drv.HeapSemiIndirectPriorityQueue.drv Maven / Gradle / Ivy
Show all versions of fastutil Show documentation
/*
* Copyright (C) 2003-2020 Paolo Boldi and Sebastiano Vigna
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package PACKAGE;
#if KEY_CLASS_Object
import java.util.Comparator;
import it.unimi.dsi.fastutil.IndirectPriorityQueue;
#endif
import java.util.NoSuchElementException;
#if ! KEY_CLASS_Integer
import it.unimi.dsi.fastutil.ints.IntArrays;
#endif
/** A type-specific heap-based semi-indirect priority queue.
*
* Instances of this class use as reference list a reference array,
* which must be provided to each constructor. The priority queue is
* represented using a heap. The heap is enlarged as needed, but it is never
* shrunk. Use the {@link #trim()} method to reduce its size, if necessary.
*
*
This implementation allows one to enqueue several time the same index, but
* you must be careful when calling {@link #changed()}.
*/
public class HEAP_SEMI_INDIRECT_PRIORITY_QUEUE KEY_GENERIC implements INDIRECT_PRIORITY_QUEUE KEY_GENERIC {
/** The reference array. */
protected final KEY_GENERIC_TYPE refArray[];
/** The semi-indirect heap. */
protected int heap[] = IntArrays.EMPTY_ARRAY;
/** The number of elements in this queue. */
protected int size;
/** The type-specific comparator used in this queue. */
protected KEY_COMPARATOR KEY_SUPER_GENERIC c;
/** Creates a new empty queue without elements with a given capacity and comparator.
*
* @param refArray the reference array.
* @param capacity the initial capacity of this queue.
* @param c the comparator used in this queue, or {@code null} for the natural order.
*/
public HEAP_SEMI_INDIRECT_PRIORITY_QUEUE(KEY_GENERIC_TYPE[] refArray, int capacity, KEY_COMPARATOR KEY_SUPER_GENERIC c) {
if (capacity > 0) this.heap = new int[capacity];
this.refArray = refArray;
this.c = c;
}
/** Creates a new empty queue with given capacity and using the natural order.
*
* @param refArray the reference array.
* @param capacity the initial capacity of this queue.
*/
public HEAP_SEMI_INDIRECT_PRIORITY_QUEUE(KEY_GENERIC_TYPE[] refArray, int capacity) {
this(refArray, capacity, null);
}
/** Creates a new empty queue with capacity equal to the length of the reference array and a given comparator.
*
* @param refArray the reference array.
* @param c the comparator used in this queue, or {@code null} for the natural order.
*/
public HEAP_SEMI_INDIRECT_PRIORITY_QUEUE(KEY_GENERIC_TYPE[] refArray, KEY_COMPARATOR KEY_SUPER_GENERIC c) {
this(refArray, refArray.length, c);
}
/** Creates a new empty queue with capacity equal to the length of the reference array and using the natural order.
* @param refArray the reference array.
*/
public HEAP_SEMI_INDIRECT_PRIORITY_QUEUE(final KEY_GENERIC_TYPE[] refArray) {
this(refArray, refArray.length, null);
}
/** Wraps a given array in a queue using a given comparator.
*
*
The queue returned by this method will be backed by the given array.
* The first {@code size} element of the array will be rearranged so to form a heap (this is
* more efficient than enqueing the elements of {@code a} one by one).
*
* @param refArray the reference array.
* @param a an array of indices into {@code refArray}.
* @param size the number of elements to be included in the queue.
* @param c the comparator used in this queue, or {@code null} for the natural order.
*/
public HEAP_SEMI_INDIRECT_PRIORITY_QUEUE(final KEY_GENERIC_TYPE[] refArray, final int[] a, int size, final KEY_COMPARATOR KEY_SUPER_GENERIC c) {
this(refArray, 0, c);
this.heap = a;
this.size = size;
SEMI_INDIRECT_HEAPS.makeHeap(refArray, a, size, c);
}
/** Wraps a given array in a queue using a given comparator.
*
*
The queue returned by this method will be backed by the given array.
* The elements of the array will be rearranged so to form a heap (this is
* more efficient than enqueing the elements of {@code a} one by one).
*
* @param refArray the reference array.
* @param a an array of indices into {@code refArray}.
* @param c the comparator used in this queue, or {@code null} for the natural order.
*/
public HEAP_SEMI_INDIRECT_PRIORITY_QUEUE(final KEY_GENERIC_TYPE[] refArray, final int[] a, final KEY_COMPARATOR KEY_SUPER_GENERIC c) {
this(refArray, a, a.length, c);
}
/** Wraps a given array in a queue using the natural order.
*
*
The queue returned by this method will be backed by the given array.
* The first {@code size} element of the array will be rearranged so to form a heap (this is
* more efficient than enqueing the elements of {@code a} one by one).
*
* @param refArray the reference array.
* @param a an array of indices into {@code refArray}.
* @param size the number of elements to be included in the queue.
*/
public HEAP_SEMI_INDIRECT_PRIORITY_QUEUE(final KEY_GENERIC_TYPE[] refArray, final int[] a, int size) {
this(refArray, a, size, null);
}
/** Wraps a given array in a queue using the natural order.
*
*
The queue returned by this method will be backed by the given array.
* The elements of the array will be rearranged so to form a heap (this is
* more efficient than enqueing the elements of {@code a} one by one).
*
* @param refArray the reference array.
* @param a an array of indices into {@code refArray}.
*/
public HEAP_SEMI_INDIRECT_PRIORITY_QUEUE(final KEY_GENERIC_TYPE[] refArray, final int[] a) {
this(refArray, a, a.length);
}
/** Ensures that the given index is a valid reference.
*
* @param index an index in the reference array.
* @throws IndexOutOfBoundsException if the given index is negative or larger than the reference array length.
*/
protected void ensureElement(final int index) {
if (index < 0) throw new IndexOutOfBoundsException("Index (" + index + ") is negative");
if (index >= refArray.length) throw new IndexOutOfBoundsException("Index (" + index + ") is larger than or equal to reference array size (" + refArray.length + ")");
}
@Override
public void enqueue(int x) {
ensureElement(x);
if (size == heap.length) heap = IntArrays.grow(heap, size + 1);
heap[size++] = x;
SEMI_INDIRECT_HEAPS.upHeap(refArray, heap, size, size - 1, c);
}
@Override
public int dequeue() {
if (size == 0) throw new NoSuchElementException();
final int result = heap[0];
heap[0] = heap[--size];
if (size != 0) SEMI_INDIRECT_HEAPS.downHeap(refArray, heap, size, 0, c);
return result;
}
@Override
public int first() {
if (size == 0) throw new NoSuchElementException();
return heap[0];
}
/** {@inheritDoc}
*
*
The caller must guarantee that when this method is called the
* index of the first element appears just once in the queue. Failure to do so
* will bring the queue in an inconsistent state, and will cause
* unpredictable behaviour.
*/
@Override
public void changed() {
SEMI_INDIRECT_HEAPS.downHeap(refArray, heap, size, 0, c);
}
/** Rebuilds this heap in a bottom-up fashion (in linear time). */
@Override
public void allChanged() { SEMI_INDIRECT_HEAPS.makeHeap(refArray, heap, size, c); }
@Override
public int size() { return size; }
@Override
public void clear() { size = 0; }
/** Trims the backing array so that it has exactly {@link #size()} elements. */
public void trim() {
heap = IntArrays.trim(heap, size);
}
@Override
public KEY_COMPARATOR KEY_SUPER_GENERIC comparator() { return c; }
/** Writes in the provided array the front of the queue, that is, the set of indices
* whose elements have the same priority as the top.
* @param a an array whose initial part will be filled with the frnot (must be sized as least as the heap size).
* @return the number of elements of the front.
