All Downloads are FREE. Search and download functionalities are using the official Maven repository.

it.unimi.dsi.fastutil.objects.Reference2ReferenceOpenHashMap Maven / Gradle / Ivy

Go to download

fastutil extends the Java Collections Framework by providing type-specific maps, sets, lists and priority queues with a small memory footprint and fast access and insertion; provides also big (64-bit) arrays, sets and lists, and fast, practical I/O classes for binary and text files.

There is a newer version: 8.5.15
Show newest version
/*
	* Copyright (C) 2002-2017 Sebastiano Vigna
	*
	* Licensed under the Apache License, Version 2.0 (the "License");
	* you may not use this file except in compliance with the License.
	* You may obtain a copy of the License at
	*
	*     http://www.apache.org/licenses/LICENSE-2.0
	*
	* Unless required by applicable law or agreed to in writing, software
	* distributed under the License is distributed on an "AS IS" BASIS,
	* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
	* See the License for the specific language governing permissions and
	* limitations under the License.
	*/
package it.unimi.dsi.fastutil.objects;
import it.unimi.dsi.fastutil.Hash;
import it.unimi.dsi.fastutil.HashCommon;
import static it.unimi.dsi.fastutil.HashCommon.arraySize;
import static it.unimi.dsi.fastutil.HashCommon.maxFill;
import java.util.Map;
import java.util.Arrays;
import java.util.NoSuchElementException;
import java.util.function.Consumer;
import it.unimi.dsi.fastutil.objects.ReferenceCollection;
import it.unimi.dsi.fastutil.objects.AbstractReferenceCollection;
import it.unimi.dsi.fastutil.objects.AbstractObjectSet;
import it.unimi.dsi.fastutil.objects.ObjectIterator;
/**
 * A type-specific hash map with a fast, small-footprint implementation.
 *
 * 

* Instances of this class use a hash table to represent a map. The table is * filled up to a specified load factor, and then doubled in size to * accommodate new entries. If the table is emptied below one fourth of * the load factor, it is halved in size; however, the table is never reduced to * a size smaller than that at creation time: this approach makes it possible to * create maps with a large capacity in which insertions and deletions do not * cause immediately rehashing. Moreover, halving is not performed when deleting * entries from an iterator, as it would interfere with the iteration process. * *

* Note that {@link #clear()} does not modify the hash table size. Rather, a * family of {@linkplain #trim() trimming methods} lets you control the size of * the table; this is particularly useful if you reuse instances of this class. * * @see Hash * @see HashCommon */ public class Reference2ReferenceOpenHashMap extends AbstractReference2ReferenceMap implements java.io.Serializable, Cloneable, Hash { private static final long serialVersionUID = 0L; private static final boolean ASSERTS = false; /** The array of keys. */ protected transient K[] key; /** The array of values. */ protected transient V[] value; /** The mask for wrapping a position counter. */ protected transient int mask; /** Whether this map contains the key zero. */ protected transient boolean containsNullKey; /** The current table size. */ protected transient int n; /** * Threshold after which we rehash. It must be the table size times {@link #f}. */ protected transient int maxFill; /** * We never resize below this threshold, which is the construction-time {#n}. */ protected final transient int minN; /** Number of entries in the set (including the key zero, if present). */ protected int size; /** The acceptable load factor. */ protected final float f; /** Cached set of entries. */ protected transient FastEntrySet entries; /** Cached set of keys. */ protected transient ReferenceSet keys; /** Cached collection of values. */ protected transient ReferenceCollection values; /** * Creates a new hash map. * *

