drv.BigArrayBigList.drv Maven / Gradle / Ivy
Show all versions of fastutil Show documentation
/*
* Copyright (C) 2002-2020 Sebastiano Vigna
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package PACKAGE;
import java.util.Collection;
import java.util.Iterator;
import java.util.RandomAccess;
import java.util.NoSuchElementException;
import it.unimi.dsi.fastutil.BigArrays;
import static it.unimi.dsi.fastutil.BigArrays.length;
#if KEYS_PRIMITIVE
/** A type-specific big list based on a big array; provides some additional methods that use polymorphism to avoid (un)boxing.
*
* This class implements a lightweight, fast, open, optimized,
* reuse-oriented version of big-array-based big lists. Instances of this class
* represent a big list with a big array that is enlarged as needed when new entries
* are created (by doubling the current length), but is
* never made smaller (even on a {@link #clear()}). A family of
* {@linkplain #trim() trimming methods} lets you control the size of the
* backing big array; this is particularly useful if you reuse instances of this class.
* Range checks are equivalent to those of {@link java.util}'s classes, but
* they are delayed as much as possible. The backing big array is exposed by the
* {@link #elements()} method.
*
*
This class implements the bulk methods {@code removeElements()},
* {@code addElements()} and {@code getElements()} using
* high-performance system calls (e.g., {@link
* System#arraycopy(Object,int,Object,int,int) System.arraycopy()} instead of
* expensive loops.
*
* @see java.util.ArrayList
*/
public class BIG_ARRAY_BIG_LIST KEY_GENERIC extends ABSTRACT_BIG_LIST KEY_GENERIC implements RandomAccess, Cloneable, java.io.Serializable {
private static final long serialVersionUID = -7046029254386353130L;
#else
/** A type-specific big-array-based big list; provides some additional methods that use polymorphism to avoid (un)boxing.
*
*
This class implements a lightweight, fast, open, optimized,
* reuse-oriented version of big-array-based big lists. Instances of this class
* represent a big list with a big array that is enlarged as needed when new entries
* are created (by doubling the current length), but is
* never made smaller (even on a {@link #clear()}). A family of
* {@linkplain #trim() trimming methods} lets you control the size of the
* backing big array; this is particularly useful if you reuse instances of this class.
* Range checks are equivalent to those of {@link java.util}'s classes, but
* they are delayed as much as possible.
*
*
The backing big array is exposed by the {@link #elements()} method. If an instance
* of this class was created {@linkplain #wrap(Object[][],long) by wrapping},
* backing-array reallocations will be performed using reflection, so that
* {@link #elements()} can return a big array of the same type of the original big array; the comments
* about efficiency made in {@link it.unimi.dsi.fastutil.objects.ObjectArrays} apply here.
*
*
This class implements the bulk methods {@code removeElements()},
* {@code addElements()} and {@code getElements()} using
* high-performance system calls (e.g., {@link
* System#arraycopy(Object,int,Object,int,int) System.arraycopy()} instead of
* expensive loops.
*
* @see java.util.ArrayList
*/
public class BIG_ARRAY_BIG_LIST KEY_GENERIC extends ABSTRACT_BIG_LIST KEY_GENERIC implements RandomAccess, Cloneable, java.io.Serializable {
private static final long serialVersionUID = -7046029254386353131L;
#endif
/** The initial default capacity of a big-array big list. */
public static final int DEFAULT_INITIAL_CAPACITY = 10;
#if ! KEYS_PRIMITIVE
/** Whether the backing big array was passed to {@code wrap()}. In
* this case, we must reallocate with the same type of big array. */
protected final boolean wrapped;
#endif
/** The backing big array. */
protected transient KEY_GENERIC_TYPE a[][];
/** The current actual size of the big list (never greater than the backing-array length). */
protected long size;
/** Creates a new big-array big list using a given array.
*
*
This constructor is only meant to be used by the wrapping methods.
*
* @param a the big array that will be used to back this big-array big list.
