it.unimi.dsi.fastutil.floats.Float2ObjectLinkedOpenHashMap Maven / Gradle / Ivy
Show all versions of fastutil Show documentation
/*
* Copyright (C) 2002-2020 Sebastiano Vigna
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package it.unimi.dsi.fastutil.floats;
import it.unimi.dsi.fastutil.Hash;
import it.unimi.dsi.fastutil.HashCommon;
import static it.unimi.dsi.fastutil.HashCommon.arraySize;
import static it.unimi.dsi.fastutil.HashCommon.maxFill;
import java.util.Map;
import java.util.Arrays;
import java.util.NoSuchElementException;
import java.util.function.Consumer;
import it.unimi.dsi.fastutil.objects.ObjectCollection;
import it.unimi.dsi.fastutil.objects.AbstractObjectCollection;
import java.util.Comparator;
import it.unimi.dsi.fastutil.objects.ObjectIterator;
import it.unimi.dsi.fastutil.objects.AbstractObjectSortedSet;
import it.unimi.dsi.fastutil.objects.ObjectListIterator;
import it.unimi.dsi.fastutil.objects.ObjectBidirectionalIterator;
import it.unimi.dsi.fastutil.objects.ObjectSortedSet;
/**
* A type-specific linked hash map with with a fast, small-footprint
* implementation.
*
*
* Instances of this class use a hash table to represent a map. The table is
* filled up to a specified load factor, and then doubled in size to
* accommodate new entries. If the table is emptied below one fourth of
* the load factor, it is halved in size; however, the table is never reduced to
* a size smaller than that at creation time: this approach makes it possible to
* create maps with a large capacity in which insertions and deletions do not
* cause immediately rehashing. Moreover, halving is not performed when deleting
* entries from an iterator, as it would interfere with the iteration process.
*
*
* Note that {@link #clear()} does not modify the hash table size. Rather, a
* family of {@linkplain #trim() trimming methods} lets you control the size of
* the table; this is particularly useful if you reuse instances of this class.
*
*
* Entries returned by the type-specific {@link #entrySet()} method implement
* the suitable type-specific {@link it.unimi.dsi.fastutil.Pair Pair} interface;
* only values are mutable.
*
*
* Iterators generated by this map will enumerate pairs in the same order in
* which they have been added to the map (addition of pairs whose key is already
* present in the map does not change the iteration order). Note that this order
* has nothing in common with the natural order of the keys. The order is kept
* by means of a doubly linked list, represented via an array of longs
* parallel to the table.
*
*
* This class implements the interface of a sorted map, so to allow easy access
* of the iteration order: for instance, you can get the first key in iteration
* order with {@code firstKey()} without having to create an iterator; however,
* this class partially violates the {@link java.util.SortedMap} contract
* because all submap methods throw an exception and {@link #comparator()}
* returns always {@code null}.
*
*
* Additional methods, such as {@code getAndMoveToFirst()}, make it easy to use
* instances of this class as a cache (e.g., with LRU policy).
*
*
* The iterators provided by the views of this class using are type-specific
* {@linkplain java.util.ListIterator list iterators}, and can be started at any
* element which is a key of the map, or a
* {@link NoSuchElementException} exception will be thrown. If, however, the
* provided element is not the first or last key in the map, the first access to
* the list index will require linear time, as in the worst case the entire key
* set must be scanned in iteration order to retrieve the positional index of
* the starting key. If you use just the methods of a type-specific
* {@link it.unimi.dsi.fastutil.BidirectionalIterator}, however, all operations
* will be performed in constant time.
*
* @see Hash
* @see HashCommon
*/
public class Float2ObjectLinkedOpenHashMap extends AbstractFloat2ObjectSortedMap
implements
java.io.Serializable,
Cloneable,
Hash {
private static final long serialVersionUID = 0L;
private static final boolean ASSERTS = false;
/** The array of keys. */
protected transient float[] key;
/** The array of values. */
protected transient V[] value;
/** The mask for wrapping a position counter. */
protected transient int mask;
/** Whether this map contains the key zero. */
protected transient boolean containsNullKey;
/**
* The index of the first entry in iteration order. It is valid iff
* {@link #size} is nonzero; otherwise, it contains -1.
*/
protected transient int first = -1;
/**
* The index of the last entry in iteration order. It is valid iff {@link #size}
* is nonzero; otherwise, it contains -1.
*/
protected transient int last = -1;
/**
* For each entry, the next and the previous entry in iteration order, stored as
* {@code ((prev & 0xFFFFFFFFL) << 32) | (next & 0xFFFFFFFFL)}. The first entry
* contains predecessor -1, and the last entry contains successor -1.
*/
protected transient long[] link;
/** The current table size. */
protected transient int n;
/**
* Threshold after which we rehash. It must be the table size times {@link #f}.
*/
protected transient int maxFill;
/**
* We never resize below this threshold, which is the construction-time {#n}.
*/
protected final transient int minN;
/** Number of entries in the set (including the key zero, if present). */
protected int size;
/** The acceptable load factor. */
protected final float f;
/** Cached set of entries. */
protected transient FastSortedEntrySet entries;
/** Cached set of keys. */
protected transient FloatSortedSet keys;
/** Cached collection of values. */
protected transient ObjectCollection values;
/**
* Creates a new hash map.
*
*
* The actual table size will be the least power of two greater than
* {@code expected}/{@code f}.
*
* @param expected
* the expected number of elements in the hash map.
* @param f
* the load factor.
*/
@SuppressWarnings("unchecked")
public Float2ObjectLinkedOpenHashMap(final int expected, final float f) {
if (f <= 0 || f >= 1)
throw new IllegalArgumentException("Load factor must be greater than 0 and smaller than 1");
if (expected < 0)
throw new IllegalArgumentException("The expected number of elements must be nonnegative");
this.f = f;
minN = n = arraySize(expected, f);
mask = n - 1;
maxFill = maxFill(n, f);
key = new float[n + 1];
value = (V[]) new Object[n + 1];
link = new long[n + 1];
}
/**
* Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor.
*
* @param expected
* the expected number of elements in the hash map.
*/
public Float2ObjectLinkedOpenHashMap(final int expected) {
this(expected, DEFAULT_LOAD_FACTOR);
}
/**
* Creates a new hash map with initial expected
* {@link Hash#DEFAULT_INITIAL_SIZE} entries and
* {@link Hash#DEFAULT_LOAD_FACTOR} as load factor.
*/
public Float2ObjectLinkedOpenHashMap() {
this(DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR);
}
/**
* Creates a new hash map copying a given one.
*
* @param m
* a {@link Map} to be copied into the new hash map.
* @param f
* the load factor.
*/
public Float2ObjectLinkedOpenHashMap(final Map extends Float, ? extends V> m, final float f) {
this(m.size(), f);
putAll(m);
}
/**
* Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor
* copying a given one.
*
* @param m
* a {@link Map} to be copied into the new hash map.