* The actual table size will be the least power of two greater than * {@code expected}/{@code f}. * * @param expected * the expected number of elements in the hash map. * @param f * the load factor. */ @SuppressWarnings("unchecked") public Reference2ReferenceOpenHashMap(final int expected, final float f) { if (f <= 0 || f > 1) throw new IllegalArgumentException("Load factor must be greater than 0 and smaller than or equal to 1"); if (expected < 0) throw new IllegalArgumentException("The expected number of elements must be nonnegative"); this.f = f; minN = n = arraySize(expected, f); mask = n - 1; maxFill = maxFill(n, f); key = (K[]) new Object[n + 1]; value = (V[]) new Object[n + 1]; } /** * Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. * * @param expected * the expected number of elements in the hash map. */ public Reference2ReferenceOpenHashMap(final int expected) { this(expected, DEFAULT_LOAD_FACTOR); } /** * Creates a new hash map with initial expected * {@link Hash#DEFAULT_INITIAL_SIZE} entries and * {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. */ public Reference2ReferenceOpenHashMap() { this(DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR); } /** * Creates a new hash map copying a given one. * * @param m * a {@link Map} to be copied into the new hash map. * @param f * the load factor. */ public Reference2ReferenceOpenHashMap(final Map m, final float f) { this(m.size(), f); putAll(m); } /** * Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor * copying a given one. * * @param m * a {@link Map} to be copied into the new hash map. */ public Reference2ReferenceOpenHashMap(final Map m) { this(m, DEFAULT_LOAD_FACTOR); } /** * Creates a new hash map copying a given type-specific one. * * @param m * a type-specific map to be copied into the new hash map. * @param f * the load factor. */ public Reference2ReferenceOpenHashMap(final Reference2ReferenceMap m, final float f) { this(m.size(), f); putAll(m); } /** * Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor * copying a given type-specific one. * * @param m * a type-specific map to be copied into the new hash map. */ public Reference2ReferenceOpenHashMap(final Reference2ReferenceMap m) { this(m, DEFAULT_LOAD_FACTOR); } /** * Creates a new hash map using the elements of two parallel arrays. * * @param k * the array of keys of the new hash map. * @param v * the array of corresponding values in the new hash map. * @param f * the load factor. * @throws IllegalArgumentException * if {@code k} and {@code v} have different lengths. */ public Reference2ReferenceOpenHashMap(final K[] k, final V[] v, final float f) { this(k.length, f); if (k.length != v.length) throw new IllegalArgumentException( "The key array and the value array have different lengths (" + k.length + " and " + v.length + ")"); for (int i = 0; i < k.length; i++) this.put(k[i], v[i]); } /** * Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor * using the elements of two parallel arrays. * * @param k * the array of keys of the new hash map. * @param v * the array of corresponding values in the new hash map. * @throws IllegalArgumentException * if {@code k} and {@code v} have different lengths. */ public Reference2ReferenceOpenHashMap(final K[] k, final V[] v) { this(k, v, DEFAULT_LOAD_FACTOR); } private int realSize() { return containsNullKey ? size - 1 : size; } private void ensureCapacity(final int capacity) { final int needed = arraySize(capacity, f); if (needed > n) rehash(needed); } private void tryCapacity(final long capacity) { final int needed = (int) Math.min(1 << 30, Math.max(2, HashCommon.nextPowerOfTwo((long) Math.ceil(capacity / f)))); if (needed > n) rehash(needed); } private V removeEntry(final int pos) { final V oldValue = value[pos]; value[pos] = null; size--; shiftKeys(pos); if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2); return oldValue; } private V removeNullEntry() { containsNullKey = false; key[n] = null; final V oldValue = value[n]; value[n] = null; size--; if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2); return oldValue; } @Override public void putAll(Map m) { if (f <= .5) ensureCapacity(m.size()); // The resulting map will be sized for m.size() elements else tryCapacity(size() + m.size()); // The resulting map will be tentatively sized for size() + m.size() // elements super.putAll(m); } @SuppressWarnings("unchecked") private int find(final K k) { if (((k) == (null))) return containsNullKey ? n : -(n + 1); K curr; final K[] key = this.key; int pos; // The starting point. if (((curr = key[pos = (it.unimi.dsi.fastutil.HashCommon.mix(System.identityHashCode(k))) & mask]) == (null))) return -(pos + 1); if (((k) == (curr))) return pos; // There's always an unused entry. while (true) { if (((curr = key[pos = (pos + 1) & mask]) == (null))) return -(pos + 1); if (((k) == (curr))) return pos; } } private void insert(final int pos, final K k, final V v) { if (pos == n) containsNullKey = true; key[pos] = k; value[pos] = v; if (size++ >= maxFill) rehash(arraySize(size + 1, f)); if (ASSERTS) checkTable(); } @Override public V put(final K k, final V v) { final int pos = find(k); if (pos < 0) { insert(-pos - 1, k, v); return defRetValue; } final V oldValue = value[pos]; value[pos] = v; return oldValue; } /** * Shifts left entries with the specified hash code, starting at the specified * position, and empties the resulting free entry. * * @param pos * a starting position. */ protected final void shiftKeys(int pos) { // Shift entries with the same hash. int last, slot; K curr; final K[] key = this.key; for (;;) { pos = ((last = pos) + 1) & mask; for (;;) { if (((curr = key[pos]) == (null))) { key[last] = (null); value[last] = null; return; } slot = (it.unimi.dsi.fastutil.HashCommon.mix(System.identityHashCode(curr))) & mask; if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break; pos = (pos + 1) & mask; } key[last] = curr; value[last] = value[pos]; } } @Override @SuppressWarnings("unchecked") public V remove(final Object k) { if ((((K) k) == (null))) { if (containsNullKey) return removeNullEntry(); return defRetValue; } K curr; final K[] key = this.key; int pos; // The starting point. if (((curr = key[pos = (it.unimi.dsi.fastutil.HashCommon.mix(System.identityHashCode(k))) & mask]) == (null))) return defRetValue; if (((k) == (curr))) return removeEntry(pos); while (true) { if (((curr = key[pos = (pos + 1) & mask]) == (null))) return defRetValue; if (((k) == (curr))) return removeEntry(pos); } } @Override @SuppressWarnings("unchecked") public V get(final Object k) { if ((((K) k) == (null))) return containsNullKey ? value[n] : defRetValue; K curr; final K[] key = this.key; int pos; // The starting point. if (((curr = key[pos = (it.unimi.dsi.fastutil.HashCommon.mix(System.identityHashCode(k))) & mask]) == (null))) return defRetValue; if (((k) == (curr))) return value[pos]; // There's always an unused entry. while (true) { if (((curr = key[pos = (pos + 1) & mask]) == (null))) return defRetValue; if (((k) == (curr))) return value[pos]; } } @Override @SuppressWarnings("unchecked") public boolean containsKey(final Object k) { if ((((K) k) == (null))) return containsNullKey; K curr; final K[] key = this.key; int pos; // The starting point. if (((curr = key[pos = (it.unimi.dsi.fastutil.HashCommon.mix(System.identityHashCode(k))) & mask]) == (null))) return false; if (((k) == (curr))) return true; // There's always an unused entry. while (true) { if (((curr = key[pos = (pos + 1) & mask]) == (null))) return false; if (((k) == (curr))) return true; } } @Override public boolean containsValue(final Object v) { final V value[] = this.value; final K key[] = this.key; if (containsNullKey && ((value[n]) == (v))) return true; for (int i = n; i-- != 0;) if (!((key[i]) == (null)) && ((value[i]) == (v))) return true; return false; } /* * Removes all elements from this map. * *