*/
protected BIG_ARRAY_BIG_LIST(final KEY_GENERIC_TYPE a[][], @SuppressWarnings("unused") boolean dummy) {
this.a = a;
#if ! KEYS_PRIMITIVE
this.wrapped = true;
#endif
}
/** Creates a new big-array big list with given capacity.
*
* @param capacity the initial capacity of the array list (may be 0).
*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
public BIG_ARRAY_BIG_LIST(final long capacity) {
if (capacity < 0) throw new IllegalArgumentException("Initial capacity (" + capacity + ") is negative");
if (capacity == 0) a = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.EMPTY_BIG_ARRAY;
else a = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.newBigArray(capacity);
#if ! KEYS_PRIMITIVE
wrapped = false;
#endif
}
/** Creates a new big-array big list with {@link #DEFAULT_INITIAL_CAPACITY} capacity. */
SUPPRESS_WARNINGS_KEY_UNCHECKED
public BIG_ARRAY_BIG_LIST() {
a = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.DEFAULT_EMPTY_BIG_ARRAY; // We delay allocation
#if ! KEYS_PRIMITIVE
wrapped = false;
#endif
}
/** Creates a new big-array big list and fills it with a given type-specific collection.
*
* @param c a type-specific collection that will be used to fill the array list.
*/
public BIG_ARRAY_BIG_LIST(final COLLECTION KEY_EXTENDS_GENERIC c) {
this(c.size());
for(KEY_ITERATOR KEY_EXTENDS_GENERIC i = c.iterator(); i.hasNext();) add(i.NEXT_KEY());
}
/** Creates a new big-array big list and fills it with a given type-specific list.
*
* @param l a type-specific list that will be used to fill the array list.
*/
public BIG_ARRAY_BIG_LIST(final BIG_LIST KEY_EXTENDS_GENERIC l) {
this(l.size64());
l.getElements(0, a, 0, size = l.size64());
}
/** Creates a new big-array big list and fills it with the elements of a given big array.
*
*
Note that this constructor makes it easy to build big lists from literal arrays
* declared as type[][] {{ init_values }}
.
* The only constraint is that the number of initialisation values is
* below {@link it.unimi.dsi.fastutil.BigArrays#SEGMENT_SIZE}.
*
* @param a a big array whose elements will be used to fill the array list.
*/
public BIG_ARRAY_BIG_LIST(final KEY_GENERIC_TYPE a[][]) {
this(a, 0, length(a));
}
/** Creates a new big-array big list and fills it with the elements of a given big array.
*
*
Note that this constructor makes it easy to build big lists from literal arrays
* declared as type[][] {{ init_values }}
.
* The only constraint is that the number of initialisation values is
* below {@link it.unimi.dsi.fastutil.BigArrays#SEGMENT_SIZE}.
*
* @param a a big array whose elements will be used to fill the array list.
* @param offset the first element to use.
* @param length the number of elements to use.
*/
public BIG_ARRAY_BIG_LIST(final KEY_GENERIC_TYPE a[][], final long offset, final long length) {
this(length);
BigArrays.copy(a, offset, this.a, 0, length);
size = length;
}
/** Creates a new big-array big list and fills it with the elements returned by an iterator..
*
* @param i an iterator whose returned elements will fill the array list.
*/
public BIG_ARRAY_BIG_LIST(final Iterator extends KEY_GENERIC_CLASS> i) {
this();
while(i.hasNext()) this.add(KEY_CLASS2TYPE(i.next()));
}
/** Creates a new big-array big list and fills it with the elements returned by a type-specific iterator..
*
* @param i a type-specific iterator whose returned elements will fill the array list.
*/
public BIG_ARRAY_BIG_LIST(final KEY_ITERATOR KEY_EXTENDS_GENERIC i) {
this();
while(i.hasNext()) this.add(i.NEXT_KEY());
}
#if KEYS_PRIMITIVE
/** Returns the backing big array of this big list.
*
* @return the backing big array.
*/
public KEY_GENERIC_TYPE[][] elements() {
return a;
}
#else
/** Returns the backing big array of this big list.
*
*
If this big-array big list was created by wrapping a given big array, it is guaranteed
* that the type of the returned big array will be the same. Otherwise, the returned
* big array will be an big array of objects.
*
* @return the backing big array.
*/
public KEY_GENERIC_TYPE[][] elements() {
return a;
}
#endif
/** Wraps a given big array into a big-array list of given size.
*
* @param a a big array to wrap.
* @param length the length of the resulting big-array list.
* @return a new big-array list of the given size, wrapping the given big array.
*/
public static KEY_GENERIC BIG_ARRAY_BIG_LIST KEY_GENERIC wrap(final KEY_GENERIC_TYPE a[][], final long length) {
if (length > length(a)) throw new IllegalArgumentException("The specified length (" + length + ") is greater than the array size (" + length(a) + ")");
final BIG_ARRAY_BIG_LIST KEY_GENERIC l = new BIG_ARRAY_BIG_LIST KEY_GENERIC_DIAMOND(a, false);
l.size = length;
return l;
}
/** Wraps a given big array into a big-array big list.
*
* @param a a big array to wrap.
* @return a new big-array big list wrapping the given array.
*/
public static KEY_GENERIC BIG_ARRAY_BIG_LIST KEY_GENERIC wrap(final KEY_GENERIC_TYPE a[][]) {
return wrap(a, length(a));
}
/** Ensures that this big-array big list can contain the given number of entries without resizing.
*
* @param capacity the new minimum capacity for this big-array big list.
*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
public void ensureCapacity(final long capacity) {
if (capacity <= length(a) || a == BIG_ARRAYS.DEFAULT_EMPTY_BIG_ARRAY) return;
#if KEYS_PRIMITIVE
a = BigArrays.forceCapacity(a, capacity, size);
#else
if (wrapped) a = BigArrays.forceCapacity(a, capacity, size);
else {
if (capacity > length(a)) {
final Object t[][] = BIG_ARRAYS.newBigArray(capacity);
BigArrays.copy(a, 0, t, 0, size);
a = (KEY_GENERIC_TYPE[][])t;
}
}
#endif
assert size <= length(a);
}
/** Grows this big-array big list, ensuring that it can contain the given number of entries without resizing,
* and in case increasing current capacity at least by a factor of 50%.
*
* @param capacity the new minimum capacity for this big-array big list.
*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
private void grow(long capacity) {
final long oldLength = length(a);
if (capacity <= oldLength) return;
if (a != BIG_ARRAYS.DEFAULT_EMPTY_BIG_ARRAY) capacity = Math.max(oldLength + (oldLength >> 1), capacity);
else if (capacity < DEFAULT_INITIAL_CAPACITY) capacity = DEFAULT_INITIAL_CAPACITY;
#if KEYS_PRIMITIVE
a = BigArrays.forceCapacity(a, capacity, size);
#else
if (wrapped) a = BigArrays.forceCapacity(a, capacity, size);
else {
final Object t[][] = BIG_ARRAYS.newBigArray(capacity);
BigArrays.copy(a, 0, t, 0, size);
a = (KEY_GENERIC_TYPE[][])t;
}
#endif
assert size <= length(a);
}
@Override
public void add(final long index, final KEY_GENERIC_TYPE k) {
ensureIndex(index);
grow(size + 1);
if (index != size) BigArrays.copy(a, index, a, index + 1, size - index);
BigArrays.set(a, index, k);
size++;
assert size <= length(a);
}
@Override
public boolean add(final KEY_GENERIC_TYPE k) {
grow(size + 1);
BigArrays.set(a, size++, k);
assert size <= length(a);
return true;
}
@Override
public KEY_GENERIC_TYPE GET_KEY(final long index) {
if (index >= size) throw new IndexOutOfBoundsException("Index (" + index + ") is greater than or equal to list size (" + size + ")");
return BigArrays.get(a, index);
}
@Override
public long indexOf(final KEY_TYPE k) {
for(long i = 0; i < size; i++) if (KEY_EQUALS(k, BigArrays.get(a, i))) return i;
return -1;
}
@Override
public long lastIndexOf(final KEY_TYPE k) {
for(long i = size; i-- != 0;) if (KEY_EQUALS(k, BigArrays.get(a, i))) return i;
return -1;
}
@Override
public KEY_GENERIC_TYPE REMOVE_KEY(final long index) {
if (index >= size) throw new IndexOutOfBoundsException("Index (" + index + ") is greater than or equal to list size (" + size + ")");
final KEY_GENERIC_TYPE old = BigArrays.get(a, index);
size--;
if (index != size) BigArrays.copy(a, index + 1, a, index, size - index);
#if KEYS_REFERENCE
BigArrays.set(a, size, null);
#endif
assert size <= length(a);
return old;
}
@Override
public boolean REMOVE(final KEY_TYPE k) {
final long index = indexOf(k);
if (index == -1) return false;
REMOVE_KEY(index);
assert size <= length(a);
return true;
}
@Override
public KEY_GENERIC_TYPE set(final long index, final KEY_GENERIC_TYPE k) {
if (index >= size) throw new IndexOutOfBoundsException("Index (" + index + ") is greater than or equal to list size (" + size + ")");
KEY_GENERIC_TYPE old = BigArrays.get(a, index);
BigArrays.set(a, index, k);
return old;
}
#if KEYS_PRIMITIVE
@Override
public boolean removeAll(final COLLECTION c) {
KEY_GENERIC_TYPE[] s = null, d = null;
int ss = -1, sd = BigArrays.SEGMENT_SIZE, ds = -1, dd = BigArrays.SEGMENT_SIZE;
for (long i = 0; i < size; i++) {
if (sd == BigArrays.SEGMENT_SIZE) {
sd = 0;
s = a[++ss];
}
if (!c.contains(s[sd])) {
if (dd == BigArrays.SEGMENT_SIZE) {
d = a[++ds];
dd = 0;
}
d[dd++] = s[sd];
}
sd++;
}
final long j = BigArrays.index(ds, dd);
#if KEYS_REFERENCE
BigArrays.fill(a, j, size, null);
#endif
final boolean modified = size != j;
size = j;
return modified;
}
#endif
@Override
public boolean removeAll(final Collection> c) {
KEY_GENERIC_TYPE[] s = null, d = null;
int ss = -1, sd = BigArrays.SEGMENT_SIZE, ds = -1, dd = BigArrays.SEGMENT_SIZE;
for (long i = 0; i < size; i++) {
if (sd == BigArrays.SEGMENT_SIZE) {
sd = 0;
s = a[++ss];
}
if (!c.contains(KEY2OBJ(s[sd]))) {
if (dd == BigArrays.SEGMENT_SIZE) {
d = a[++ds];
dd = 0;
}
d[dd++] = s[sd];
}
sd++;
}
final long j = BigArrays.index(ds, dd);
#if KEYS_REFERENCE
BigArrays.fill(a, j, size, null);
#endif
final boolean modified = size != j;
size = j;
return modified;
}
@Override
public void clear() {
#if KEYS_REFERENCE
BigArrays.fill(a, 0, size, null);
#endif
size = 0;
assert size <= length(a);
}
@Override
public long size64() {
return size;
}
@Override
public void size(final long size) {
if (size > length(a)) a = BigArrays.forceCapacity(a, size, this.size);
if (size > this.size) BigArrays.fill(a, this.size, size, KEY_NULL);
#if KEYS_REFERENCE
else BigArrays.fill(a, size, this.size, KEY_NULL);
#endif
this.size = size;
}
@Override
public boolean isEmpty() {
return size == 0;
}
/** Trims this big-array big list so that the capacity is equal to the size.
*
* @see java.util.ArrayList#trimToSize()
*/
public void trim() {
trim(0);
}
/** Trims the backing big array if it is too large.
*
* If the current big array length is smaller than or equal to
* {@code n}, this method does nothing. Otherwise, it trims the
* big-array length to the maximum between {@code n} and {@link #size64()}.
*
*
This method is useful when reusing big lists. {@linkplain #clear() Clearing a
* big list} leaves the big-array length untouched. If you are reusing a big list
* many times, you can call this method with a typical
* size to avoid keeping around a very large big array just
* because of a few large transient big lists.
*
* @param n the threshold for the trimming.
*/
public void trim(final long n) {
final long arrayLength = length(a);
if (n >= arrayLength || size == arrayLength) return;
a = BigArrays.trim(a, Math.max(n, size));
assert size <= length(a);
}
/** Copies element of this type-specific list into the given big array using optimized system calls.
*
* @param from the start index (inclusive).
* @param a the destination big array.
* @param offset the offset into the destination array where to store the first element copied.
* @param length the number of elements to be copied.
*/
@Override
public void getElements(final long from, final KEY_TYPE[][] a, final long offset, final long length) {
BigArrays.copy(this.a, from, a, offset, length);
}
/** Removes elements of this type-specific list using optimized system calls.
*
* @param from the start index (inclusive).
* @param to the end index (exclusive).
*/
@Override
public void removeElements(final long from, final long to) {
BigArrays.ensureFromTo(size, from, to);
BigArrays.copy(a, to, a, from, size - to);
size -= (to - from);
#if KEYS_REFERENCE
BigArrays.fill(a, size, size + to - from, null);
#endif
}
/** Adds elements to this type-specific list using optimized system calls.
*
* @param index the index at which to add elements.
* @param a the big array containing the elements.
* @param offset the offset of the first element to add.
* @param length the number of elements to add.
*/
@Override
public void addElements(final long index, final KEY_GENERIC_TYPE a[][], final long offset, final long length) {
ensureIndex(index);
BigArrays.ensureOffsetLength(a, offset, length);
grow(size + length);
BigArrays.copy(this.a, index, this.a, index + length, size - index);
BigArrays.copy(a, offset, this.a, index, length);
size += length;
}
@Override
public KEY_BIG_LIST_ITERATOR KEY_GENERIC listIterator(final long index) {
ensureIndex(index);
return new KEY_BIG_LIST_ITERATOR KEY_GENERIC() {
long pos = index, last = -1;
@Override
public boolean hasNext() { return pos < size; }
@Override
public boolean hasPrevious() { return pos > 0; }
@Override
public KEY_GENERIC_TYPE NEXT_KEY() { if (! hasNext()) throw new NoSuchElementException(); return BigArrays.get(a, last = pos++); }
@Override
public KEY_GENERIC_TYPE PREV_KEY() { if (! hasPrevious()) throw new NoSuchElementException(); return BigArrays.get(a, last = --pos); }
@Override
public long nextIndex() { return pos; }
@Override
public long previousIndex() { return pos - 1; }
@Override
public void add(KEY_GENERIC_TYPE k) {
BIG_ARRAY_BIG_LIST.this.add(pos++, k);
last = -1;
}
@Override
public void set(KEY_GENERIC_TYPE k) {
if (last == -1) throw new IllegalStateException();
BIG_ARRAY_BIG_LIST.this.set(last, k);
}
@Override
public void remove() {
if (last == -1) throw new IllegalStateException();
BIG_ARRAY_BIG_LIST.this.REMOVE_KEY(last);
/* If the last operation was a next(), we are removing an element *before* us, and we must decrease pos correspondingly. */
if (last < pos) pos--;
last = -1;
}
};
}
@Override
public BIG_ARRAY_BIG_LIST KEY_GENERIC clone() {
BIG_ARRAY_BIG_LIST KEY_GENERIC c = new BIG_ARRAY_BIG_LIST KEY_GENERIC_DIAMOND(size);
BigArrays.copy(a, 0, c.a, 0, size);
c.size = size;
return c;
}
#if KEY_CLASS_Object
private boolean valEquals(final K a, final K b) {
return a == null ? b == null : a.equals(b);
}
#endif
/** Compares this type-specific big-array list to another one.
*
*
This method exists only for sake of efficiency. The implementation
* inherited from the abstract implementation would already work.
*
* @param l a type-specific big-array list.
* @return true if the argument contains the same elements of this type-specific big-array list.
*/
public boolean equals(final BIG_ARRAY_BIG_LIST KEY_GENERIC l) {
if (l == this) return true;
long s = size64();
if (s != l.size64()) return false;
final KEY_GENERIC_TYPE[][] a1 = a;
final KEY_GENERIC_TYPE[][] a2 = l.a;
#if KEY_CLASS_Object
while(s-- != 0) if (! valEquals(BigArrays.get(a1, s), BigArrays.get(a2, s))) return false;
#else
while(s-- != 0) if (BigArrays.get(a1, s) != BigArrays.get(a2, s)) return false;
#endif
return true;
}
#if ! KEY_CLASS_Reference
/** Compares this big list to another big list.
*
*
This method exists only for sake of efficiency. The implementation
* inherited from the abstract implementation would already work.
*
* @param l a big list.
* @return a negative integer,
* zero, or a positive integer as this big list is lexicographically less than, equal
* to, or greater than the argument.
*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
public int compareTo(final BIG_ARRAY_BIG_LIST KEY_EXTENDS_GENERIC l) {
final long s1 = size64(), s2 = l.size64();
final KEY_GENERIC_TYPE a1[][] = a, a2[][] = l.a;
KEY_GENERIC_TYPE e1, e2;
int r, i;
for(i = 0; i < s1 && i < s2; i++) {
e1 = BigArrays.get(a1, i);
e2 = BigArrays.get(a2, i);
if ((r = KEY_CMP(e1, e2)) != 0) return r;
}
return i < s2 ? -1 : (i < s1 ? 1 : 0);
}
#endif
private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException {
s.defaultWriteObject();
for(int i = 0; i < size; i++) s.WRITE_KEY(BigArrays.get(a, i));
}
SUPPRESS_WARNINGS_KEY_UNCHECKED
private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
a = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.newBigArray(size);
for(int i = 0; i < size; i++) BigArrays.set(a, i, KEY_GENERIC_CAST s.READ_KEY());
}
#ifdef TEST
private static long seed = System.currentTimeMillis();
private static java.util.Random r = new java.util.Random(seed);
private static KEY_TYPE genKey() {
#if KEY_CLASS_Byte || KEY_CLASS_Short || KEY_CLASS_Character
return (KEY_TYPE)(r.nextInt());
#elif KEYS_PRIMITIVE
return r.NEXT_KEY();
#elif KEY_CLASS_Object
return Integer.toBinaryString(r.nextInt());
#else
return new java.io.Serializable() {};
#endif
}
private static java.text.NumberFormat format = new java.text.DecimalFormat("#,###.00");
private static java.text.FieldPosition p = new java.text.FieldPosition(0);
private static String format(double d) {
StringBuffer s = new StringBuffer();
return format.format(d, s, p).toString();
}
private static void speedTest(int n, boolean comp) {
System.out.println("There are presently no speed tests for this class.");
}
private static void fatal(String msg) {
System.out.println(msg);
System.exit(1);
}
private static void ensure(boolean cond, String msg) {
if (cond) return;
fatal(msg);
}
private static Object[] k, v, nk;
private static KEY_TYPE kt[];
private static KEY_TYPE nkt[];
private static BIG_ARRAY_BIG_LIST topList;
protected static void testLists(BIG_LIST m, BIG_LIST t, int n, int level) {
long ms;
Exception mThrowsIllegal, tThrowsIllegal, mThrowsOutOfBounds, tThrowsOutOfBounds;
Object rt = null;
KEY_TYPE rm = KEY_NULL;
if (level > 4) return;
/* Now we check that both sets agree on random keys. For m we use the polymorphic method. */
for(int i = 0; i < n; i++) {
int p = r.nextInt() % (n * 2);
KEY_TYPE T = genKey();
mThrowsOutOfBounds = tThrowsOutOfBounds = null;
try {
m.set(p, T);
}
catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }
try {
t.set(p, KEY2OBJ(T));
}
catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }
ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + level + ", " + seed + "): set() divergence at start in IndexOutOfBoundsException for index " + p + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")");
if (mThrowsOutOfBounds == null) ensure(t.get(p).equals(KEY2OBJ(m.GET_KEY(p))), "Error (" + level + ", " + seed + "): m and t differ after set() on position " + p + " (" + m.GET_KEY(p) + ", " + t.get(p) + ")");
p = r.nextInt() % (n * 2);
mThrowsOutOfBounds = tThrowsOutOfBounds = null;
try {
m.GET_KEY(p);
}
catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }
try {
t.get(p);
}
catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }
ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + level + ", " + seed + "): get() divergence at start in IndexOutOfBoundsException for index " + p + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")");
if (mThrowsOutOfBounds == null) ensure(t.get(p).equals(KEY2OBJ(m.GET_KEY(p))), "Error (" + level + ", " + seed + "): m and t differ aftre get() on position " + p + " (" + m.GET_KEY(p) + ", " + t.get(p) + ")");
}
/* Now we check that both sets agree on random keys. For m we use the standard method. */
for(int i = 0; i < n; i++) {
int p = r.nextInt() % (n * 2);
mThrowsOutOfBounds = tThrowsOutOfBounds = null;
try {
m.get(p);
}
catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }
try {
t.get(p);
}
catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }
ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + level + ", " + seed + "): get() divergence at start in IndexOutOfBoundsException for index " + p + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")");
if (mThrowsOutOfBounds == null) ensure(t.get(p).equals(m.get(p)), "Error (" + level + ", " + seed + "): m and t differ at start on position " + p + " (" + m.get(p) + ", " + t.get(p) + ")");
}
/* Now we check that m and t are equal. */
if (!m.equals(t) || ! t.equals(m)) System.err.println("m: " + m + " t: " + t);
ensure(m.equals(t), "Error (" + level + ", " + seed + "): ! m.equals(t) at start");
ensure(t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals(m) at start");
/* Now we check that m actually holds that data. */
for(Iterator i=t.iterator(); i.hasNext();) {
ensure(m.contains(i.next()), "Error (" + level + ", " + seed + "): m and t differ on an entry after insertion (iterating on t)");
}
/* Now we check that m actually holds that data, but iterating on m. */
for(Iterator i=m.listIterator(); i.hasNext();) {
ensure(t.contains(i.next()), "Error (" + level + ", " + seed + "): m and t differ on an entry after insertion (iterating on m)");
}
/* Now we check that inquiries about random data give the same answer in m and t. For
m we use the polymorphic method. */
for(int i=0; i n) {
m.size(n);
while(t.size64() != n) t.remove(t.size64() -1);
}
/* Now we add random data in m and t using addAll on a type-specific collection, checking that the result is the same. */
for(int i=0; i n) {
m.size(n);
while(t.size64() != n) t.remove(t.size64() -1);
}
/* Now we add random data in m and t using addAll on a list, checking that the result is the same. */
for(int i=0; i 2) r = new java.util.Random(seed = Long.parseLong(args[2]));
try {
if ("speedTest".equals(args[0]) || "speedComp".equals(args[0])) speedTest(n, "speedComp".equals(args[0]));
else if ("test".equals(args[0])) runTest(n);
} catch(Throwable e) {
e.printStackTrace(System.err);
System.err.println("seed: " + seed);
}
}
#endif
}