*/
public Float2ObjectLinkedOpenHashMap(final Map extends Float, ? extends V> m) {
this(m, DEFAULT_LOAD_FACTOR);
}
/**
* Creates a new hash map copying a given type-specific one.
*
* @param m
* a type-specific map to be copied into the new hash map.
* @param f
* the load factor.
*/
public Float2ObjectLinkedOpenHashMap(final Float2ObjectMap m, final float f) {
this(m.size(), f);
putAll(m);
}
/**
* Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor
* copying a given type-specific one.
*
* @param m
* a type-specific map to be copied into the new hash map.
*/
public Float2ObjectLinkedOpenHashMap(final Float2ObjectMap m) {
this(m, DEFAULT_LOAD_FACTOR);
}
/**
* Creates a new hash map using the elements of two parallel arrays.
*
* @param k
* the array of keys of the new hash map.
* @param v
* the array of corresponding values in the new hash map.
* @param f
* the load factor.
* @throws IllegalArgumentException
* if {@code k} and {@code v} have different lengths.
*/
public Float2ObjectLinkedOpenHashMap(final float[] k, final V[] v, final float f) {
this(k.length, f);
if (k.length != v.length)
throw new IllegalArgumentException(
"The key array and the value array have different lengths (" + k.length + " and " + v.length + ")");
for (int i = 0; i < k.length; i++)
this.put(k[i], v[i]);
}
/**
* Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor
* using the elements of two parallel arrays.
*
* @param k
* the array of keys of the new hash map.
* @param v
* the array of corresponding values in the new hash map.
* @throws IllegalArgumentException
* if {@code k} and {@code v} have different lengths.
*/
public Float2ObjectLinkedOpenHashMap(final float[] k, final V[] v) {
this(k, v, DEFAULT_LOAD_FACTOR);
}
private int realSize() {
return containsNullKey ? size - 1 : size;
}
private void ensureCapacity(final int capacity) {
final int needed = arraySize(capacity, f);
if (needed > n)
rehash(needed);
}
private void tryCapacity(final long capacity) {
final int needed = (int) Math.min(1 << 30,
Math.max(2, HashCommon.nextPowerOfTwo((long) Math.ceil(capacity / f))));
if (needed > n)
rehash(needed);
}
private V removeEntry(final int pos) {
final V oldValue = value[pos];
value[pos] = null;
size--;
fixPointers(pos);
shiftKeys(pos);
if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE)
rehash(n / 2);
return oldValue;
}
private V removeNullEntry() {
containsNullKey = false;
final V oldValue = value[n];
value[n] = null;
size--;
fixPointers(n);
if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE)
rehash(n / 2);
return oldValue;
}
@Override
public void putAll(Map extends Float, ? extends V> m) {
if (f <= .5)
ensureCapacity(m.size()); // The resulting map will be sized for m.size() elements
else
tryCapacity(size() + m.size()); // The resulting map will be tentatively sized for size() + m.size()
// elements
super.putAll(m);
}
private int find(final float k) {
if ((Float.floatToIntBits(k) == 0))
return containsNullKey ? n : -(n + 1);
float curr;
final float[] key = this.key;
int pos;
// The starting point.
if ((Float.floatToIntBits(
curr = key[pos = it.unimi.dsi.fastutil.HashCommon.mix(it.unimi.dsi.fastutil.HashCommon.float2int(k))
& mask]) == 0))
return -(pos + 1);
if ((Float.floatToIntBits(k) == Float.floatToIntBits(curr)))
return pos;
// There's always an unused entry.
while (true) {
if ((Float.floatToIntBits(curr = key[pos = (pos + 1) & mask]) == 0))
return -(pos + 1);
if ((Float.floatToIntBits(k) == Float.floatToIntBits(curr)))
return pos;
}
}
private void insert(final int pos, final float k, final V v) {
if (pos == n)
containsNullKey = true;
key[pos] = k;
value[pos] = v;
if (size == 0) {
first = last = pos;
// Special case of SET_UPPER_LOWER(link[pos], -1, -1);
link[pos] = -1L;
} else {
link[last] ^= ((link[last] ^ (pos & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
link[pos] = ((last & 0xFFFFFFFFL) << 32) | (-1 & 0xFFFFFFFFL);
last = pos;
}
if (size++ >= maxFill)
rehash(arraySize(size + 1, f));
if (ASSERTS)
checkTable();
}
@Override
public V put(final float k, final V v) {
final int pos = find(k);
if (pos < 0) {
insert(-pos - 1, k, v);
return defRetValue;
}
final V oldValue = value[pos];
value[pos] = v;
return oldValue;
}
/**
* Shifts left entries with the specified hash code, starting at the specified
* position, and empties the resulting free entry.
*
* @param pos
* a starting position.
*/
protected final void shiftKeys(int pos) {
// Shift entries with the same hash.
int last, slot;
float curr;
final float[] key = this.key;
for (;;) {
pos = ((last = pos) + 1) & mask;
for (;;) {
if ((Float.floatToIntBits(curr = key[pos]) == 0)) {
key[last] = (0);
value[last] = null;
return;
}
slot = it.unimi.dsi.fastutil.HashCommon.mix(it.unimi.dsi.fastutil.HashCommon.float2int(curr)) & mask;
if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos)
break;
pos = (pos + 1) & mask;
}
key[last] = curr;
value[last] = value[pos];
fixPointers(pos, last);
}
}
@Override
public V remove(final float k) {
if ((Float.floatToIntBits(k) == 0)) {
if (containsNullKey)
return removeNullEntry();
return defRetValue;
}
float curr;
final float[] key = this.key;
int pos;
// The starting point.
if ((Float.floatToIntBits(
curr = key[pos = it.unimi.dsi.fastutil.HashCommon.mix(it.unimi.dsi.fastutil.HashCommon.float2int(k))
& mask]) == 0))
return defRetValue;
if ((Float.floatToIntBits(k) == Float.floatToIntBits(curr)))
return removeEntry(pos);
while (true) {
if ((Float.floatToIntBits(curr = key[pos = (pos + 1) & mask]) == 0))
return defRetValue;
if ((Float.floatToIntBits(k) == Float.floatToIntBits(curr)))
return removeEntry(pos);
}
}
private V setValue(final int pos, final V v) {
final V oldValue = value[pos];
value[pos] = v;
return oldValue;
}
/**
* Removes the mapping associated with the first key in iteration order.
*
* @return the value previously associated with the first key in iteration
* order.
* @throws NoSuchElementException
* is this map is empty.
*/
public V removeFirst() {
if (size == 0)
throw new NoSuchElementException();
final int pos = first;
// Abbreviated version of fixPointers(pos)
first = (int) link[pos];
if (0 <= first) {
// Special case of SET_PREV(link[first], -1)
link[first] |= (-1 & 0xFFFFFFFFL) << 32;
}
size--;
final V v = value[pos];
if (pos == n) {
containsNullKey = false;
value[n] = null;
} else
shiftKeys(pos);
if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE)
rehash(n / 2);
return v;
}
/**
* Removes the mapping associated with the last key in iteration order.
*
* @return the value previously associated with the last key in iteration order.
* @throws NoSuchElementException
* is this map is empty.
*/
public V removeLast() {
if (size == 0)
throw new NoSuchElementException();
final int pos = last;
// Abbreviated version of fixPointers(pos)
last = (int) (link[pos] >>> 32);
if (0 <= last) {
// Special case of SET_NEXT(link[last], -1)
link[last] |= -1 & 0xFFFFFFFFL;
}
size--;
final V v = value[pos];
if (pos == n) {
containsNullKey = false;
value[n] = null;
} else
shiftKeys(pos);
if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE)
rehash(n / 2);
return v;
}
private void moveIndexToFirst(final int i) {
if (size == 1 || first == i)
return;
if (last == i) {
last = (int) (link[i] >>> 32);
// Special case of SET_NEXT(link[last], -1);
link[last] |= -1 & 0xFFFFFFFFL;
} else {
final long linki = link[i];
final int prev = (int) (linki >>> 32);
final int next = (int) linki;
link[prev] ^= ((link[prev] ^ (linki & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
link[next] ^= ((link[next] ^ (linki & 0xFFFFFFFF00000000L)) & 0xFFFFFFFF00000000L);
}
link[first] ^= ((link[first] ^ ((i & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L);
link[i] = ((-1 & 0xFFFFFFFFL) << 32) | (first & 0xFFFFFFFFL);
first = i;
}
private void moveIndexToLast(final int i) {
if (size == 1 || last == i)
return;
if (first == i) {
first = (int) link[i];
// Special case of SET_PREV(link[first], -1);
link[first] |= (-1 & 0xFFFFFFFFL) << 32;
} else {
final long linki = link[i];
final int prev = (int) (linki >>> 32);
final int next = (int) linki;
link[prev] ^= ((link[prev] ^ (linki & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
link[next] ^= ((link[next] ^ (linki & 0xFFFFFFFF00000000L)) & 0xFFFFFFFF00000000L);
}
link[last] ^= ((link[last] ^ (i & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
link[i] = ((last & 0xFFFFFFFFL) << 32) | (-1 & 0xFFFFFFFFL);
last = i;
}
/**
* Returns the value to which the given key is mapped; if the key is present, it
* is moved to the first position of the iteration order.
*
* @param k
* the key.
* @return the corresponding value, or the {@linkplain #defaultReturnValue()
* default return value} if no value was present for the given key.
*/
public V getAndMoveToFirst(final float k) {
if ((Float.floatToIntBits(k) == 0)) {
if (containsNullKey) {
moveIndexToFirst(n);
return value[n];
}
return defRetValue;
}
float curr;
final float[] key = this.key;
int pos;
// The starting point.
if ((Float.floatToIntBits(
curr = key[pos = it.unimi.dsi.fastutil.HashCommon.mix(it.unimi.dsi.fastutil.HashCommon.float2int(k))
& mask]) == 0))
return defRetValue;
if ((Float.floatToIntBits(k) == Float.floatToIntBits(curr))) {
moveIndexToFirst(pos);
return value[pos];
}
// There's always an unused entry.
while (true) {
if ((Float.floatToIntBits(curr = key[pos = (pos + 1) & mask]) == 0))
return defRetValue;
if ((Float.floatToIntBits(k) == Float.floatToIntBits(curr))) {
moveIndexToFirst(pos);
return value[pos];
}
}
}
/**
* Returns the value to which the given key is mapped; if the key is present, it
* is moved to the last position of the iteration order.
*
* @param k
* the key.
* @return the corresponding value, or the {@linkplain #defaultReturnValue()
* default return value} if no value was present for the given key.
*/
public V getAndMoveToLast(final float k) {
if ((Float.floatToIntBits(k) == 0)) {
if (containsNullKey) {
moveIndexToLast(n);
return value[n];
}
return defRetValue;
}
float curr;
final float[] key = this.key;
int pos;
// The starting point.
if ((Float.floatToIntBits(
curr = key[pos = it.unimi.dsi.fastutil.HashCommon.mix(it.unimi.dsi.fastutil.HashCommon.float2int(k))
& mask]) == 0))
return defRetValue;
if ((Float.floatToIntBits(k) == Float.floatToIntBits(curr))) {
moveIndexToLast(pos);
return value[pos];
}
// There's always an unused entry.
while (true) {
if ((Float.floatToIntBits(curr = key[pos = (pos + 1) & mask]) == 0))
return defRetValue;
if ((Float.floatToIntBits(k) == Float.floatToIntBits(curr))) {
moveIndexToLast(pos);
return value[pos];
}
}
}
/**
* Adds a pair to the map; if the key is already present, it is moved to the
* first position of the iteration order.
*
* @param k
* the key.
* @param v
* the value.
* @return the old value, or the {@linkplain #defaultReturnValue() default
* return value} if no value was present for the given key.
*/
public V putAndMoveToFirst(final float k, final V v) {
int pos;
if ((Float.floatToIntBits(k) == 0)) {
if (containsNullKey) {
moveIndexToFirst(n);
return setValue(n, v);
}
containsNullKey = true;
pos = n;
} else {
float curr;
final float[] key = this.key;
// The starting point.
if (!(Float.floatToIntBits(
curr = key[pos = it.unimi.dsi.fastutil.HashCommon.mix(it.unimi.dsi.fastutil.HashCommon.float2int(k))
& mask]) == 0)) {
if ((Float.floatToIntBits(curr) == Float.floatToIntBits(k))) {
moveIndexToFirst(pos);
return setValue(pos, v);
}
while (!(Float.floatToIntBits(curr = key[pos = (pos + 1) & mask]) == 0))
if ((Float.floatToIntBits(curr) == Float.floatToIntBits(k))) {
moveIndexToFirst(pos);
return setValue(pos, v);
}
}
}
key[pos] = k;
value[pos] = v;
if (size == 0) {
first = last = pos;
// Special case of SET_UPPER_LOWER(link[pos], -1, -1);
link[pos] = -1L;
} else {
link[first] ^= ((link[first] ^ ((pos & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L);
link[pos] = ((-1 & 0xFFFFFFFFL) << 32) | (first & 0xFFFFFFFFL);
first = pos;
}
if (size++ >= maxFill)
rehash(arraySize(size, f));
if (ASSERTS)
checkTable();
return defRetValue;
}
/**
* Adds a pair to the map; if the key is already present, it is moved to the
* last position of the iteration order.
*
* @param k
* the key.
* @param v
* the value.
* @return the old value, or the {@linkplain #defaultReturnValue() default
* return value} if no value was present for the given key.
*/
public V putAndMoveToLast(final float k, final V v) {
int pos;
if ((Float.floatToIntBits(k) == 0)) {
if (containsNullKey) {
moveIndexToLast(n);
return setValue(n, v);
}
containsNullKey = true;
pos = n;
} else {
float curr;
final float[] key = this.key;
// The starting point.
if (!(Float.floatToIntBits(
curr = key[pos = it.unimi.dsi.fastutil.HashCommon.mix(it.unimi.dsi.fastutil.HashCommon.float2int(k))
& mask]) == 0)) {
if ((Float.floatToIntBits(curr) == Float.floatToIntBits(k))) {
moveIndexToLast(pos);
return setValue(pos, v);
}
while (!(Float.floatToIntBits(curr = key[pos = (pos + 1) & mask]) == 0))
if ((Float.floatToIntBits(curr) == Float.floatToIntBits(k))) {
moveIndexToLast(pos);
return setValue(pos, v);
}
}
}
key[pos] = k;
value[pos] = v;
if (size == 0) {
first = last = pos;
// Special case of SET_UPPER_LOWER(link[pos], -1, -1);
link[pos] = -1L;
} else {
link[last] ^= ((link[last] ^ (pos & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
link[pos] = ((last & 0xFFFFFFFFL) << 32) | (-1 & 0xFFFFFFFFL);
last = pos;
}
if (size++ >= maxFill)
rehash(arraySize(size, f));
if (ASSERTS)
checkTable();
return defRetValue;
}
@Override
public V get(final float k) {
if ((Float.floatToIntBits(k) == 0))
return containsNullKey ? value[n] : defRetValue;
float curr;
final float[] key = this.key;
int pos;
// The starting point.
if ((Float.floatToIntBits(
curr = key[pos = it.unimi.dsi.fastutil.HashCommon.mix(it.unimi.dsi.fastutil.HashCommon.float2int(k))
& mask]) == 0))
return defRetValue;
if ((Float.floatToIntBits(k) == Float.floatToIntBits(curr)))
return value[pos];
// There's always an unused entry.
while (true) {
if ((Float.floatToIntBits(curr = key[pos = (pos + 1) & mask]) == 0))
return defRetValue;
if ((Float.floatToIntBits(k) == Float.floatToIntBits(curr)))
return value[pos];
}
}
@Override
public boolean containsKey(final float k) {
if ((Float.floatToIntBits(k) == 0))
return containsNullKey;
float curr;
final float[] key = this.key;
int pos;
// The starting point.
if ((Float.floatToIntBits(
curr = key[pos = it.unimi.dsi.fastutil.HashCommon.mix(it.unimi.dsi.fastutil.HashCommon.float2int(k))
& mask]) == 0))
return false;
if ((Float.floatToIntBits(k) == Float.floatToIntBits(curr)))
return true;
// There's always an unused entry.
while (true) {
if ((Float.floatToIntBits(curr = key[pos = (pos + 1) & mask]) == 0))
return false;
if ((Float.floatToIntBits(k) == Float.floatToIntBits(curr)))
return true;
}
}
@Override
public boolean containsValue(final Object v) {
final V value[] = this.value;
final float key[] = this.key;
if (containsNullKey && java.util.Objects.equals(value[n], v))
return true;
for (int i = n; i-- != 0;)
if (!(Float.floatToIntBits(key[i]) == 0) && java.util.Objects.equals(value[i], v))
return true;
return false;
}
/** {@inheritDoc} */
@Override
public V getOrDefault(final float k, final V defaultValue) {
if ((Float.floatToIntBits(k) == 0))
return containsNullKey ? value[n] : defaultValue;
float curr;
final float[] key = this.key;
int pos;
// The starting point.
if ((Float.floatToIntBits(
curr = key[pos = it.unimi.dsi.fastutil.HashCommon.mix(it.unimi.dsi.fastutil.HashCommon.float2int(k))
& mask]) == 0))
return defaultValue;
if ((Float.floatToIntBits(k) == Float.floatToIntBits(curr)))
return value[pos];
// There's always an unused entry.
while (true) {
if ((Float.floatToIntBits(curr = key[pos = (pos + 1) & mask]) == 0))
return defaultValue;
if ((Float.floatToIntBits(k) == Float.floatToIntBits(curr)))
return value[pos];
}
}
/** {@inheritDoc} */
@Override
public V putIfAbsent(final float k, final V v) {
final int pos = find(k);
if (pos >= 0)
return value[pos];
insert(-pos - 1, k, v);
return defRetValue;
}
/** {@inheritDoc} */
@Override
public boolean remove(final float k, final Object v) {
if ((Float.floatToIntBits(k) == 0)) {
if (containsNullKey && java.util.Objects.equals(v, value[n])) {
removeNullEntry();
return true;
}
return false;
}
float curr;
final float[] key = this.key;
int pos;
// The starting point.
if ((Float.floatToIntBits(
curr = key[pos = it.unimi.dsi.fastutil.HashCommon.mix(it.unimi.dsi.fastutil.HashCommon.float2int(k))
& mask]) == 0))
return false;
if ((Float.floatToIntBits(k) == Float.floatToIntBits(curr)) && java.util.Objects.equals(v, value[pos])) {
removeEntry(pos);
return true;
}
while (true) {
if ((Float.floatToIntBits(curr = key[pos = (pos + 1) & mask]) == 0))
return false;
if ((Float.floatToIntBits(k) == Float.floatToIntBits(curr)) && java.util.Objects.equals(v, value[pos])) {
removeEntry(pos);
return true;
}
}
}
/** {@inheritDoc} */
@Override
public boolean replace(final float k, final V oldValue, final V v) {
final int pos = find(k);
if (pos < 0 || !java.util.Objects.equals(oldValue, value[pos]))
return false;
value[pos] = v;
return true;
}
/** {@inheritDoc} */
@Override
public V replace(final float k, final V v) {
final int pos = find(k);
if (pos < 0)
return defRetValue;
final V oldValue = value[pos];
value[pos] = v;
return oldValue;
}
/** {@inheritDoc} */
@Override
public V computeIfAbsent(final float k, final java.util.function.DoubleFunction extends V> mappingFunction) {
java.util.Objects.requireNonNull(mappingFunction);
final int pos = find(k);
if (pos >= 0)
return value[pos];
final V newValue = mappingFunction.apply(k);
insert(-pos - 1, k, newValue);
return newValue;
}
/** {@inheritDoc} */
@Override
public V computeIfPresent(final float k,
final java.util.function.BiFunction super Float, ? super V, ? extends V> remappingFunction) {
java.util.Objects.requireNonNull(remappingFunction);
final int pos = find(k);
if (pos < 0)
return defRetValue;
final V newValue = remappingFunction.apply(Float.valueOf(k), (value[pos]));
if (newValue == null) {
if ((Float.floatToIntBits(k) == 0))
removeNullEntry();
else
removeEntry(pos);
return defRetValue;
}
return value[pos] = (newValue);
}
/** {@inheritDoc} */
@Override
public V compute(final float k,
final java.util.function.BiFunction super Float, ? super V, ? extends V> remappingFunction) {
java.util.Objects.requireNonNull(remappingFunction);
final int pos = find(k);
final V newValue = remappingFunction.apply(Float.valueOf(k), pos >= 0 ? (value[pos]) : null);
if (newValue == null) {
if (pos >= 0) {
if ((Float.floatToIntBits(k) == 0))
removeNullEntry();
else
removeEntry(pos);
}
return defRetValue;
}
V newVal = (newValue);
if (pos < 0) {
insert(-pos - 1, k, newVal);
return newVal;
}
return value[pos] = newVal;
}
/** {@inheritDoc} */
@Override
public V merge(final float k, final V v,
final java.util.function.BiFunction super V, ? super V, ? extends V> remappingFunction) {
java.util.Objects.requireNonNull(remappingFunction);
final int pos = find(k);
if (pos < 0 || value[pos] == null) {
if (v == null)
return defRetValue;
insert(-pos - 1, k, v);
return v;
}
final V newValue = remappingFunction.apply((value[pos]), (v));
if (newValue == null) {
if ((Float.floatToIntBits(k) == 0))
removeNullEntry();
else
removeEntry(pos);
return defRetValue;
}
return value[pos] = (newValue);
}
/*
* Removes all elements from this map.
*
* To increase object reuse, this method does not change the table size. If
* you want to reduce the table size, you must use {@link #trim()}.
*
*/
@Override
public void clear() {
if (size == 0)
return;
size = 0;
containsNullKey = false;
Arrays.fill(key, (0));
Arrays.fill(value, null);
first = last = -1;
}
@Override
public int size() {
return size;
}
@Override
public boolean isEmpty() {
return size == 0;
}
/**
* The entry class for a hash map does not record key and value, but rather the
* position in the hash table of the corresponding entry. This is necessary so
* that calls to {@link java.util.Map.Entry#setValue(Object)} are reflected in
* the map
*/
final class MapEntry implements Float2ObjectMap.Entry, Map.Entry, FloatObjectPair {
// The table index this entry refers to, or -1 if this entry has been deleted.
int index;
MapEntry(final int index) {
this.index = index;
}
MapEntry() {
}
@Override
public float getFloatKey() {
return key[index];
}
@Override
public float leftFloat() {
return key[index];
}
@Override
public V getValue() {
return value[index];
}
@Override
public V right() {
return value[index];
}
@Override
public V setValue(final V v) {
final V oldValue = value[index];
value[index] = v;
return oldValue;
}
@Override
public FloatObjectPair right(final V v) {
value[index] = v;
return this;
}
/**
* {@inheritDoc}
*
* @deprecated Please use the corresponding type-specific method instead.
*/
@Deprecated
@Override
public Float getKey() {
return Float.valueOf(key[index]);
}
@SuppressWarnings("unchecked")
@Override
public boolean equals(final Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry e = (Map.Entry) o;
return (Float.floatToIntBits(key[index]) == Float.floatToIntBits((e.getKey()).floatValue()))
&& java.util.Objects.equals(value[index], (e.getValue()));
}
@Override
public int hashCode() {
return it.unimi.dsi.fastutil.HashCommon.float2int(key[index])
^ ((value[index]) == null ? 0 : (value[index]).hashCode());
}
@Override
public String toString() {
return key[index] + "=>" + value[index];
}
}
/**
* Modifies the {@link #link} vector so that the given entry is removed. This
* method will complete in constant time.
*
* @param i
* the index of an entry.
*/
protected void fixPointers(final int i) {
if (size == 0) {
first = last = -1;
return;
}
if (first == i) {
first = (int) link[i];
if (0 <= first) {
// Special case of SET_PREV(link[first], -1)
link[first] |= (-1 & 0xFFFFFFFFL) << 32;
}
return;
}
if (last == i) {
last = (int) (link[i] >>> 32);
if (0 <= last) {
// Special case of SET_NEXT(link[last], -1)
link[last] |= -1 & 0xFFFFFFFFL;
}
return;
}
final long linki = link[i];
final int prev = (int) (linki >>> 32);
final int next = (int) linki;
link[prev] ^= ((link[prev] ^ (linki & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
link[next] ^= ((link[next] ^ (linki & 0xFFFFFFFF00000000L)) & 0xFFFFFFFF00000000L);
}
/**
* Modifies the {@link #link} vector for a shift from s to d.
*
* This method will complete in constant time.
*
* @param s
* the source position.
* @param d
* the destination position.
*/
protected void fixPointers(int s, int d) {
if (size == 1) {
first = last = d;
// Special case of SET_UPPER_LOWER(link[d], -1, -1)
link[d] = -1L;
return;
}
if (first == s) {
first = d;
link[(int) link[s]] ^= ((link[(int) link[s]] ^ ((d & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L);
link[d] = link[s];
return;
}
if (last == s) {
last = d;
link[(int) (link[s] >>> 32)] ^= ((link[(int) (link[s] >>> 32)] ^ (d & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
link[d] = link[s];
return;
}
final long links = link[s];
final int prev = (int) (links >>> 32);
final int next = (int) links;
link[prev] ^= ((link[prev] ^ (d & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
link[next] ^= ((link[next] ^ ((d & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L);
link[d] = links;
}
/**
* Returns the first key of this map in iteration order.
*
* @return the first key in iteration order.
*/
@Override
public float firstFloatKey() {
if (size == 0)
throw new NoSuchElementException();
return key[first];
}
/**
* Returns the last key of this map in iteration order.
*
* @return the last key in iteration order.
*/
@Override
public float lastFloatKey() {
if (size == 0)
throw new NoSuchElementException();
return key[last];
}
/**
* {@inheritDoc}
*
* This implementation just throws an {@link UnsupportedOperationException}.
*/
@Override
public Float2ObjectSortedMap tailMap(float from) {
throw new UnsupportedOperationException();
}
/**
* {@inheritDoc}
*
* This implementation just throws an {@link UnsupportedOperationException}.
*/
@Override
public Float2ObjectSortedMap headMap(float to) {
throw new UnsupportedOperationException();
}
/**
* {@inheritDoc}
*
* This implementation just throws an {@link UnsupportedOperationException}.
*/
@Override
public Float2ObjectSortedMap subMap(float from, float to) {
throw new UnsupportedOperationException();
}
/**
* {@inheritDoc}
*
* This implementation just returns {@code null}.
*/
@Override
public FloatComparator comparator() {
return null;
}
/**
* A list iterator over a linked map.
*
*
* This class provides a list iterator over a linked hash map. The constructor
* runs in constant time.
*/
private class MapIterator {
/**
* The entry that will be returned by the next call to
* {@link java.util.ListIterator#previous()} (or {@code null} if no previous
* entry exists).
*/
int prev = -1;
/**
* The entry that will be returned by the next call to
* {@link java.util.ListIterator#next()} (or {@code null} if no next entry
* exists).
*/
int next = -1;
/**
* The last entry that was returned (or -1 if we did not iterate or used
* {@link java.util.Iterator#remove()}).
*/
int curr = -1;
/**
* The current index (in the sense of a {@link java.util.ListIterator}). Note
* that this value is not meaningful when this iterator has been created using
* the nonempty constructor.
*/
int index = -1;
protected MapIterator() {
next = first;
index = 0;
}
private MapIterator(final float from) {
if ((Float.floatToIntBits(from) == 0)) {
if (Float2ObjectLinkedOpenHashMap.this.containsNullKey) {
next = (int) link[n];
prev = n;
return;
} else
throw new NoSuchElementException("The key " + from + " does not belong to this map.");
}
if ((Float.floatToIntBits(key[last]) == Float.floatToIntBits(from))) {
prev = last;
index = size;
return;
}
// The starting point.
int pos = it.unimi.dsi.fastutil.HashCommon.mix(it.unimi.dsi.fastutil.HashCommon.float2int(from)) & mask;
// There's always an unused entry.
while (!(Float.floatToIntBits(key[pos]) == 0)) {
if ((Float.floatToIntBits(key[pos]) == Float.floatToIntBits(from))) {
// Note: no valid index known.
next = (int) link[pos];
prev = pos;
return;
}
pos = (pos + 1) & mask;
}
throw new NoSuchElementException("The key " + from + " does not belong to this map.");
}
public boolean hasNext() {
return next != -1;
}
public boolean hasPrevious() {
return prev != -1;
}
private final void ensureIndexKnown() {
if (index >= 0)
return;
if (prev == -1) {
index = 0;
return;
}
if (next == -1) {
index = size;
return;
}
int pos = first;
index = 1;
while (pos != prev) {
pos = (int) link[pos];
index++;
}
}
public int nextIndex() {
ensureIndexKnown();
return index;
}
public int previousIndex() {
ensureIndexKnown();
return index - 1;
}
public int nextEntry() {
if (!hasNext())
throw new NoSuchElementException();
curr = next;
next = (int) link[curr];
prev = curr;
if (index >= 0)
index++;
return curr;
}
public int previousEntry() {
if (!hasPrevious())
throw new NoSuchElementException();
curr = prev;
prev = (int) (link[curr] >>> 32);
next = curr;
if (index >= 0)
index--;
return curr;
}
public void remove() {
ensureIndexKnown();
if (curr == -1)
throw new IllegalStateException();
if (curr == prev) {
/*
* If the last operation was a next(), we are removing an entry that preceeds
* the current index, and thus we must decrement it.
*/
index--;
prev = (int) (link[curr] >>> 32);
} else
next = (int) link[curr];
size--;
/*
* Now we manually fix the pointers. Because of our knowledge of next and prev,
* this is going to be faster than calling fixPointers().
*/
if (prev == -1)
first = next;
else
link[prev] ^= ((link[prev] ^ (next & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
if (next == -1)
last = prev;
else
link[next] ^= ((link[next] ^ ((prev & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L);
int last, slot, pos = curr;
curr = -1;
if (pos == n) {
Float2ObjectLinkedOpenHashMap.this.containsNullKey = false;
value[n] = null;
} else {
float curr;
final float[] key = Float2ObjectLinkedOpenHashMap.this.key;
// We have to horribly duplicate the shiftKeys() code because we need to update
// next/prev.
for (;;) {
pos = ((last = pos) + 1) & mask;
for (;;) {
if ((Float.floatToIntBits(curr = key[pos]) == 0)) {
key[last] = (0);
value[last] = null;
return;
}
slot = it.unimi.dsi.fastutil.HashCommon.mix(it.unimi.dsi.fastutil.HashCommon.float2int(curr))
& mask;
if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos)
break;
pos = (pos + 1) & mask;
}
key[last] = curr;
value[last] = value[pos];
if (next == pos)
next = last;
if (prev == pos)
prev = last;
fixPointers(pos, last);
}
}
}
public int skip(final int n) {
int i = n;
while (i-- != 0 && hasNext())
nextEntry();
return n - i - 1;
}
public int back(final int n) {
int i = n;
while (i-- != 0 && hasPrevious())
previousEntry();
return n - i - 1;
}
public void set(@SuppressWarnings("unused") Float2ObjectMap.Entry ok) {
throw new UnsupportedOperationException();
}
public void add(@SuppressWarnings("unused") Float2ObjectMap.Entry ok) {
throw new UnsupportedOperationException();
}
}
private class EntryIterator extends MapIterator implements ObjectListIterator> {
private MapEntry entry;
public EntryIterator() {
}
public EntryIterator(float from) {
super(from);
}
@Override
public MapEntry next() {
return entry = new MapEntry(nextEntry());
}
@Override
public MapEntry previous() {
return entry = new MapEntry(previousEntry());
}
@Override
public void remove() {
super.remove();
entry.index = -1; // You cannot use a deleted entry.
}
}
private class FastEntryIterator extends MapIterator implements ObjectListIterator> {
final MapEntry entry = new MapEntry();
public FastEntryIterator() {
}
public FastEntryIterator(float from) {
super(from);
}
@Override
public MapEntry next() {
entry.index = nextEntry();
return entry;
}
@Override
public MapEntry previous() {
entry.index = previousEntry();
return entry;
}
}
private final class MapEntrySet extends AbstractObjectSortedSet>
implements
FastSortedEntrySet {
@Override
public ObjectBidirectionalIterator> iterator() {
return new EntryIterator();
}
@Override
public Comparator super Float2ObjectMap.Entry> comparator() {
return null;
}
@Override
public ObjectSortedSet> subSet(Float2ObjectMap.Entry fromElement,
Float2ObjectMap.Entry toElement) {
throw new UnsupportedOperationException();
}
@Override
public ObjectSortedSet> headSet(Float2ObjectMap.Entry toElement) {
throw new UnsupportedOperationException();
}
@Override
public ObjectSortedSet> tailSet(Float2ObjectMap.Entry fromElement) {
throw new UnsupportedOperationException();
}
@Override
public Float2ObjectMap.Entry first() {
if (size == 0)
throw new NoSuchElementException();
return new MapEntry(Float2ObjectLinkedOpenHashMap.this.first);
}
@Override
public Float2ObjectMap.Entry last() {
if (size == 0)
throw new NoSuchElementException();
return new MapEntry(Float2ObjectLinkedOpenHashMap.this.last);
}
@Override
@SuppressWarnings("unchecked")
public boolean contains(final Object o) {
if (!(o instanceof Map.Entry))
return false;
final Map.Entry, ?> e = (Map.Entry, ?>) o;
if (e.getKey() == null || !(e.getKey() instanceof Float))
return false;
final float k = ((Float) (e.getKey())).floatValue();
final V v = ((V) e.getValue());
if ((Float.floatToIntBits(k) == 0))
return Float2ObjectLinkedOpenHashMap.this.containsNullKey && java.util.Objects.equals(value[n], v);
float curr;
final float[] key = Float2ObjectLinkedOpenHashMap.this.key;
int pos;
// The starting point.
if ((Float.floatToIntBits(
curr = key[pos = it.unimi.dsi.fastutil.HashCommon.mix(it.unimi.dsi.fastutil.HashCommon.float2int(k))
& mask]) == 0))
return false;
if ((Float.floatToIntBits(k) == Float.floatToIntBits(curr)))
return java.util.Objects.equals(value[pos], v);
// There's always an unused entry.
while (true) {
if ((Float.floatToIntBits(curr = key[pos = (pos + 1) & mask]) == 0))
return false;
if ((Float.floatToIntBits(k) == Float.floatToIntBits(curr)))
return java.util.Objects.equals(value[pos], v);
}
}
@Override
@SuppressWarnings("unchecked")
public boolean remove(final Object o) {
if (!(o instanceof Map.Entry))
return false;
final Map.Entry, ?> e = (Map.Entry, ?>) o;
if (e.getKey() == null || !(e.getKey() instanceof Float))
return false;
final float k = ((Float) (e.getKey())).floatValue();
final V v = ((V) e.getValue());
if ((Float.floatToIntBits(k) == 0)) {
if (containsNullKey && java.util.Objects.equals(value[n], v)) {
removeNullEntry();
return true;
}
return false;
}
float curr;
final float[] key = Float2ObjectLinkedOpenHashMap.this.key;
int pos;
// The starting point.
if ((Float.floatToIntBits(
curr = key[pos = it.unimi.dsi.fastutil.HashCommon.mix(it.unimi.dsi.fastutil.HashCommon.float2int(k))
& mask]) == 0))
return false;
if ((Float.floatToIntBits(curr) == Float.floatToIntBits(k))) {
if (java.util.Objects.equals(value[pos], v)) {
removeEntry(pos);
return true;
}
return false;
}
while (true) {
if ((Float.floatToIntBits(curr = key[pos = (pos + 1) & mask]) == 0))
return false;
if ((Float.floatToIntBits(curr) == Float.floatToIntBits(k))) {
if (java.util.Objects.equals(value[pos], v)) {
removeEntry(pos);
return true;
}
}
}
}
@Override
public int size() {
return size;
}
@Override
public void clear() {
Float2ObjectLinkedOpenHashMap.this.clear();
}
/**
* Returns a type-specific list iterator on the elements in this set, starting
* from a given element of the set. Please see the class documentation for
* implementation details.
*
* @param from
* an element to start from.
* @return a type-specific list iterator starting at the given element.
* @throws IllegalArgumentException
* if {@code from} does not belong to the set.
*/
@Override
public ObjectListIterator> iterator(final Float2ObjectMap.Entry from) {
return new EntryIterator(from.getFloatKey());
}
/**
* Returns a type-specific fast list iterator on the elements in this set,
* starting from the first element. Please see the class documentation for
* implementation details.
*
* @return a type-specific list iterator starting at the first element.
*/
@Override
public ObjectListIterator> fastIterator() {
return new FastEntryIterator();
}
/**
* Returns a type-specific fast list iterator on the elements in this set,
* starting from a given element of the set. Please see the class documentation
* for implementation details.
*
* @param from
* an element to start from.
* @return a type-specific list iterator starting at the given element.
* @throws IllegalArgumentException
* if {@code from} does not belong to the set.
*/
@Override
public ObjectListIterator> fastIterator(final Float2ObjectMap.Entry from) {
return new FastEntryIterator(from.getFloatKey());
}
/** {@inheritDoc} */
@Override
public void forEach(final Consumer super Float2ObjectMap.Entry> consumer) {
for (int i = size, curr, next = first; i-- != 0;) {
curr = next;
next = (int) link[curr];
consumer.accept(new AbstractFloat2ObjectMap.BasicEntry(key[curr], value[curr]));
}
}
/** {@inheritDoc} */
@Override
public void fastForEach(final Consumer super Float2ObjectMap.Entry> consumer) {
final AbstractFloat2ObjectMap.BasicEntry entry = new AbstractFloat2ObjectMap.BasicEntry<>();
for (int i = size, curr, next = first; i-- != 0;) {
curr = next;
next = (int) link[curr];
entry.key = key[curr];
entry.value = value[curr];
consumer.accept(entry);
}
}
}
@Override
public FastSortedEntrySet float2ObjectEntrySet() {
if (entries == null)
entries = new MapEntrySet();
return entries;
}
/**
* An iterator on keys.
*
*
* We simply override the
* {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()}
* methods (and possibly their type-specific counterparts) so that they return
* keys instead of entries.
*/
private final class KeyIterator extends MapIterator implements FloatListIterator {
public KeyIterator(final float k) {
super(k);
}
@Override
public float previousFloat() {
return key[previousEntry()];
}
public KeyIterator() {
super();
}
@Override
public float nextFloat() {
return key[nextEntry()];
}
}
private final class KeySet extends AbstractFloatSortedSet {
@Override
public FloatListIterator iterator(final float from) {
return new KeyIterator(from);
}
@Override
public FloatListIterator iterator() {
return new KeyIterator();
}
/** {@inheritDoc} */
@Override
public void forEach(final java.util.function.DoubleConsumer consumer) {
if (containsNullKey)
consumer.accept(key[n]);
for (int pos = n; pos-- != 0;) {
final float k = key[pos];
if (!(Float.floatToIntBits(k) == 0))
consumer.accept(k);
}
}
@Override
public int size() {
return size;
}
@Override
public boolean contains(float k) {
return containsKey(k);
}
@Override
public boolean remove(float k) {
final int oldSize = size;
Float2ObjectLinkedOpenHashMap.this.remove(k);
return size != oldSize;
}
@Override
public void clear() {
Float2ObjectLinkedOpenHashMap.this.clear();
}
@Override
public float firstFloat() {
if (size == 0)
throw new NoSuchElementException();
return key[first];
}
@Override
public float lastFloat() {
if (size == 0)
throw new NoSuchElementException();
return key[last];
}
@Override
public FloatComparator comparator() {
return null;
}
@Override
public FloatSortedSet tailSet(float from) {
throw new UnsupportedOperationException();
}
@Override
public FloatSortedSet headSet(float to) {
throw new UnsupportedOperationException();
}
@Override
public FloatSortedSet subSet(float from, float to) {
throw new UnsupportedOperationException();
}
}
@Override
public FloatSortedSet keySet() {
if (keys == null)
keys = new KeySet();
return keys;
}
/**
* An iterator on values.
*
*
* We simply override the
* {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()}
* methods (and possibly their type-specific counterparts) so that they return
* values instead of entries.
*/
private final class ValueIterator extends MapIterator implements ObjectListIterator {
@Override
public V previous() {
return value[previousEntry()];
}
public ValueIterator() {
super();
}
@Override
public V next() {
return value[nextEntry()];
}
}
@Override
public ObjectCollection values() {
if (values == null)
values = new AbstractObjectCollection() {
@Override
public ObjectIterator iterator() {
return new ValueIterator();
}
@Override
public int size() {
return size;
}
@Override
public boolean contains(Object v) {
return containsValue(v);
}
@Override
public void clear() {
Float2ObjectLinkedOpenHashMap.this.clear();
}
/** {@inheritDoc} */
@Override
public void forEach(final Consumer super V> consumer) {
if (containsNullKey)
consumer.accept(value[n]);
for (int pos = n; pos-- != 0;)
if (!(Float.floatToIntBits(key[pos]) == 0))
consumer.accept(value[pos]);
}
};
return values;
}
/**
* Rehashes the map, making the table as small as possible.
*
*
* This method rehashes the table to the smallest size satisfying the load
* factor. It can be used when the set will not be changed anymore, so to
* optimize access speed and size.
*
*
* If the table size is already the minimum possible, this method does nothing.
*
* @return true if there was enough memory to trim the map.
* @see #trim(int)
*/
public boolean trim() {
return trim(size);
}
/**
* Rehashes this map if the table is too large.
*
*
* Let N be the smallest table size that can hold
* max(n,{@link #size()})
entries, still satisfying the load
* factor. If the current table size is smaller than or equal to N,
* this method does nothing. Otherwise, it rehashes this map in a table of size
* N.
*
*
* This method is useful when reusing maps. {@linkplain #clear() Clearing a map}
* leaves the table size untouched. If you are reusing a map many times, you can
* call this method with a typical size to avoid keeping around a very large
* table just because of a few large transient maps.
*
* @param n
* the threshold for the trimming.
* @return true if there was enough memory to trim the map.
* @see #trim()
*/
public boolean trim(final int n) {
final int l = HashCommon.nextPowerOfTwo((int) Math.ceil(n / f));
if (l >= this.n || size > maxFill(l, f))
return true;
try {
rehash(l);
} catch (OutOfMemoryError cantDoIt) {
return false;
}
return true;
}
/**
* Rehashes the map.
*
*
* This method implements the basic rehashing strategy, and may be overridden by
* subclasses implementing different rehashing strategies (e.g., disk-based
* rehashing). However, you should not override this method unless you
* understand the internal workings of this class.
*
* @param newN
* the new size
*/
@SuppressWarnings("unchecked")
protected void rehash(final int newN) {
final float key[] = this.key;
final V value[] = this.value;
final int mask = newN - 1; // Note that this is used by the hashing macro
final float newKey[] = new float[newN + 1];
final V newValue[] = (V[]) new Object[newN + 1];
int i = first, prev = -1, newPrev = -1, t, pos;
final long link[] = this.link;
final long newLink[] = new long[newN + 1];
first = -1;
for (int j = size; j-- != 0;) {
if ((Float.floatToIntBits(key[i]) == 0))
pos = newN;
else {
pos = it.unimi.dsi.fastutil.HashCommon.mix(it.unimi.dsi.fastutil.HashCommon.float2int(key[i])) & mask;
while (!(Float.floatToIntBits(newKey[pos]) == 0))
pos = (pos + 1) & mask;
}
newKey[pos] = key[i];
newValue[pos] = value[i];
if (prev != -1) {
newLink[newPrev] ^= ((newLink[newPrev] ^ (pos & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
newLink[pos] ^= ((newLink[pos] ^ ((newPrev & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L);
newPrev = pos;
} else {
newPrev = first = pos;
// Special case of SET(newLink[pos], -1, -1);
newLink[pos] = -1L;
}
t = i;
i = (int) link[i];
prev = t;
}
this.link = newLink;
this.last = newPrev;
if (newPrev != -1)
// Special case of SET_NEXT(newLink[newPrev], -1);
newLink[newPrev] |= -1 & 0xFFFFFFFFL;
n = newN;
this.mask = mask;
maxFill = maxFill(n, f);
this.key = newKey;
this.value = newValue;
}
/**
* Returns a deep copy of this map.
*
*
* This method performs a deep copy of this hash map; the data stored in the
* map, however, is not cloned. Note that this makes a difference only for
* object keys.
*
* @return a deep copy of this map.
*/
@Override
@SuppressWarnings("unchecked")
public Float2ObjectLinkedOpenHashMap clone() {
Float2ObjectLinkedOpenHashMap c;
try {
c = (Float2ObjectLinkedOpenHashMap) super.clone();
} catch (CloneNotSupportedException cantHappen) {
throw new InternalError();
}
c.keys = null;
c.values = null;
c.entries = null;
c.containsNullKey = containsNullKey;
c.key = key.clone();
c.value = value.clone();
c.link = link.clone();
return c;
}
/**
* Returns a hash code for this map.
*
* This method overrides the generic method provided by the superclass. Since
* {@code equals()} is not overriden, it is important that the value returned by
* this method is the same value as the one returned by the overriden method.
*
* @return a hash code for this map.
*/
@Override
public int hashCode() {
int h = 0;
for (int j = realSize(), i = 0, t = 0; j-- != 0;) {
while ((Float.floatToIntBits(key[i]) == 0))
i++;
t = it.unimi.dsi.fastutil.HashCommon.float2int(key[i]);
if (this != value[i])
t ^= ((value[i]) == null ? 0 : (value[i]).hashCode());
h += t;
i++;
}
// Zero / null keys have hash zero.
if (containsNullKey)
h += ((value[n]) == null ? 0 : (value[n]).hashCode());
return h;
}
private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException {
final float key[] = this.key;
final V value[] = this.value;
final MapIterator i = new MapIterator();
s.defaultWriteObject();
for (int j = size, e; j-- != 0;) {
e = i.nextEntry();
s.writeFloat(key[e]);
s.writeObject(value[e]);
}
}
@SuppressWarnings("unchecked")
private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
n = arraySize(size, f);
maxFill = maxFill(n, f);
mask = n - 1;
final float key[] = this.key = new float[n + 1];
final V value[] = this.value = (V[]) new Object[n + 1];
final long link[] = this.link = new long[n + 1];
int prev = -1;
first = last = -1;
float k;
V v;
for (int i = size, pos; i-- != 0;) {
k = s.readFloat();
v = (V) s.readObject();
if ((Float.floatToIntBits(k) == 0)) {
pos = n;
containsNullKey = true;
} else {
pos = it.unimi.dsi.fastutil.HashCommon.mix(it.unimi.dsi.fastutil.HashCommon.float2int(k)) & mask;
while (!(Float.floatToIntBits(key[pos]) == 0))
pos = (pos + 1) & mask;
}
key[pos] = k;
value[pos] = v;
if (first != -1) {
link[prev] ^= ((link[prev] ^ (pos & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
link[pos] ^= ((link[pos] ^ ((prev & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L);
prev = pos;
} else {
prev = first = pos;
// Special case of SET_PREV(newLink[pos], -1);
link[pos] |= (-1L & 0xFFFFFFFFL) << 32;
}
}
last = prev;
if (prev != -1)
// Special case of SET_NEXT(link[prev], -1);
link[prev] |= -1 & 0xFFFFFFFFL;
if (ASSERTS)
checkTable();
}
private void checkTable() {
}
}