To increase object reuse, this method does not change the table size. If * you want to reduce the table size, you must use {@link #trim()}. * */ @Override public void clear() { if (size == 0) return; size = 0; containsNullKey = false; Arrays.fill(key, (null)); Arrays.fill(value, null); } @Override public int size() { return size; } @Override public boolean isEmpty() { return size == 0; } /** * The entry class for a hash map does not record key and value, but rather the * position in the hash table of the corresponding entry. This is necessary so * that calls to {@link java.util.Map.Entry#setValue(Object)} are reflected in * the map */ final class MapEntry implements Reference2ReferenceMap.Entry, Map.Entry { // The table index this entry refers to, or -1 if this entry has been deleted. int index; MapEntry(final int index) { this.index = index; } MapEntry() { } @Override public K getKey() { return key[index]; } @Override public V getValue() { return value[index]; } @Override public V setValue(final V v) { final V oldValue = value[index]; value[index] = v; return oldValue; } @SuppressWarnings("unchecked") @Override public boolean equals(final Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry) o; return ((key[index]) == ((e.getKey()))) && ((value[index]) == ((e.getValue()))); } @Override public int hashCode() { return (System.identityHashCode(key[index])) ^ ((value[index]) == null ? 0 : System.identityHashCode(value[index])); } @Override public String toString() { return key[index] + "=>" + value[index]; } } /** An iterator over a hash map. */ private class MapIterator { /** * The index of the last entry returned, if positive or zero; initially, * {@link #n}. If negative, the last entry returned was that of the key of index * {@code - pos - 1} from the {@link #wrapped} list. */ int pos = n; /** * The index of the last entry that has been returned (more precisely, the value * of {@link #pos} if {@link #pos} is positive, or {@link Integer#MIN_VALUE} if * {@link #pos} is negative). It is -1 if either we did not return an entry yet, * or the last returned entry has been removed. */ int last = -1; /** A downward counter measuring how many entries must still be returned. */ int c = size; /** * A boolean telling us whether we should return the entry with the null key. */ boolean mustReturnNullKey = Reference2ReferenceOpenHashMap.this.containsNullKey; /** * A lazily allocated list containing keys of entries that have wrapped around * the table because of removals. */ ReferenceArrayList wrapped; public boolean hasNext() { return c != 0; } public int nextEntry() { if (!hasNext()) throw new NoSuchElementException(); c--; if (mustReturnNullKey) { mustReturnNullKey = false; return last = n; } final K key[] = Reference2ReferenceOpenHashMap.this.key; for (;;) { if (--pos < 0) { // We are just enumerating elements from the wrapped list. last = Integer.MIN_VALUE; final K k = wrapped.get(-pos - 1); int p = (it.unimi.dsi.fastutil.HashCommon.mix(System.identityHashCode(k))) & mask; while (!((k) == (key[p]))) p = (p + 1) & mask; return p; } if (!((key[pos]) == (null))) return last = pos; } } /** * Shifts left entries with the specified hash code, starting at the specified * position, and empties the resulting free entry. * * @param pos * a starting position. */ private void shiftKeys(int pos) { // Shift entries with the same hash. int last, slot; K curr; final K[] key = Reference2ReferenceOpenHashMap.this.key; for (;;) { pos = ((last = pos) + 1) & mask; for (;;) { if (((curr = key[pos]) == (null))) { key[last] = (null); value[last] = null; return; } slot = (it.unimi.dsi.fastutil.HashCommon.mix(System.identityHashCode(curr))) & mask; if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break; pos = (pos + 1) & mask; } if (pos < last) { // Wrapped entry. if (wrapped == null) wrapped = new ReferenceArrayList<>(2); wrapped.add(key[pos]); } key[last] = curr; value[last] = value[pos]; } } public void remove() { if (last == -1) throw new IllegalStateException(); if (last == n) { containsNullKey = false; key[n] = null; value[n] = null; } else if (pos >= 0) shiftKeys(last); else { // We're removing wrapped entries. Reference2ReferenceOpenHashMap.this.remove(wrapped.set(-pos - 1, null)); last = -1; // Note that we must not decrement size return; } size--; last = -1; // You can no longer remove this entry. if (ASSERTS) checkTable(); } public int skip(final int n) { int i = n; while (i-- != 0 && hasNext()) nextEntry(); return n - i - 1; } } private class EntryIterator extends MapIterator implements ObjectIterator> { private MapEntry entry; @Override public MapEntry next() { return entry = new MapEntry(nextEntry()); } @Override public void remove() { super.remove(); entry.index = -1; // You cannot use a deleted entry. } } private class FastEntryIterator extends MapIterator implements ObjectIterator> { private final MapEntry entry = new MapEntry(); @Override public MapEntry next() { entry.index = nextEntry(); return entry; } } private final class MapEntrySet extends AbstractObjectSet> implements FastEntrySet { @Override public ObjectIterator> iterator() { return new EntryIterator(); } @Override public ObjectIterator> fastIterator() { return new FastEntryIterator(); } @Override @SuppressWarnings("unchecked") public boolean contains(final Object o) { if (!(o instanceof Map.Entry)) return false; final Map.Entry e = (Map.Entry) o; final K k = ((K) e.getKey()); final V v = ((V) e.getValue()); if (((k) == (null))) return Reference2ReferenceOpenHashMap.this.containsNullKey && ((value[n]) == (v)); K curr; final K[] key = Reference2ReferenceOpenHashMap.this.key; int pos; // The starting point. if (((curr = key[pos = (it.unimi.dsi.fastutil.HashCommon.mix(System.identityHashCode(k))) & mask]) == (null))) return false; if (((k) == (curr))) return ((value[pos]) == (v)); // There's always an unused entry. while (true) { if (((curr = key[pos = (pos + 1) & mask]) == (null))) return false; if (((k) == (curr))) return ((value[pos]) == (v)); } } @Override @SuppressWarnings("unchecked") public boolean remove(final Object o) { if (!(o instanceof Map.Entry)) return false; final Map.Entry e = (Map.Entry) o; final K k = ((K) e.getKey()); final V v = ((V) e.getValue()); if (((k) == (null))) { if (containsNullKey && ((value[n]) == (v))) { removeNullEntry(); return true; } return false; } K curr; final K[] key = Reference2ReferenceOpenHashMap.this.key; int pos; // The starting point. if (((curr = key[pos = (it.unimi.dsi.fastutil.HashCommon.mix(System.identityHashCode(k))) & mask]) == (null))) return false; if (((curr) == (k))) { if (((value[pos]) == (v))) { removeEntry(pos); return true; } return false; } while (true) { if (((curr = key[pos = (pos + 1) & mask]) == (null))) return false; if (((curr) == (k))) { if (((value[pos]) == (v))) { removeEntry(pos); return true; } } } } @Override public int size() { return size; } @Override public void clear() { Reference2ReferenceOpenHashMap.this.clear(); } /** {@inheritDoc} */ @Override public void forEach(final Consumer> consumer) { if (containsNullKey) consumer.accept(new AbstractReference2ReferenceMap.BasicEntry(key[n], value[n])); for (int pos = n; pos-- != 0;) if (!((key[pos]) == (null))) consumer.accept(new AbstractReference2ReferenceMap.BasicEntry(key[pos], value[pos])); } /** {@inheritDoc} */ @Override public void fastForEach(final Consumer> consumer) { final AbstractReference2ReferenceMap.BasicEntry entry = new AbstractReference2ReferenceMap.BasicEntry<>(); if (containsNullKey) { entry.key = key[n]; entry.value = value[n]; consumer.accept(entry); } for (int pos = n; pos-- != 0;) if (!((key[pos]) == (null))) { entry.key = key[pos]; entry.value = value[pos]; consumer.accept(entry); } } } @Override public FastEntrySet reference2ReferenceEntrySet() { if (entries == null) entries = new MapEntrySet(); return entries; } /** * An iterator on keys. * *

