] = -1L;
} else {
link[first] ^= ((link[first] ^ ((pos & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L);
link[pos] = ((-1 & 0xFFFFFFFFL) << 32) | (first & 0xFFFFFFFFL);
first = pos;
}
if (size++ >= maxFill)
rehash(arraySize(size, f));
if (ASSERTS)
checkTable();
return defRetValue;
}
/**
* Adds a pair to the map; if the key is already present, it is moved to the
* last position of the iteration order.
*
* @param k
* the key.
* @param v
* the value.
* @return the old value, or the {@linkplain #defaultReturnValue() default
* return value} if no value was present for the given key.
*/
public float putAndMoveToLast(final double k, final float v) {
int pos;
if ((Double.doubleToLongBits(k) == 0)) {
if (containsNullKey) {
moveIndexToLast(n);
return setValue(n, v);
}
containsNullKey = true;
pos = n;
} else {
double curr;
final double[] key = this.key;
// The starting point.
if (!(Double.doubleToLongBits(
curr = key[pos = (int) it.unimi.dsi.fastutil.HashCommon.mix(Double.doubleToRawLongBits(k))
& mask]) == 0)) {
if ((Double.doubleToLongBits(curr) == Double.doubleToLongBits(k))) {
moveIndexToLast(pos);
return setValue(pos, v);
}
while (!(Double.doubleToLongBits(curr = key[pos = (pos + 1) & mask]) == 0))
if ((Double.doubleToLongBits(curr) == Double.doubleToLongBits(k))) {
moveIndexToLast(pos);
return setValue(pos, v);
}
}
}
key[pos] = k;
value[pos] = v;
if (size == 0) {
first = last = pos;
// Special case of SET_UPPER_LOWER(link[pos], -1, -1);
link[pos] = -1L;
} else {
link[last] ^= ((link[last] ^ (pos & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
link[pos] = ((last & 0xFFFFFFFFL) << 32) | (-1 & 0xFFFFFFFFL);
last = pos;
}
if (size++ >= maxFill)
rehash(arraySize(size, f));
if (ASSERTS)
checkTable();
return defRetValue;
}
@Override
public float get(final double k) {
if ((Double.doubleToLongBits(k) == 0))
return containsNullKey ? value[n] : defRetValue;
double curr;
final double[] key = this.key;
int pos;
// The starting point.
if ((Double.doubleToLongBits(
curr = key[pos = (int) it.unimi.dsi.fastutil.HashCommon.mix(Double.doubleToRawLongBits(k))
& mask]) == 0))
return defRetValue;
if ((Double.doubleToLongBits(k) == Double.doubleToLongBits(curr)))
return value[pos];
// There's always an unused entry.
while (true) {
if ((Double.doubleToLongBits(curr = key[pos = (pos + 1) & mask]) == 0))
return defRetValue;
if ((Double.doubleToLongBits(k) == Double.doubleToLongBits(curr)))
return value[pos];
}
}
@Override
public boolean containsKey(final double k) {
if ((Double.doubleToLongBits(k) == 0))
return containsNullKey;
double curr;
final double[] key = this.key;
int pos;
// The starting point.
if ((Double.doubleToLongBits(
curr = key[pos = (int) it.unimi.dsi.fastutil.HashCommon.mix(Double.doubleToRawLongBits(k))
& mask]) == 0))
return false;
if ((Double.doubleToLongBits(k) == Double.doubleToLongBits(curr)))
return true;
// There's always an unused entry.
while (true) {
if ((Double.doubleToLongBits(curr = key[pos = (pos + 1) & mask]) == 0))
return false;
if ((Double.doubleToLongBits(k) == Double.doubleToLongBits(curr)))
return true;
}
}
@Override
public boolean containsValue(final float v) {
final float value[] = this.value;
final double key[] = this.key;
if (containsNullKey && (Float.floatToIntBits(value[n]) == Float.floatToIntBits(v)))
return true;
for (int i = n; i-- != 0;)
if (!(Double.doubleToLongBits(key[i]) == 0) && (Float.floatToIntBits(value[i]) == Float.floatToIntBits(v)))
return true;
return false;
}
/** {@inheritDoc} */
@Override
public float getOrDefault(final double k, final float defaultValue) {
if ((Double.doubleToLongBits(k) == 0))
return containsNullKey ? value[n] : defaultValue;
double curr;
final double[] key = this.key;
int pos;
// The starting point.
if ((Double.doubleToLongBits(
curr = key[pos = (int) it.unimi.dsi.fastutil.HashCommon.mix(Double.doubleToRawLongBits(k))
& mask]) == 0))
return defaultValue;
if ((Double.doubleToLongBits(k) == Double.doubleToLongBits(curr)))
return value[pos];
// There's always an unused entry.
while (true) {
if ((Double.doubleToLongBits(curr = key[pos = (pos + 1) & mask]) == 0))
return defaultValue;
if ((Double.doubleToLongBits(k) == Double.doubleToLongBits(curr)))
return value[pos];
}
}
/** {@inheritDoc} */
@Override
public float putIfAbsent(final double k, final float v) {
final int pos = find(k);
if (pos >= 0)
return value[pos];
insert(-pos - 1, k, v);
return defRetValue;
}
/** {@inheritDoc} */
@Override
public boolean remove(final double k, final float v) {
if ((Double.doubleToLongBits(k) == 0)) {
if (containsNullKey && (Float.floatToIntBits(v) == Float.floatToIntBits(value[n]))) {
removeNullEntry();
return true;
}
return false;
}
double curr;
final double[] key = this.key;
int pos;
// The starting point.
if ((Double.doubleToLongBits(
curr = key[pos = (int) it.unimi.dsi.fastutil.HashCommon.mix(Double.doubleToRawLongBits(k))
& mask]) == 0))
return false;
if ((Double.doubleToLongBits(k) == Double.doubleToLongBits(curr))
&& (Float.floatToIntBits(v) == Float.floatToIntBits(value[pos]))) {
removeEntry(pos);
return true;
}
while (true) {
if ((Double.doubleToLongBits(curr = key[pos = (pos + 1) & mask]) == 0))
return false;
if ((Double.doubleToLongBits(k) == Double.doubleToLongBits(curr))
&& (Float.floatToIntBits(v) == Float.floatToIntBits(value[pos]))) {
removeEntry(pos);
return true;
}
}
}
/** {@inheritDoc} */
@Override
public boolean replace(final double k, final float oldValue, final float v) {
final int pos = find(k);
if (pos < 0 || !(Float.floatToIntBits(oldValue) == Float.floatToIntBits(value[pos])))
return false;
value[pos] = v;
return true;
}
/** {@inheritDoc} */
@Override
public float replace(final double k, final float v) {
final int pos = find(k);
if (pos < 0)
return defRetValue;
final float oldValue = value[pos];
value[pos] = v;
return oldValue;
}
/** {@inheritDoc} */
@Override
public float computeIfAbsent(final double k, final java.util.function.DoubleUnaryOperator mappingFunction) {
java.util.Objects.requireNonNull(mappingFunction);
final int pos = find(k);
if (pos >= 0)
return value[pos];
final float newValue = it.unimi.dsi.fastutil.SafeMath.safeDoubleToFloat(mappingFunction.applyAsDouble(k));
insert(-pos - 1, k, newValue);
return newValue;
}
/** {@inheritDoc} */
@Override
public float computeIfAbsentNullable(final double k,
final java.util.function.DoubleFunction extends Float> mappingFunction) {
java.util.Objects.requireNonNull(mappingFunction);
final int pos = find(k);
if (pos >= 0)
return value[pos];
final Float newValue = mappingFunction.apply(k);
if (newValue == null)
return defRetValue;
final float v = (newValue).floatValue();
insert(-pos - 1, k, v);
return v;
}
/** {@inheritDoc} */
@Override
public float computeIfPresent(final double k,
final java.util.function.BiFunction super Double, ? super Float, ? extends Float> remappingFunction) {
java.util.Objects.requireNonNull(remappingFunction);
final int pos = find(k);
if (pos < 0)
return defRetValue;
final Float newValue = remappingFunction.apply(Double.valueOf(k), Float.valueOf(value[pos]));
if (newValue == null) {
if ((Double.doubleToLongBits(k) == 0))
removeNullEntry();
else
removeEntry(pos);
return defRetValue;
}
return value[pos] = (newValue).floatValue();
}
/** {@inheritDoc} */
@Override
public float compute(final double k,
final java.util.function.BiFunction super Double, ? super Float, ? extends Float> remappingFunction) {
java.util.Objects.requireNonNull(remappingFunction);
final int pos = find(k);
final Float newValue = remappingFunction.apply(Double.valueOf(k), pos >= 0 ? Float.valueOf(value[pos]) : null);
if (newValue == null) {
if (pos >= 0) {
if ((Double.doubleToLongBits(k) == 0))
removeNullEntry();
else
removeEntry(pos);
}
return defRetValue;
}
float newVal = (newValue).floatValue();
if (pos < 0) {
insert(-pos - 1, k, newVal);
return newVal;
}
return value[pos] = newVal;
}
/** {@inheritDoc} */
@Override
public float merge(final double k, final float v,
final java.util.function.BiFunction super Float, ? super Float, ? extends Float> remappingFunction) {
java.util.Objects.requireNonNull(remappingFunction);
final int pos = find(k);
if (pos < 0) {
insert(-pos - 1, k, v);
return v;
}
final Float newValue = remappingFunction.apply(Float.valueOf(value[pos]), Float.valueOf(v));
if (newValue == null) {
if ((Double.doubleToLongBits(k) == 0))
removeNullEntry();
else
removeEntry(pos);
return defRetValue;
}
return value[pos] = (newValue).floatValue();
}
/*
* Removes all elements from this map.