*/
@Override
public int front(final int[] a) { return c == null ? SEMI_INDIRECT_HEAPS.front(refArray, heap, size, a) : SEMI_INDIRECT_HEAPS.front(refArray, heap, size, a, c); }
@Override
public String toString() {
StringBuffer s = new StringBuffer();
s.append("[");
for (int i = 0; i < size; i++) {
if (i != 0) s.append(", ");
s.append(refArray[heap [i]]);
}
s.append("]");
return s.toString();
}
#ifdef TEST
/** The original class, now just used for testing. */
private static class TestQueue {
/** The reference array */
private KEY_TYPE refArray[];
/** Its length */
private int N;
/** The number of elements in the heaps */
private int n;
/** The two comparators */
private KEY_COMPARATOR primaryComp, secondaryComp;
/** Two indirect heaps are used, called {@code primary} and {@code secondary}. Each of them contains
a permutation of {@code n} among the indices 0, 1, ..., {@code N}-1 in such a way that the corresponding
objects be sorted with respect to the two comparators.
We also need an array {@code inSec[]} so that {@code inSec[k]} is the index of {@code secondary}
containing {@code k}.
*/
private int primary[], secondary[], inSec[];
/** Builds a double indirect priority queue.
* @param refArray The reference array.
* @param primaryComp The primary comparator.
* @param secondaryComp The secondary comparator.
*/
public TestQueue(KEY_TYPE refArray[], KEY_COMPARATOR primaryComp, KEY_COMPARATOR secondaryComp) {
this.refArray = refArray;
this.N = refArray.length;
assert this.N != 0;
this.n = 0;
this.primaryComp = primaryComp;
this.secondaryComp = secondaryComp;
this.primary = new int[N];
this.secondary = new int[N];
this.inSec = new int[N];
java.util.Arrays.fill(inSec, -1);
}
/** Adds an index to the queue. Notice that the index should not be already present in the queue.
* @param i The index to be added
*/
public void add(int i) {
if (i < 0 || i >= refArray.length) throw new IndexOutOfBoundsException();
//if (inSec[i] >= 0) throw new IllegalArgumentException();
primary[n] = i;
n++;
swimPrimary(n-1);
}
/** Heapify the primary heap.
* @param i The index of the heap to be heapified.
*/
private void heapifyPrimary(int i) {
int dep = primary[i];
int child;
while ((child = 2*i+1) < n) {
if (child+1 < n && primaryComp.compare(refArray[primary[child+1]], refArray[primary[child]]) < 0) child++;
if (primaryComp.compare(refArray[dep], refArray[primary[child]]) <= 0) break;
primary[i] = primary[child];
i = child;
}
primary[i] = dep;
}
/** Heapify the secondary heap.
* @param i The index of the heap to be heapified.
*/
private void heapifySecondary(int i) {
int dep = secondary[i];
int child;
while ((child = 2*i+1) < n) {
if (child+1 < n && secondaryComp.compare(refArray[secondary[child+1]], refArray[secondary[child]]) < 0) child++;
if (secondaryComp.compare(refArray[dep], refArray[secondary[child]]) <= 0) break;
secondary[i] = secondary[child]; inSec[secondary[i]] = i;
i = child;
}
secondary[i] = dep; inSec[secondary[i]] = i;
}
/** Swim and heapify the primary heap.
* @param i The index to be moved.
*/
private void swimPrimary(int i) {
int dep = primary[i];
int parent;
while (i != 0 && (parent = (i - 1) / 2) >= 0) {
if (primaryComp.compare(refArray[primary[parent]], refArray[dep]) <= 0) break;
primary[i] = primary[parent];
i = parent;
}
primary[i] = dep;
heapifyPrimary(i);
}
/** Swim and heapify the secondary heap.
* @param i The index to be moved.
*/
private void swimSecondary(int i) {
int dep = secondary[i];
int parent;
while (i != 0 && (parent = (i - 1) / 2) >= 0) {
if (secondaryComp.compare(refArray[secondary[parent]], refArray[dep]) <= 0) break;
secondary[i] = secondary[parent]; inSec[secondary[i]] = i;
i = parent;
}
secondary[i] = dep; inSec[secondary[i]] = i;
heapifySecondary(i);
}
/** Returns the minimum element with respect to the primary comparator.
@return the minimum element.
*/
public int top() {
if (n == 0) throw new NoSuchElementException();
return primary[0];
}
/** Returns the minimum element with respect to the secondary comparator.
@return the minimum element.
*/
public int secTop() {
if (n == 0) throw new NoSuchElementException();
return secondary[0];
}
/** Removes the minimum element with respect to the primary comparator.
* @return the removed element.
*/
public void remove() {
if (n == 0) throw new NoSuchElementException();
int result = primary[0];
// Copy a leaf
primary[0] = primary[n-1];
n--;
heapifyPrimary(0);
return;
}
public void clear() {
while(size() != 0) remove();
}
/** Signals that the minimum element with respect to the comparator has changed.
*/
public void change() {
heapifyPrimary(0);
}
/** Returns the number of elements in the queue.
* @return the size of the queue
*/
public int size() {
return n;
}
public String toString() {
String s = "[";
for (int i = 0; i < n; i++)
s += refArray[primary[i]]+", ";
return s+ "]";
}
}
private static long seed = System.currentTimeMillis();
private static java.util.Random r = new java.util.Random(seed);
private static KEY_TYPE genKey() {
#if KEY_CLASS_Byte || KEY_CLASS_Short || KEY_CLASS_Character
return (KEY_TYPE)(r.nextInt());
#elif KEYS_PRIMITIVE
return r.NEXT_KEY();
#elif KEY_CLASS_Object
return Integer.toBinaryString(r.nextInt());
#else
return new java.io.Serializable() {};
#endif
}
private static java.text.NumberFormat format = new java.text.DecimalFormat("#,###.00");
private static java.text.FieldPosition p = new java.text.FieldPosition(0);
private static String format(double d) {
StringBuffer s = new StringBuffer();
return format.format(d, s, p).toString();
}
private static void speedTest(int n, boolean comp) {
System.out.println("There are presently no speed tests for this class.");
}
private static void fatal(String msg) {
System.out.println(msg);
System.exit(1);
}
private static void ensure(boolean cond, String msg) {
if (cond) return;
fatal(msg);
}
private static boolean heapEqual(int[] a, int[] b, int sizea, int sizeb) {
if (sizea != sizeb) return false;
while(sizea-- != 0) if (a[sizea] != b[sizea]) return false;
return true;
}
protected static void runTest(int n) {
long ms;
Exception mThrowsIllegal, tThrowsIllegal, mThrowsOutOfBounds, tThrowsOutOfBounds, mThrowsNoElement, tThrowsNoElement;
int rm = 0, rt = 0;
KEY_TYPE[] refArray = new KEY_TYPE[n];
for(int i = 0; i < n; i++) refArray[i] = genKey();
HEAP_SEMI_INDIRECT_PRIORITY_QUEUE m = new HEAP_SEMI_INDIRECT_PRIORITY_QUEUE(refArray, COMPARATORS.NATURAL_COMPARATOR);
TestQueue t = new TestQueue(refArray, COMPARATORS.NATURAL_COMPARATOR, COMPARATORS.OPPOSITE_COMPARATOR);
/* We add pairs to t. */
for(int i = 0; i < n / 2; i++) {
t.add(i);
m.enqueue(i);
}
ensure(heapEqual(m.heap, t.primary, m.size(), t.size()), "Error (" + seed + "): m and t differ after creation (" + m + ", " + t + ")");
/* Now we add and remove random data in m and t, checking that the result is the same. */
for(int i=0; i<2*n; i++) {
if (r.nextDouble() < 0.01) {
t.clear();
m.clear();
for(int j = 0; j < n / 2; j++) {
t.add(j);
m.enqueue(j);
}
}
int T = r.nextInt(2 * n);