* We simply override the * {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} * methods (and possibly their type-specific counterparts) so that they return * keys instead of entries. */ private final class KeyIterator extends MapIterator implements ObjectIterator { public KeyIterator() { super(); } @Override public K next() { return key[nextEntry()]; } } private final class KeySet extends AbstractReferenceSet { @Override public ObjectIterator iterator() { return new KeyIterator(); } /** {@inheritDoc} */ @Override public void forEach(final Consumer consumer) { if (containsNullKey) consumer.accept(key[n]); for (int pos = n; pos-- != 0;) { final K k = key[pos]; if (!((k) == (null))) consumer.accept(k); } } @Override public int size() { return size; } @Override public boolean contains(Object k) { return containsKey(k); } @Override public boolean remove(Object k) { final int oldSize = size; Reference2ReferenceOpenHashMap.this.remove(k); return size != oldSize; } @Override public void clear() { Reference2ReferenceOpenHashMap.this.clear(); } } @Override public ReferenceSet keySet() { if (keys == null) keys = new KeySet(); return keys; } /** * An iterator on values. * *

* We simply override the * {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} * methods (and possibly their type-specific counterparts) so that they return * values instead of entries. */ private final class ValueIterator extends MapIterator implements ObjectIterator { public ValueIterator() { super(); } @Override public V next() { return value[nextEntry()]; } } @Override public ReferenceCollection values() { if (values == null) values = new AbstractReferenceCollection() { @Override public ObjectIterator iterator() { return new ValueIterator(); } @Override public int size() { return size; } @Override public boolean contains(Object v) { return containsValue(v); } @Override public void clear() { Reference2ReferenceOpenHashMap.this.clear(); } /** {@inheritDoc} */ @Override public void forEach(final Consumer consumer) { if (containsNullKey) consumer.accept(value[n]); for (int pos = n; pos-- != 0;) if (!((key[pos]) == (null))) consumer.accept(value[pos]); } }; return values; } /** * Rehashes the map, making the table as small as possible. * *

* This method rehashes the table to the smallest size satisfying the load * factor. It can be used when the set will not be changed anymore, so to * optimize access speed and size. * *

* If the table size is already the minimum possible, this method does nothing. * * @return true if there was enough memory to trim the map. * @see #trim(int) */ public boolean trim() { final int l = arraySize(size, f); if (l >= n || size > maxFill(l, f)) return true; try { rehash(l); } catch (OutOfMemoryError cantDoIt) { return false; } return true; } /** * Rehashes this map if the table is too large. * *