*
*
To increase object reuse, this method does not change the table size. If
* you want to reduce the table size, you must use {@link #trim()}.
*
*/
@Override
public void clear() {
if (size == 0)
return;
size = 0;
containsNullKey = false;
Arrays.fill(key, (0));
first = last = -1;
}
@Override
public int size() {
return size;
}
@Override
public boolean isEmpty() {
return size == 0;
}
/**
* The entry class for a hash map does not record key and value, but rather the
* position in the hash table of the corresponding entry. This is necessary so
* that calls to {@link java.util.Map.Entry#setValue(Object)} are reflected in
* the map
*/
final class MapEntry implements Double2FloatMap.Entry, Map.Entry {
// The table index this entry refers to, or -1 if this entry has been deleted.
int index;
MapEntry(final int index) {
this.index = index;
}
MapEntry() {
}
@Override
public double getDoubleKey() {
return key[index];
}
@Override
public float getFloatValue() {
return value[index];
}
@Override
public float setValue(final float v) {
final float oldValue = value[index];
value[index] = v;
return oldValue;
}
/**
* {@inheritDoc}
*
* @deprecated Please use the corresponding type-specific method instead.
*/
@Deprecated
@Override
public Double getKey() {
return Double.valueOf(key[index]);
}
/**
* {@inheritDoc}
*
* @deprecated Please use the corresponding type-specific method instead.
*/
@Deprecated
@Override
public Float getValue() {
return Float.valueOf(value[index]);
}
/**
* {@inheritDoc}
*
* @deprecated Please use the corresponding type-specific method instead.
*/
@Deprecated
@Override
public Float setValue(final Float v) {
return Float.valueOf(setValue((v).floatValue()));
}
@SuppressWarnings("unchecked")
@Override
public boolean equals(final Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry e = (Map.Entry) o;
return (Double.doubleToLongBits(key[index]) == Double.doubleToLongBits((e.getKey()).doubleValue()))
&& (Float.floatToIntBits(value[index]) == Float.floatToIntBits((e.getValue()).floatValue()));
}
@Override
public int hashCode() {
return it.unimi.dsi.fastutil.HashCommon.double2int(key[index])
^ it.unimi.dsi.fastutil.HashCommon.float2int(value[index]);
}
@Override
public String toString() {
return key[index] + "=>" + value[index];
}
}
/**
* Modifies the {@link #link} vector so that the given entry is removed. This
* method will complete in constant time.
*
* @param i
* the index of an entry.
*/
protected void fixPointers(final int i) {
if (size == 0) {
first = last = -1;
return;
}
if (first == i) {
first = (int) link[i];
if (0 <= first) {
// Special case of SET_PREV(link[first], -1)
link[first] |= (-1 & 0xFFFFFFFFL) << 32;
}
return;
}
if (last == i) {
last = (int) (link[i] >>> 32);
if (0 <= last) {
// Special case of SET_NEXT(link[last], -1)
link[last] |= -1 & 0xFFFFFFFFL;
}
return;
}
final long linki = link[i];
final int prev = (int) (linki >>> 32);
final int next = (int) linki;
link[prev] ^= ((link[prev] ^ (linki & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
link[next] ^= ((link[next] ^ (linki & 0xFFFFFFFF00000000L)) & 0xFFFFFFFF00000000L);
}
/**
* Modifies the {@link #link} vector for a shift from s to d.
*
* This method will complete in constant time.
*
* @param s
* the source position.
* @param d
* the destination position.
*/
protected void fixPointers(int s, int d) {
if (size == 1) {
first = last = d;
// Special case of SET_UPPER_LOWER(link[d], -1, -1)
link[d] = -1L;
return;
}
if (first == s) {
first = d;
link[(int) link[s]] ^= ((link[(int) link[s]] ^ ((d & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L);
link[d] = link[s];
return;
}
if (last == s) {
last = d;
link[(int) (link[s] >>> 32)] ^= ((link[(int) (link[s] >>> 32)] ^ (d & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
link[d] = link[s];
return;
}
final long links = link[s];
final int prev = (int) (links >>> 32);
final int next = (int) links;
link[prev] ^= ((link[prev] ^ (d & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
link[next] ^= ((link[next] ^ ((d & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L);
link[d] = links;
}
/**
* Returns the first key of this map in iteration order.
*
* @return the first key in iteration order.
*/
@Override
public double firstDoubleKey() {
if (size == 0)
throw new NoSuchElementException();
return key[first];
}
/**
* Returns the last key of this map in iteration order.
*
* @return the last key in iteration order.
*/
@Override
public double lastDoubleKey() {
if (size == 0)
throw new NoSuchElementException();
return key[last];
}
/**
* {@inheritDoc}
*
* This implementation just throws an {@link UnsupportedOperationException}.
*/
@Override
public Double2FloatSortedMap tailMap(double from) {
throw new UnsupportedOperationException();
}
/**
* {@inheritDoc}
*
* This implementation just throws an {@link UnsupportedOperationException}.
*/
@Override
public Double2FloatSortedMap headMap(double to) {
throw new UnsupportedOperationException();
}
/**
* {@inheritDoc}
*
* This implementation just throws an {@link UnsupportedOperationException}.
*/
@Override
public Double2FloatSortedMap subMap(double from, double to) {
throw new UnsupportedOperationException();
}
/**
* {@inheritDoc}
*
* This implementation just returns {@code null}.
*/
@Override
public DoubleComparator comparator() {
return null;
}
/**
* A list iterator over a linked map.
*
*
* This class provides a list iterator over a linked hash map. The constructor
* runs in constant time.
*/
private class MapIterator {
/**
* The entry that will be returned by the next call to
* {@link java.util.ListIterator#previous()} (or {@code null} if no previous
* entry exists).
*/
int prev = -1;
/**
* The entry that will be returned by the next call to
* {@link java.util.ListIterator#next()} (or {@code null} if no next entry
* exists).
*/
int next = -1;
/**
* The last entry that was returned (or -1 if we did not iterate or used
* {@link java.util.Iterator#remove()}).
*/
int curr = -1;
/**
* The current index (in the sense of a {@link java.util.ListIterator}). Note
* that this value is not meaningful when this iterator has been created using
* the nonempty constructor.
*/
int index = -1;
protected MapIterator() {
next = first;
index = 0;
}
private MapIterator(final double from) {
if ((Double.doubleToLongBits(from) == 0)) {
if (Double2FloatLinkedOpenHashMap.this.containsNullKey) {
next = (int) link[n];
prev = n;
return;
} else
throw new NoSuchElementException("The key " + from + " does not belong to this map.");
}
if ((Double.doubleToLongBits(key[last]) == Double.doubleToLongBits(from))) {
prev = last;
index = size;
return;
}
// The starting point.
int pos = (int) it.unimi.dsi.fastutil.HashCommon.mix(Double.doubleToRawLongBits(from)) & mask;
// There's always an unused entry.
while (!(Double.doubleToLongBits(key[pos]) == 0)) {
if ((Double.doubleToLongBits(key[pos]) == Double.doubleToLongBits(from))) {
// Note: no valid index known.
next = (int) link[pos];
prev = pos;
return;
}
pos = (pos + 1) & mask;
}
throw new NoSuchElementException("The key " + from + " does not belong to this map.");
}
public boolean hasNext() {
return next != -1;
}
public boolean hasPrevious() {
return prev != -1;
}
private final void ensureIndexKnown() {
if (index >= 0)
return;
if (prev == -1) {
index = 0;
return;
}
if (next == -1) {
index = size;
return;
}
int pos = first;
index = 1;
while (pos != prev) {
pos = (int) link[pos];
index++;
}
}
public int nextIndex() {
ensureIndexKnown();
return index;
}
public int previousIndex() {
ensureIndexKnown();
return index - 1;
}
public int nextEntry() {
if (!hasNext())
throw new NoSuchElementException();
curr = next;
next = (int) link[curr];
prev = curr;
if (index >= 0)
index++;
return curr;
}
public int previousEntry() {
if (!hasPrevious())
throw new NoSuchElementException();
curr = prev;
prev = (int) (link[curr] >>> 32);
next = curr;
if (index >= 0)
index--;
return curr;
}
public void remove() {
ensureIndexKnown();
if (curr == -1)
throw new IllegalStateException();
if (curr == prev) {
/*
* If the last operation was a next(), we are removing an entry that preceeds
* the current index, and thus we must decrement it.
*/
index--;
prev = (int) (link[curr] >>> 32);
} else
next = (int) link[curr];
size--;
/*
* Now we manually fix the pointers. Because of our knowledge of next and prev,
* this is going to be faster than calling fixPointers().
*/
if (prev == -1)
first = next;
else
link[prev] ^= ((link[prev] ^ (next & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
if (next == -1)
last = prev;
else
link[next] ^= ((link[next] ^ ((prev & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L);
int last, slot, pos = curr;
curr = -1;
if (pos == n) {
Double2FloatLinkedOpenHashMap.this.containsNullKey = false;
} else {
double curr;
final double[] key = Double2FloatLinkedOpenHashMap.this.key;
// We have to horribly duplicate the shiftKeys() code because we need to update
// next/prev.
for (;;) {
pos = ((last = pos) + 1) & mask;
for (;;) {
if ((Double.doubleToLongBits(curr = key[pos]) == 0)) {
key[last] = (0);
return;
}
slot = (int) it.unimi.dsi.fastutil.HashCommon.mix(Double.doubleToRawLongBits(curr)) & mask;
if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos)
break;
pos = (pos + 1) & mask;
}
key[last] = curr;
value[last] = value[pos];
if (next == pos)
next = last;
if (prev == pos)
prev = last;
fixPointers(pos, last);
}
}
}
public int skip(final int n) {
int i = n;
while (i-- != 0 && hasNext())
nextEntry();
return n - i - 1;
}
public int back(final int n) {
int i = n;
while (i-- != 0 && hasPrevious())
previousEntry();
return n - i - 1;
}
public void set(@SuppressWarnings("unused") Double2FloatMap.Entry ok) {
throw new UnsupportedOperationException();
}
public void add(@SuppressWarnings("unused") Double2FloatMap.Entry ok) {
throw new UnsupportedOperationException();
}
}
private class EntryIterator extends MapIterator implements ObjectListIterator {
private MapEntry entry;
public EntryIterator() {
}
public EntryIterator(double from) {
super(from);
}
@Override
public MapEntry next() {
return entry = new MapEntry(nextEntry());
}
@Override
public MapEntry previous() {
return entry = new MapEntry(previousEntry());
}
@Override
public void remove() {
super.remove();
entry.index = -1; // You cannot use a deleted entry.
}
}
private class FastEntryIterator extends MapIterator implements ObjectListIterator {
final MapEntry entry = new MapEntry();
public FastEntryIterator() {
}
public FastEntryIterator(double from) {
super(from);
}
@Override
public MapEntry next() {
entry.index = nextEntry();
return entry;
}
@Override
public MapEntry previous() {
entry.index = previousEntry();
return entry;
}
}
private final class MapEntrySet extends AbstractObjectSortedSet
implements
FastSortedEntrySet {
@Override
public ObjectBidirectionalIterator iterator() {
return new EntryIterator();
}
@Override
public Comparator super Double2FloatMap.Entry> comparator() {
return null;
}
@Override
public ObjectSortedSet subSet(Double2FloatMap.Entry fromElement,
Double2FloatMap.Entry toElement) {
throw new UnsupportedOperationException();
}
@Override
public ObjectSortedSet headSet(Double2FloatMap.Entry toElement) {
throw new UnsupportedOperationException();
}
@Override
public ObjectSortedSet tailSet(Double2FloatMap.Entry fromElement) {
throw new UnsupportedOperationException();
}
@Override
public Double2FloatMap.Entry first() {
if (size == 0)
throw new NoSuchElementException();
return new MapEntry(Double2FloatLinkedOpenHashMap.this.first);
}
@Override
public Double2FloatMap.Entry last() {
if (size == 0)
throw new NoSuchElementException();
return new MapEntry(Double2FloatLinkedOpenHashMap.this.last);
}
@Override
public boolean contains(final Object o) {
if (!(o instanceof Map.Entry))
return false;
final Map.Entry, ?> e = (Map.Entry, ?>) o;
if (e.getKey() == null || !(e.getKey() instanceof Double))
return false;
if (e.getValue() == null || !(e.getValue() instanceof Float))
return false;
final double k = ((Double) (e.getKey())).doubleValue();
final float v = ((Float) (e.getValue())).floatValue();
if ((Double.doubleToLongBits(k) == 0))
return Double2FloatLinkedOpenHashMap.this.containsNullKey
&& (Float.floatToIntBits(value[n]) == Float.floatToIntBits(v));
double curr;
final double[] key = Double2FloatLinkedOpenHashMap.this.key;
int pos;
// The starting point.
if ((Double.doubleToLongBits(
curr = key[pos = (int) it.unimi.dsi.fastutil.HashCommon.mix(Double.doubleToRawLongBits(k))
& mask]) == 0))
return false;
if ((Double.doubleToLongBits(k) == Double.doubleToLongBits(curr)))
return (Float.floatToIntBits(value[pos]) == Float.floatToIntBits(v));
// There's always an unused entry.
while (true) {
if ((Double.doubleToLongBits(curr = key[pos = (pos + 1) & mask]) == 0))
return false;
if ((Double.doubleToLongBits(k) == Double.doubleToLongBits(curr)))
return (Float.floatToIntBits(value[pos]) == Float.floatToIntBits(v));
}
}
@Override
public boolean remove(final Object o) {
if (!(o instanceof Map.Entry))
return false;
final Map.Entry, ?> e = (Map.Entry, ?>) o;
if (e.getKey() == null || !(e.getKey() instanceof Double))
return false;
if (e.getValue() == null || !(e.getValue() instanceof Float))
return false;
final double k = ((Double) (e.getKey())).doubleValue();
final float v = ((Float) (e.getValue())).floatValue();
if ((Double.doubleToLongBits(k) == 0)) {
if (containsNullKey && (Float.floatToIntBits(value[n]) == Float.floatToIntBits(v))) {
removeNullEntry();
return true;
}
return false;
}
double curr;
final double[] key = Double2FloatLinkedOpenHashMap.this.key;
int pos;
// The starting point.
if ((Double.doubleToLongBits(
curr = key[pos = (int) it.unimi.dsi.fastutil.HashCommon.mix(Double.doubleToRawLongBits(k))
& mask]) == 0))
return false;
if ((Double.doubleToLongBits(curr) == Double.doubleToLongBits(k))) {
if ((Float.floatToIntBits(value[pos]) == Float.floatToIntBits(v))) {
removeEntry(pos);
return true;
}
return false;
}
while (true) {
if ((Double.doubleToLongBits(curr = key[pos = (pos + 1) & mask]) == 0))
return false;
if ((Double.doubleToLongBits(curr) == Double.doubleToLongBits(k))) {
if ((Float.floatToIntBits(value[pos]) == Float.floatToIntBits(v))) {
removeEntry(pos);
return true;
}
}
}
}
@Override
public int size() {
return size;
}
@Override
public void clear() {
Double2FloatLinkedOpenHashMap.this.clear();
}
/**
* Returns a type-specific list iterator on the elements in this set, starting
* from a given element of the set. Please see the class documentation for
* implementation details.
*
* @param from
* an element to start from.
* @return a type-specific list iterator starting at the given element.
* @throws IllegalArgumentException
* if {@code from} does not belong to the set.
*/
@Override
public ObjectListIterator iterator(final Double2FloatMap.Entry from) {
return new EntryIterator(from.getDoubleKey());
}
/**
* Returns a type-specific fast list iterator on the elements in this set,
* starting from the first element. Please see the class documentation for
* implementation details.
*
* @return a type-specific list iterator starting at the first element.
*/
@Override
public ObjectListIterator fastIterator() {
return new FastEntryIterator();
}
/**
* Returns a type-specific fast list iterator on the elements in this set,
* starting from a given element of the set. Please see the class documentation
* for implementation details.
*
* @param from
* an element to start from.
* @return a type-specific list iterator starting at the given element.
* @throws IllegalArgumentException
* if {@code from} does not belong to the set.
*/
@Override
public ObjectListIterator fastIterator(final Double2FloatMap.Entry from) {
return new FastEntryIterator(from.getDoubleKey());
}
/** {@inheritDoc} */
@Override
public void forEach(final Consumer super Double2FloatMap.Entry> consumer) {
for (int i = size, curr, next = first; i-- != 0;) {
curr = next;
next = (int) link[curr];
consumer.accept(new AbstractDouble2FloatMap.BasicEntry(key[curr], value[curr]));
}
}
/** {@inheritDoc} */
@Override
public void fastForEach(final Consumer super Double2FloatMap.Entry> consumer) {
final AbstractDouble2FloatMap.BasicEntry entry = new AbstractDouble2FloatMap.BasicEntry();
for (int i = size, curr, next = first; i-- != 0;) {
curr = next;
next = (int) link[curr];
entry.key = key[curr];
entry.value = value[curr];
consumer.accept(entry);
}
}
}
@Override
public FastSortedEntrySet double2FloatEntrySet() {
if (entries == null)
entries = new MapEntrySet();
return entries;
}
/**
* An iterator on keys.
*
*
* We simply override the
* {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()}
* methods (and possibly their type-specific counterparts) so that they return
* keys instead of entries.
*/
private final class KeyIterator extends MapIterator implements DoubleListIterator {
public KeyIterator(final double k) {
super(k);
}
@Override
public double previousDouble() {
return key[previousEntry()];
}
public KeyIterator() {
super();
}
@Override
public double nextDouble() {
return key[nextEntry()];
}
}
private final class KeySet extends AbstractDoubleSortedSet {
@Override
public DoubleListIterator iterator(final double from) {
return new KeyIterator(from);
}
@Override
public DoubleListIterator iterator() {
return new KeyIterator();
}
/** {@inheritDoc} */
@Override
public void forEach(final java.util.function.DoubleConsumer consumer) {
if (containsNullKey)
consumer.accept(key[n]);
for (int pos = n; pos-- != 0;) {
final double k = key[pos];
if (!(Double.doubleToLongBits(k) == 0))
consumer.accept(k);
}
}
@Override
public int size() {
return size;
}
@Override
public boolean contains(double k) {
return containsKey(k);
}
@Override
public boolean remove(double k) {
final int oldSize = size;
Double2FloatLinkedOpenHashMap.this.remove(k);
return size != oldSize;
}
@Override
public void clear() {
Double2FloatLinkedOpenHashMap.this.clear();
}
@Override
public double firstDouble() {
if (size == 0)
throw new NoSuchElementException();
return key[first];
}
@Override
public double lastDouble() {
if (size == 0)
throw new NoSuchElementException();
return key[last];
}
@Override
public DoubleComparator comparator() {
return null;
}
@Override
public DoubleSortedSet tailSet(double from) {
throw new UnsupportedOperationException();
}
@Override
public DoubleSortedSet headSet(double to) {
throw new UnsupportedOperationException();
}
@Override
public DoubleSortedSet subSet(double from, double to) {
throw new UnsupportedOperationException();
}
}
@Override
public DoubleSortedSet keySet() {
if (keys == null)
keys = new KeySet();
return keys;
}
/**
* An iterator on values.
*
*
* We simply override the
* {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()}
* methods (and possibly their type-specific counterparts) so that they return
* values instead of entries.
*/
private final class ValueIterator extends MapIterator implements FloatListIterator {
@Override
public float previousFloat() {
return value[previousEntry()];
}
public ValueIterator() {
super();
}
@Override
public float nextFloat() {
return value[nextEntry()];
}
}
@Override
public FloatCollection values() {
if (values == null)
values = new AbstractFloatCollection() {
@Override
public FloatIterator iterator() {
return new ValueIterator();
}
@Override
public int size() {
return size;
}
@Override
public boolean contains(float v) {
return containsValue(v);
}
@Override
public void clear() {
Double2FloatLinkedOpenHashMap.this.clear();
}
/** {@inheritDoc} */
@Override
public void forEach(final java.util.function.DoubleConsumer consumer) {
if (containsNullKey)
consumer.accept(value[n]);
for (int pos = n; pos-- != 0;)
if (!(Double.doubleToLongBits(key[pos]) == 0))
consumer.accept(value[pos]);
}
};
return values;
}
/**
* Rehashes the map, making the table as small as possible.
*
*
* This method rehashes the table to the smallest size satisfying the load
* factor. It can be used when the set will not be changed anymore, so to
* optimize access speed and size.
*
*
* If the table size is already the minimum possible, this method does nothing.
*
* @return true if there was enough memory to trim the map.
* @see #trim(int)
*/
public boolean trim() {
final int l = arraySize(size, f);
if (l >= n || size > maxFill(l, f))
return true;
try {
rehash(l);
} catch (OutOfMemoryError cantDoIt) {
return false;
}
return true;
}
/**
* Rehashes this map if the table is too large.
*
*
* Let N be the smallest table size that can hold
* max(n,{@link #size()})
entries, still satisfying the load
* factor. If the current table size is smaller than or equal to N,
* this method does nothing. Otherwise, it rehashes this map in a table of size
* N.
*
*
* This method is useful when reusing maps. {@linkplain #clear() Clearing a map}
* leaves the table size untouched. If you are reusing a map many times, you can
* call this method with a typical size to avoid keeping around a very large
* table just because of a few large transient maps.
*
* @param n
* the threshold for the trimming.
* @return true if there was enough memory to trim the map.
* @see #trim()
*/
public boolean trim(final int n) {
final int l = HashCommon.nextPowerOfTwo((int) Math.ceil(n / f));
if (l >= n || size > maxFill(l, f))
return true;
try {
rehash(l);
} catch (OutOfMemoryError cantDoIt) {
return false;
}
return true;
}
/**
* Rehashes the map.
*
*
* This method implements the basic rehashing strategy, and may be overridden by
* subclasses implementing different rehashing strategies (e.g., disk-based
* rehashing). However, you should not override this method unless you
* understand the internal workings of this class.
*
* @param newN
* the new size
*/
protected void rehash(final int newN) {
final double key[] = this.key;
final float value[] = this.value;
final int mask = newN - 1; // Note that this is used by the hashing macro
final double newKey[] = new double[newN + 1];
final float newValue[] = new float[newN + 1];
int i = first, prev = -1, newPrev = -1, t, pos;
final long link[] = this.link;
final long newLink[] = new long[newN + 1];
first = -1;
for (int j = size; j-- != 0;) {
if ((Double.doubleToLongBits(key[i]) == 0))
pos = newN;
else {
pos = (int) it.unimi.dsi.fastutil.HashCommon.mix(Double.doubleToRawLongBits(key[i])) & mask;
while (!(Double.doubleToLongBits(newKey[pos]) == 0))
pos = (pos + 1) & mask;
}
newKey[pos] = key[i];
newValue[pos] = value[i];
if (prev != -1) {
newLink[newPrev] ^= ((newLink[newPrev] ^ (pos & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
newLink[pos] ^= ((newLink[pos] ^ ((newPrev & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L);
newPrev = pos;
} else {
newPrev = first = pos;
// Special case of SET(newLink[pos], -1, -1);
newLink[pos] = -1L;
}
t = i;
i = (int) link[i];
prev = t;
}
this.link = newLink;
this.last = newPrev;
if (newPrev != -1)
// Special case of SET_NEXT(newLink[newPrev], -1);
newLink[newPrev] |= -1 & 0xFFFFFFFFL;
n = newN;
this.mask = mask;
maxFill = maxFill(n, f);
this.key = newKey;
this.value = newValue;
}
/**
* Returns a deep copy of this map.
*
*
* This method performs a deep copy of this hash map; the data stored in the
* map, however, is not cloned. Note that this makes a difference only for
* object keys.
*
* @return a deep copy of this map.
*/
@Override
public Double2FloatLinkedOpenHashMap clone() {
Double2FloatLinkedOpenHashMap c;
try {
c = (Double2FloatLinkedOpenHashMap) super.clone();
} catch (CloneNotSupportedException cantHappen) {
throw new InternalError();
}
c.keys = null;
c.values = null;
c.entries = null;
c.containsNullKey = containsNullKey;
c.key = key.clone();
c.value = value.clone();
c.link = link.clone();
return c;
}
/**
* Returns a hash code for this map.
*
* This method overrides the generic method provided by the superclass. Since
* {@code equals()} is not overriden, it is important that the value returned by
* this method is the same value as the one returned by the overriden method.
*
* @return a hash code for this map.
*/
@Override
public int hashCode() {
int h = 0;
for (int j = realSize(), i = 0, t = 0; j-- != 0;) {
while ((Double.doubleToLongBits(key[i]) == 0))
i++;
t = it.unimi.dsi.fastutil.HashCommon.double2int(key[i]);
t ^= it.unimi.dsi.fastutil.HashCommon.float2int(value[i]);
h += t;
i++;
}
// Zero / null keys have hash zero.
if (containsNullKey)
h += it.unimi.dsi.fastutil.HashCommon.float2int(value[n]);
return h;
}
private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException {
final double key[] = this.key;
final float value[] = this.value;
final MapIterator i = new MapIterator();
s.defaultWriteObject();
for (int j = size, e; j-- != 0;) {
e = i.nextEntry();
s.writeDouble(key[e]);
s.writeFloat(value[e]);
}
}
private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
n = arraySize(size, f);
maxFill = maxFill(n, f);
mask = n - 1;
final double key[] = this.key = new double[n + 1];
final float value[] = this.value = new float[n + 1];
final long link[] = this.link = new long[n + 1];
int prev = -1;
first = last = -1;
double k;
float v;
for (int i = size, pos; i-- != 0;) {
k = s.readDouble();
v = s.readFloat();
if ((Double.doubleToLongBits(k) == 0)) {
pos = n;
containsNullKey = true;
} else {
pos = (int) it.unimi.dsi.fastutil.HashCommon.mix(Double.doubleToRawLongBits(k)) & mask;
while (!(Double.doubleToLongBits(key[pos]) == 0))
pos = (pos + 1) & mask;
}
key[pos] = k;
value[pos] = v;
if (first != -1) {
link[prev] ^= ((link[prev] ^ (pos & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
link[pos] ^= ((link[pos] ^ ((prev & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L);
prev = pos;
} else {
prev = first = pos;
// Special case of SET_PREV(newLink[pos], -1);
link[pos] |= (-1L & 0xFFFFFFFFL) << 32;
}
}
last = prev;
if (prev != -1)
// Special case of SET_NEXT(link[prev], -1);
link[prev] |= -1 & 0xFFFFFFFFL;
if (ASSERTS)
checkTable();
}
private void checkTable() {
}
}