mThrowsNoElement = tThrowsNoElement = mThrowsOutOfBounds = tThrowsOutOfBounds = mThrowsIllegal = tThrowsIllegal = null;
try {
m.enqueue(T);
}
catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }
catch (IllegalArgumentException e) { mThrowsIllegal = e; }
try {
t.add(T);
}
catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }
catch (IllegalArgumentException e) { tThrowsIllegal = e; }
ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + seed + "): enqueue() divergence in IndexOutOfBoundsException for " + T + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")");
ensure((mThrowsIllegal == null) == (tThrowsIllegal == null), "Error (" + seed + "): enqueue() divergence in IllegalArgumentException for " + T + " (" + mThrowsIllegal + ", " + tThrowsIllegal + ")");
ensure(heapEqual(m.heap, t.primary, m.size(), t.size()), "Error (" + seed + "): m and t differ after enqueue (" + m + ", " + t + ")");
if (m.size() != 0) {
ensure(m.first() == t.top(), "Error (" + seed + "): m and t differ in first element after enqueue (" + m.first() + ", " + t.top() + ")");
}
mThrowsNoElement = tThrowsNoElement = mThrowsOutOfBounds = tThrowsOutOfBounds = mThrowsIllegal = tThrowsIllegal = null;
try {
rm = m.dequeue();
}
catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }
catch (IllegalArgumentException e) { mThrowsIllegal = e; }
catch (NoSuchElementException e) { mThrowsNoElement = e; }
try {
rt = t.top();
t.remove();
}
catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }
catch (IllegalArgumentException e) { tThrowsIllegal = e; }
catch (NoSuchElementException e) { tThrowsNoElement = e; }
ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + seed + "): dequeue() divergence in IndexOutOfBoundsException (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")");
ensure((mThrowsIllegal == null) == (tThrowsIllegal == null), "Error (" + seed + "): dequeue() divergence in IllegalArgumentException (" + mThrowsIllegal + ", " + tThrowsIllegal + ")");
ensure((mThrowsNoElement == null) == (tThrowsNoElement == null), "Error (" + seed + "): dequeue() divergence in NoSuchElementException (" + mThrowsNoElement + ", " + tThrowsNoElement + ")");
if (mThrowsOutOfBounds == null) ensure(rt == rm , "Error (" + seed + "): divergence in dequeue() between t and m (" + rt + ", " + rm + ")");
ensure(heapEqual(m.heap, t.primary, m.size(), t.size()), "Error (" + seed + "): m and t differ after dequeue (" + m + ", " + t + ")");
if (m.size() != 0) {
ensure(m.first() == t.top(), "Error (" + seed + "): m and t differ in first element after dequeue (" + m.first() + ", " + t.top() + ")");
}
if (m.size() != 0 && ((new it.unimi.dsi.fastutil.ints.IntOpenHashSet(m.heap, 0, m.size)).size() == m.size())) {
refArray[m.first()] = genKey();
m.changed();
t.change();
ensure(heapEqual(m.heap, t.primary, m.size(), t.size()), "Error (" + seed + "): m and t differ after change (" + m + ", " + t + ")");
if (m.size() != 0) {
ensure(m.first() == t.top(), "Error (" + seed + "): m and t differ in first element after change (" + m.first() + ", " + t.top() + ")");
}
}
}
/* Now we check that m actually holds the same data. */
m.clear();
ensure(m.isEmpty(), "Error (" + seed + "): m is not empty after clear()");
System.out.println("Test OK");
}
public static void main(String args[]) {
int n = Integer.parseInt(args[1]);
if (args.length > 2) r = new java.util.Random(seed = Long.parseLong(args[2]));
try {
if ("speedTest".equals(args[0]) || "speedComp".equals(args[0])) speedTest(n, "speedComp".equals(args[0]));
else if ("test".equals(args[0])) runTest(n);
} catch(Throwable e) {
e.printStackTrace(System.err);
System.err.println("seed: " + seed);
}
}
#endif
}