* Let N be the smallest table size that can hold * max(n,{@link #size()}) entries, still satisfying the load * factor. If the current table size is smaller than or equal to N, * this method does nothing. Otherwise, it rehashes this map in a table of size * N. * *

* This method is useful when reusing maps. {@linkplain #clear() Clearing a map} * leaves the table size untouched. If you are reusing a map many times, you can * call this method with a typical size to avoid keeping around a very large * table just because of a few large transient maps. * * @param n * the threshold for the trimming. * @return true if there was enough memory to trim the map. * @see #trim() */ public boolean trim(final int n) { final int l = HashCommon.nextPowerOfTwo((int) Math.ceil(n / f)); if (l >= n || size > maxFill(l, f)) return true; try { rehash(l); } catch (OutOfMemoryError cantDoIt) { return false; } return true; } /** * Rehashes the map. * *

* This method implements the basic rehashing strategy, and may be overridden by * subclasses implementing different rehashing strategies (e.g., disk-based * rehashing). However, you should not override this method unless you * understand the internal workings of this class. * * @param newN * the new size */ @SuppressWarnings("unchecked") protected void rehash(final int newN) { final K key[] = this.key; final V value[] = this.value; final int mask = newN - 1; // Note that this is used by the hashing macro final K newKey[] = (K[]) new Object[newN + 1]; final V newValue[] = (V[]) new Object[newN + 1]; int i = n, pos; for (int j = realSize(); j-- != 0;) { while (((key[--i]) == (null))); if (!((newKey[pos = (it.unimi.dsi.fastutil.HashCommon.mix(System.identityHashCode(key[i]))) & mask]) == (null))) while (!((newKey[pos = (pos + 1) & mask]) == (null))); newKey[pos] = key[i]; newValue[pos] = value[i]; } newValue[newN] = value[n]; n = newN; this.mask = mask; maxFill = maxFill(n, f); this.key = newKey; this.value = newValue; } /** * Returns a deep copy of this map. * *

* This method performs a deep copy of this hash map; the data stored in the * map, however, is not cloned. Note that this makes a difference only for * object keys. * * @return a deep copy of this map. */ @Override @SuppressWarnings("unchecked") public Reference2ReferenceOpenHashMap clone() { Reference2ReferenceOpenHashMap c; try { c = (Reference2ReferenceOpenHashMap) super.clone(); } catch (CloneNotSupportedException cantHappen) { throw new InternalError(); } c.keys = null; c.values = null; c.entries = null; c.containsNullKey = containsNullKey; c.key = key.clone(); c.value = value.clone(); return c; } /** * Returns a hash code for this map. * * This method overrides the generic method provided by the superclass. Since * {@code equals()} is not overriden, it is important that the value returned by * this method is the same value as the one returned by the overriden method. * * @return a hash code for this map. */ @Override public int hashCode() { int h = 0; for (int j = realSize(), i = 0, t = 0; j-- != 0;) { while (((key[i]) == (null))) i++; if (this != key[i]) t = (System.identityHashCode(key[i])); if (this != value[i]) t ^= ((value[i]) == null ? 0 : System.identityHashCode(value[i])); h += t; i++; } // Zero / null keys have hash zero. if (containsNullKey) h += ((value[n]) == null ? 0 : System.identityHashCode(value[n])); return h; } private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { final K key[] = this.key; final V value[] = this.value; final MapIterator i = new MapIterator(); s.defaultWriteObject(); for (int j = size, e; j-- != 0;) { e = i.nextEntry(); s.writeObject(key[e]); s.writeObject(value[e]); } } @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); n = arraySize(size, f); maxFill = maxFill(n, f); mask = n - 1; final K key[] = this.key = (K[]) new Object[n + 1]; final V value[] = this.value = (V[]) new Object[n + 1]; K k; V v; for (int i = size, pos; i-- != 0;) { k = (K) s.readObject(); v = (V) s.readObject(); if (((k) == (null))) { pos = n; containsNullKey = true; } else { pos = (it.unimi.dsi.fastutil.HashCommon.mix(System.identityHashCode(k))) & mask; while (!((key[pos]) == (null))) pos = (pos + 1) & mask; } key[pos] = k; value[pos] = v; } if (ASSERTS) checkTable(); } private void checkTable() { } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy