All Downloads are FREE. Search and download functionalities are using the official Maven repository.

drv.BigArrayBigList.drv Maven / Gradle / Ivy

Go to download

fastutil extends the Java Collections Framework by providing type-specific maps, sets, lists and priority queues with a small memory footprint and fast access and insertion; provides also big (64-bit) arrays, sets and lists, and fast, practical I/O classes for binary and text files.

There is a newer version: 8.5.15
Show newest version
/*
 * Copyright (C) 2002-2020 Sebastiano Vigna
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */


package PACKAGE;

import java.util.Collection;
import java.util.Iterator;
import java.util.RandomAccess;
import java.util.NoSuchElementException;
import it.unimi.dsi.fastutil.BigArrays;
import static it.unimi.dsi.fastutil.BigArrays.length;

#if KEYS_PRIMITIVE

/** A type-specific big list based on a big array; provides some additional methods that use polymorphism to avoid (un)boxing.
 *
 * 

This class implements a lightweight, fast, open, optimized, * reuse-oriented version of big-array-based big lists. Instances of this class * represent a big list with a big array that is enlarged as needed when new entries * are created (by doubling the current length), but is * never made smaller (even on a {@link #clear()}). A family of * {@linkplain #trim() trimming methods} lets you control the size of the * backing big array; this is particularly useful if you reuse instances of this class. * Range checks are equivalent to those of {@link java.util}'s classes, but * they are delayed as much as possible. The backing big array is exposed by the * {@link #elements()} method. * *

This class implements the bulk methods {@code removeElements()}, * {@code addElements()} and {@code getElements()} using * high-performance system calls (e.g., {@link * System#arraycopy(Object,int,Object,int,int) System.arraycopy()} instead of * expensive loops. * * @see java.util.ArrayList */ public class BIG_ARRAY_BIG_LIST KEY_GENERIC extends ABSTRACT_BIG_LIST KEY_GENERIC implements RandomAccess, Cloneable, java.io.Serializable { private static final long serialVersionUID = -7046029254386353130L; #else /** A type-specific big-array-based big list; provides some additional methods that use polymorphism to avoid (un)boxing. * *

This class implements a lightweight, fast, open, optimized, * reuse-oriented version of big-array-based big lists. Instances of this class * represent a big list with a big array that is enlarged as needed when new entries * are created (by doubling the current length), but is * never made smaller (even on a {@link #clear()}). A family of * {@linkplain #trim() trimming methods} lets you control the size of the * backing big array; this is particularly useful if you reuse instances of this class. * Range checks are equivalent to those of {@link java.util}'s classes, but * they are delayed as much as possible. * *

The backing big array is exposed by the {@link #elements()} method. If an instance * of this class was created {@linkplain #wrap(Object[][],long) by wrapping}, * backing-array reallocations will be performed using reflection, so that * {@link #elements()} can return a big array of the same type of the original big array; the comments * about efficiency made in {@link it.unimi.dsi.fastutil.objects.ObjectArrays} apply here. * *

This class implements the bulk methods {@code removeElements()}, * {@code addElements()} and {@code getElements()} using * high-performance system calls (e.g., {@link * System#arraycopy(Object,int,Object,int,int) System.arraycopy()} instead of * expensive loops. * * @see java.util.ArrayList */ public class BIG_ARRAY_BIG_LIST KEY_GENERIC extends ABSTRACT_BIG_LIST KEY_GENERIC implements RandomAccess, Cloneable, java.io.Serializable { private static final long serialVersionUID = -7046029254386353131L; #endif /** The initial default capacity of a big-array big list. */ public static final int DEFAULT_INITIAL_CAPACITY = 10; #if ! KEYS_PRIMITIVE /** Whether the backing big array was passed to {@code wrap()}. In * this case, we must reallocate with the same type of big array. */ protected final boolean wrapped; #endif /** The backing big array. */ protected transient KEY_GENERIC_TYPE a[][]; /** The current actual size of the big list (never greater than the backing-array length). */ protected long size; /** Creates a new big-array big list using a given array. * *

This constructor is only meant to be used by the wrapping methods. * * @param a the big array that will be used to back this big-array big list. */ protected BIG_ARRAY_BIG_LIST(final KEY_GENERIC_TYPE a[][], @SuppressWarnings("unused") boolean dummy) { this.a = a; #if ! KEYS_PRIMITIVE this.wrapped = true; #endif } /** Creates a new big-array big list with given capacity. * * @param capacity the initial capacity of the array list (may be 0). */ SUPPRESS_WARNINGS_KEY_UNCHECKED public BIG_ARRAY_BIG_LIST(final long capacity) { if (capacity < 0) throw new IllegalArgumentException("Initial capacity (" + capacity + ") is negative"); if (capacity == 0) a = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.EMPTY_BIG_ARRAY; else a = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.newBigArray(capacity); #if ! KEYS_PRIMITIVE wrapped = false; #endif } /** Creates a new big-array big list with {@link #DEFAULT_INITIAL_CAPACITY} capacity. */ SUPPRESS_WARNINGS_KEY_UNCHECKED public BIG_ARRAY_BIG_LIST() { a = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.DEFAULT_EMPTY_BIG_ARRAY; // We delay allocation #if ! KEYS_PRIMITIVE wrapped = false; #endif } /** Creates a new big-array big list and fills it with a given type-specific collection. * * @param c a type-specific collection that will be used to fill the array list. */ public BIG_ARRAY_BIG_LIST(final COLLECTION KEY_EXTENDS_GENERIC c) { this(c.size()); for(KEY_ITERATOR KEY_EXTENDS_GENERIC i = c.iterator(); i.hasNext();) add(i.NEXT_KEY()); } /** Creates a new big-array big list and fills it with a given type-specific list. * * @param l a type-specific list that will be used to fill the array list. */ public BIG_ARRAY_BIG_LIST(final BIG_LIST KEY_EXTENDS_GENERIC l) { this(l.size64()); l.getElements(0, a, 0, size = l.size64()); } /** Creates a new big-array big list and fills it with the elements of a given big array. * *

Note that this constructor makes it easy to build big lists from literal arrays * declared as type[][] {{ init_values }}. * The only constraint is that the number of initialisation values is * below {@link it.unimi.dsi.fastutil.BigArrays#SEGMENT_SIZE}. * * @param a a big array whose elements will be used to fill the array list. */ public BIG_ARRAY_BIG_LIST(final KEY_GENERIC_TYPE a[][]) { this(a, 0, length(a)); } /** Creates a new big-array big list and fills it with the elements of a given big array. * *

Note that this constructor makes it easy to build big lists from literal arrays * declared as type[][] {{ init_values }}. * The only constraint is that the number of initialisation values is * below {@link it.unimi.dsi.fastutil.BigArrays#SEGMENT_SIZE}. * * @param a a big array whose elements will be used to fill the array list. * @param offset the first element to use. * @param length the number of elements to use. */ public BIG_ARRAY_BIG_LIST(final KEY_GENERIC_TYPE a[][], final long offset, final long length) { this(length); BigArrays.copy(a, offset, this.a, 0, length); size = length; } /** Creates a new big-array big list and fills it with the elements returned by an iterator.. * * @param i an iterator whose returned elements will fill the array list. */ public BIG_ARRAY_BIG_LIST(final Iterator i) { this(); while(i.hasNext()) this.add(KEY_CLASS2TYPE(i.next())); } /** Creates a new big-array big list and fills it with the elements returned by a type-specific iterator.. * * @param i a type-specific iterator whose returned elements will fill the array list. */ public BIG_ARRAY_BIG_LIST(final KEY_ITERATOR KEY_EXTENDS_GENERIC i) { this(); while(i.hasNext()) this.add(i.NEXT_KEY()); } #if KEYS_PRIMITIVE /** Returns the backing big array of this big list. * * @return the backing big array. */ public KEY_GENERIC_TYPE[][] elements() { return a; } #else /** Returns the backing big array of this big list. * *

If this big-array big list was created by wrapping a given big array, it is guaranteed * that the type of the returned big array will be the same. Otherwise, the returned * big array will be an big array of objects. * * @return the backing big array. */ public KEY_GENERIC_TYPE[][] elements() { return a; } #endif /** Wraps a given big array into a big-array list of given size. * * @param a a big array to wrap. * @param length the length of the resulting big-array list. * @return a new big-array list of the given size, wrapping the given big array. */ public static KEY_GENERIC BIG_ARRAY_BIG_LIST KEY_GENERIC wrap(final KEY_GENERIC_TYPE a[][], final long length) { if (length > length(a)) throw new IllegalArgumentException("The specified length (" + length + ") is greater than the array size (" + length(a) + ")"); final BIG_ARRAY_BIG_LIST KEY_GENERIC l = new BIG_ARRAY_BIG_LIST KEY_GENERIC_DIAMOND(a, false); l.size = length; return l; } /** Wraps a given big array into a big-array big list. * * @param a a big array to wrap. * @return a new big-array big list wrapping the given array. */ public static KEY_GENERIC BIG_ARRAY_BIG_LIST KEY_GENERIC wrap(final KEY_GENERIC_TYPE a[][]) { return wrap(a, length(a)); } /** Ensures that this big-array big list can contain the given number of entries without resizing. * * @param capacity the new minimum capacity for this big-array big list. */ SUPPRESS_WARNINGS_KEY_UNCHECKED public void ensureCapacity(final long capacity) { if (capacity <= length(a) || a == BIG_ARRAYS.DEFAULT_EMPTY_BIG_ARRAY) return; #if KEYS_PRIMITIVE a = BigArrays.forceCapacity(a, capacity, size); #else if (wrapped) a = BigArrays.forceCapacity(a, capacity, size); else { if (capacity > length(a)) { final Object t[][] = BIG_ARRAYS.newBigArray(capacity); BigArrays.copy(a, 0, t, 0, size); a = (KEY_GENERIC_TYPE[][])t; } } #endif assert size <= length(a); } /** Grows this big-array big list, ensuring that it can contain the given number of entries without resizing, * and in case increasing current capacity at least by a factor of 50%. * * @param capacity the new minimum capacity for this big-array big list. */ SUPPRESS_WARNINGS_KEY_UNCHECKED private void grow(long capacity) { final long oldLength = length(a); if (capacity <= oldLength) return; if (a != BIG_ARRAYS.DEFAULT_EMPTY_BIG_ARRAY) capacity = Math.max(oldLength + (oldLength >> 1), capacity); else if (capacity < DEFAULT_INITIAL_CAPACITY) capacity = DEFAULT_INITIAL_CAPACITY; #if KEYS_PRIMITIVE a = BigArrays.forceCapacity(a, capacity, size); #else if (wrapped) a = BigArrays.forceCapacity(a, capacity, size); else { final Object t[][] = BIG_ARRAYS.newBigArray(capacity); BigArrays.copy(a, 0, t, 0, size); a = (KEY_GENERIC_TYPE[][])t; } #endif assert size <= length(a); } @Override public void add(final long index, final KEY_GENERIC_TYPE k) { ensureIndex(index); grow(size + 1); if (index != size) BigArrays.copy(a, index, a, index + 1, size - index); BigArrays.set(a, index, k); size++; assert size <= length(a); } @Override public boolean add(final KEY_GENERIC_TYPE k) { grow(size + 1); BigArrays.set(a, size++, k); assert size <= length(a); return true; } @Override public KEY_GENERIC_TYPE GET_KEY(final long index) { if (index >= size) throw new IndexOutOfBoundsException("Index (" + index + ") is greater than or equal to list size (" + size + ")"); return BigArrays.get(a, index); } @Override public long indexOf(final KEY_TYPE k) { for(long i = 0; i < size; i++) if (KEY_EQUALS(k, BigArrays.get(a, i))) return i; return -1; } @Override public long lastIndexOf(final KEY_TYPE k) { for(long i = size; i-- != 0;) if (KEY_EQUALS(k, BigArrays.get(a, i))) return i; return -1; } @Override public KEY_GENERIC_TYPE REMOVE_KEY(final long index) { if (index >= size) throw new IndexOutOfBoundsException("Index (" + index + ") is greater than or equal to list size (" + size + ")"); final KEY_GENERIC_TYPE old = BigArrays.get(a, index); size--; if (index != size) BigArrays.copy(a, index + 1, a, index, size - index); #if KEYS_REFERENCE BigArrays.set(a, size, null); #endif assert size <= length(a); return old; } @Override public boolean REMOVE(final KEY_TYPE k) { final long index = indexOf(k); if (index == -1) return false; REMOVE_KEY(index); assert size <= length(a); return true; } @Override public KEY_GENERIC_TYPE set(final long index, final KEY_GENERIC_TYPE k) { if (index >= size) throw new IndexOutOfBoundsException("Index (" + index + ") is greater than or equal to list size (" + size + ")"); KEY_GENERIC_TYPE old = BigArrays.get(a, index); BigArrays.set(a, index, k); return old; } #if KEYS_PRIMITIVE @Override public boolean removeAll(final COLLECTION c) { KEY_GENERIC_TYPE[] s = null, d = null; int ss = -1, sd = BigArrays.SEGMENT_SIZE, ds = -1, dd = BigArrays.SEGMENT_SIZE; for (long i = 0; i < size; i++) { if (sd == BigArrays.SEGMENT_SIZE) { sd = 0; s = a[++ss]; } if (!c.contains(s[sd])) { if (dd == BigArrays.SEGMENT_SIZE) { d = a[++ds]; dd = 0; } d[dd++] = s[sd]; } sd++; } final long j = BigArrays.index(ds, dd); #if KEYS_REFERENCE BigArrays.fill(a, j, size, null); #endif final boolean modified = size != j; size = j; return modified; } #endif @Override public boolean removeAll(final Collection c) { KEY_GENERIC_TYPE[] s = null, d = null; int ss = -1, sd = BigArrays.SEGMENT_SIZE, ds = -1, dd = BigArrays.SEGMENT_SIZE; for (long i = 0; i < size; i++) { if (sd == BigArrays.SEGMENT_SIZE) { sd = 0; s = a[++ss]; } if (!c.contains(KEY2OBJ(s[sd]))) { if (dd == BigArrays.SEGMENT_SIZE) { d = a[++ds]; dd = 0; } d[dd++] = s[sd]; } sd++; } final long j = BigArrays.index(ds, dd); #if KEYS_REFERENCE BigArrays.fill(a, j, size, null); #endif final boolean modified = size != j; size = j; return modified; } @Override public void clear() { #if KEYS_REFERENCE BigArrays.fill(a, 0, size, null); #endif size = 0; assert size <= length(a); } @Override public long size64() { return size; } @Override public void size(final long size) { if (size > length(a)) a = BigArrays.forceCapacity(a, size, this.size); if (size > this.size) BigArrays.fill(a, this.size, size, KEY_NULL); #if KEYS_REFERENCE else BigArrays.fill(a, size, this.size, KEY_NULL); #endif this.size = size; } @Override public boolean isEmpty() { return size == 0; } /** Trims this big-array big list so that the capacity is equal to the size. * * @see java.util.ArrayList#trimToSize() */ public void trim() { trim(0); } /** Trims the backing big array if it is too large. * * If the current big array length is smaller than or equal to * {@code n}, this method does nothing. Otherwise, it trims the * big-array length to the maximum between {@code n} and {@link #size64()}. * *

This method is useful when reusing big lists. {@linkplain #clear() Clearing a * big list} leaves the big-array length untouched. If you are reusing a big list * many times, you can call this method with a typical * size to avoid keeping around a very large big array just * because of a few large transient big lists. * * @param n the threshold for the trimming. */ public void trim(final long n) { final long arrayLength = length(a); if (n >= arrayLength || size == arrayLength) return; a = BigArrays.trim(a, Math.max(n, size)); assert size <= length(a); } /** Copies element of this type-specific list into the given big array using optimized system calls. * * @param from the start index (inclusive). * @param a the destination big array. * @param offset the offset into the destination array where to store the first element copied. * @param length the number of elements to be copied. */ @Override public void getElements(final long from, final KEY_TYPE[][] a, final long offset, final long length) { BigArrays.copy(this.a, from, a, offset, length); } /** Removes elements of this type-specific list using optimized system calls. * * @param from the start index (inclusive). * @param to the end index (exclusive). */ @Override public void removeElements(final long from, final long to) { BigArrays.ensureFromTo(size, from, to); BigArrays.copy(a, to, a, from, size - to); size -= (to - from); #if KEYS_REFERENCE BigArrays.fill(a, size, size + to - from, null); #endif } /** Adds elements to this type-specific list using optimized system calls. * * @param index the index at which to add elements. * @param a the big array containing the elements. * @param offset the offset of the first element to add. * @param length the number of elements to add. */ @Override public void addElements(final long index, final KEY_GENERIC_TYPE a[][], final long offset, final long length) { ensureIndex(index); BigArrays.ensureOffsetLength(a, offset, length); grow(size + length); BigArrays.copy(this.a, index, this.a, index + length, size - index); BigArrays.copy(a, offset, this.a, index, length); size += length; } @Override public KEY_BIG_LIST_ITERATOR KEY_GENERIC listIterator(final long index) { ensureIndex(index); return new KEY_BIG_LIST_ITERATOR KEY_GENERIC() { long pos = index, last = -1; @Override public boolean hasNext() { return pos < size; } @Override public boolean hasPrevious() { return pos > 0; } @Override public KEY_GENERIC_TYPE NEXT_KEY() { if (! hasNext()) throw new NoSuchElementException(); return BigArrays.get(a, last = pos++); } @Override public KEY_GENERIC_TYPE PREV_KEY() { if (! hasPrevious()) throw new NoSuchElementException(); return BigArrays.get(a, last = --pos); } @Override public long nextIndex() { return pos; } @Override public long previousIndex() { return pos - 1; } @Override public void add(KEY_GENERIC_TYPE k) { BIG_ARRAY_BIG_LIST.this.add(pos++, k); last = -1; } @Override public void set(KEY_GENERIC_TYPE k) { if (last == -1) throw new IllegalStateException(); BIG_ARRAY_BIG_LIST.this.set(last, k); } @Override public void remove() { if (last == -1) throw new IllegalStateException(); BIG_ARRAY_BIG_LIST.this.REMOVE_KEY(last); /* If the last operation was a next(), we are removing an element *before* us, and we must decrease pos correspondingly. */ if (last < pos) pos--; last = -1; } }; } @Override public BIG_ARRAY_BIG_LIST KEY_GENERIC clone() { BIG_ARRAY_BIG_LIST KEY_GENERIC c = new BIG_ARRAY_BIG_LIST KEY_GENERIC_DIAMOND(size); BigArrays.copy(a, 0, c.a, 0, size); c.size = size; return c; } #if KEY_CLASS_Object private boolean valEquals(final K a, final K b) { return a == null ? b == null : a.equals(b); } #endif /** Compares this type-specific big-array list to another one. * *

This method exists only for sake of efficiency. The implementation * inherited from the abstract implementation would already work. * * @param l a type-specific big-array list. * @return true if the argument contains the same elements of this type-specific big-array list. */ public boolean equals(final BIG_ARRAY_BIG_LIST KEY_GENERIC l) { if (l == this) return true; long s = size64(); if (s != l.size64()) return false; final KEY_GENERIC_TYPE[][] a1 = a; final KEY_GENERIC_TYPE[][] a2 = l.a; #if KEY_CLASS_Object while(s-- != 0) if (! valEquals(BigArrays.get(a1, s), BigArrays.get(a2, s))) return false; #else while(s-- != 0) if (BigArrays.get(a1, s) != BigArrays.get(a2, s)) return false; #endif return true; } #if ! KEY_CLASS_Reference /** Compares this big list to another big list. * *

This method exists only for sake of efficiency. The implementation * inherited from the abstract implementation would already work. * * @param l a big list. * @return a negative integer, * zero, or a positive integer as this big list is lexicographically less than, equal * to, or greater than the argument. */ SUPPRESS_WARNINGS_KEY_UNCHECKED public int compareTo(final BIG_ARRAY_BIG_LIST KEY_EXTENDS_GENERIC l) { final long s1 = size64(), s2 = l.size64(); final KEY_GENERIC_TYPE a1[][] = a, a2[][] = l.a; KEY_GENERIC_TYPE e1, e2; int r, i; for(i = 0; i < s1 && i < s2; i++) { e1 = BigArrays.get(a1, i); e2 = BigArrays.get(a2, i); if ((r = KEY_CMP(e1, e2)) != 0) return r; } return i < s2 ? -1 : (i < s1 ? 1 : 0); } #endif private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { s.defaultWriteObject(); for(int i = 0; i < size; i++) s.WRITE_KEY(BigArrays.get(a, i)); } SUPPRESS_WARNINGS_KEY_UNCHECKED private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); a = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.newBigArray(size); for(int i = 0; i < size; i++) BigArrays.set(a, i, KEY_GENERIC_CAST s.READ_KEY()); } #ifdef TEST private static long seed = System.currentTimeMillis(); private static java.util.Random r = new java.util.Random(seed); private static KEY_TYPE genKey() { #if KEY_CLASS_Byte || KEY_CLASS_Short || KEY_CLASS_Character return (KEY_TYPE)(r.nextInt()); #elif KEYS_PRIMITIVE return r.NEXT_KEY(); #elif KEY_CLASS_Object return Integer.toBinaryString(r.nextInt()); #else return new java.io.Serializable() {}; #endif } private static java.text.NumberFormat format = new java.text.DecimalFormat("#,###.00"); private static java.text.FieldPosition p = new java.text.FieldPosition(0); private static String format(double d) { StringBuffer s = new StringBuffer(); return format.format(d, s, p).toString(); } private static void speedTest(int n, boolean comp) { System.out.println("There are presently no speed tests for this class."); } private static void fatal(String msg) { System.out.println(msg); System.exit(1); } private static void ensure(boolean cond, String msg) { if (cond) return; fatal(msg); } private static Object[] k, v, nk; private static KEY_TYPE kt[]; private static KEY_TYPE nkt[]; private static BIG_ARRAY_BIG_LIST topList; protected static void testLists(BIG_LIST m, BIG_LIST t, int n, int level) { long ms; Exception mThrowsIllegal, tThrowsIllegal, mThrowsOutOfBounds, tThrowsOutOfBounds; Object rt = null; KEY_TYPE rm = KEY_NULL; if (level > 4) return; /* Now we check that both sets agree on random keys. For m we use the polymorphic method. */ for(int i = 0; i < n; i++) { int p = r.nextInt() % (n * 2); KEY_TYPE T = genKey(); mThrowsOutOfBounds = tThrowsOutOfBounds = null; try { m.set(p, T); } catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; } try { t.set(p, KEY2OBJ(T)); } catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; } ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + level + ", " + seed + "): set() divergence at start in IndexOutOfBoundsException for index " + p + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")"); if (mThrowsOutOfBounds == null) ensure(t.get(p).equals(KEY2OBJ(m.GET_KEY(p))), "Error (" + level + ", " + seed + "): m and t differ after set() on position " + p + " (" + m.GET_KEY(p) + ", " + t.get(p) + ")"); p = r.nextInt() % (n * 2); mThrowsOutOfBounds = tThrowsOutOfBounds = null; try { m.GET_KEY(p); } catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; } try { t.get(p); } catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; } ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + level + ", " + seed + "): get() divergence at start in IndexOutOfBoundsException for index " + p + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")"); if (mThrowsOutOfBounds == null) ensure(t.get(p).equals(KEY2OBJ(m.GET_KEY(p))), "Error (" + level + ", " + seed + "): m and t differ aftre get() on position " + p + " (" + m.GET_KEY(p) + ", " + t.get(p) + ")"); } /* Now we check that both sets agree on random keys. For m we use the standard method. */ for(int i = 0; i < n; i++) { int p = r.nextInt() % (n * 2); mThrowsOutOfBounds = tThrowsOutOfBounds = null; try { m.get(p); } catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; } try { t.get(p); } catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; } ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + level + ", " + seed + "): get() divergence at start in IndexOutOfBoundsException for index " + p + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")"); if (mThrowsOutOfBounds == null) ensure(t.get(p).equals(m.get(p)), "Error (" + level + ", " + seed + "): m and t differ at start on position " + p + " (" + m.get(p) + ", " + t.get(p) + ")"); } /* Now we check that m and t are equal. */ if (!m.equals(t) || ! t.equals(m)) System.err.println("m: " + m + " t: " + t); ensure(m.equals(t), "Error (" + level + ", " + seed + "): ! m.equals(t) at start"); ensure(t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals(m) at start"); /* Now we check that m actually holds that data. */ for(Iterator i=t.iterator(); i.hasNext();) { ensure(m.contains(i.next()), "Error (" + level + ", " + seed + "): m and t differ on an entry after insertion (iterating on t)"); } /* Now we check that m actually holds that data, but iterating on m. */ for(Iterator i=m.listIterator(); i.hasNext();) { ensure(t.contains(i.next()), "Error (" + level + ", " + seed + "): m and t differ on an entry after insertion (iterating on m)"); } /* Now we check that inquiries about random data give the same answer in m and t. For m we use the polymorphic method. */ for(int i=0; i n) { m.size(n); while(t.size64() != n) t.remove(t.size64() -1); } /* Now we add random data in m and t using addAll on a type-specific collection, checking that the result is the same. */ for(int i=0; i n) { m.size(n); while(t.size64() != n) t.remove(t.size64() -1); } /* Now we add random data in m and t using addAll on a list, checking that the result is the same. */ for(int i=0; i 2) r = new java.util.Random(seed = Long.parseLong(args[2])); try { if ("speedTest".equals(args[0]) || "speedComp".equals(args[0])) speedTest(n, "speedComp".equals(args[0])); else if ("test".equals(args[0])) runTest(n); } catch(Throwable e) { e.printStackTrace(System.err); System.err.println("seed: " + seed); } } #endif }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy