All Downloads are FREE. Search and download functionalities are using the official Maven repository.

it.unimi.dsi.fastutil.ints.IntBigArrays Maven / Gradle / Ivy

Go to download

fastutil extends the Java Collections Framework by providing type-specific maps, sets, lists and priority queues with a small memory footprint and fast access and insertion; provides also big (64-bit) arrays, sets and lists, and fast, practical I/O classes for binary and text files.

There is a newer version: 8.5.15
Show newest version
/*
	* Copyright (C) 2009-2020 Sebastiano Vigna
	*
	* Licensed under the Apache License, Version 2.0 (the "License");
	* you may not use this file except in compliance with the License.
	* You may obtain a copy of the License at
	*
	*     http://www.apache.org/licenses/LICENSE-2.0
	*
	* Unless required by applicable law or agreed to in writing, software
	* distributed under the License is distributed on an "AS IS" BASIS,
	* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
	* See the License for the specific language governing permissions and
	* limitations under the License.
	*
	*
	*
	* Copyright (C) 1999 CERN - European Organization for Nuclear Research.
	*
	*   Permission to use, copy, modify, distribute and sell this software and
	*   its documentation for any purpose is hereby granted without fee,
	*   provided that the above copyright notice appear in all copies and that
	*   both that copyright notice and this permission notice appear in
	*   supporting documentation. CERN makes no representations about the
	*   suitability of this software for any purpose. It is provided "as is"
	*   without expressed or implied warranty.
	*/
package it.unimi.dsi.fastutil.ints;
import java.util.Arrays;
import java.util.Random;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.RecursiveAction;
import it.unimi.dsi.fastutil.BigArrays;
import it.unimi.dsi.fastutil.Hash;
import static it.unimi.dsi.fastutil.BigArrays.ensureLength;
import static it.unimi.dsi.fastutil.BigArrays.start;
import static it.unimi.dsi.fastutil.BigArrays.segment;
import static it.unimi.dsi.fastutil.BigArrays.displacement;
import static it.unimi.dsi.fastutil.BigArrays.SEGMENT_MASK;
import static it.unimi.dsi.fastutil.BigArrays.SEGMENT_SHIFT;
import static it.unimi.dsi.fastutil.BigArrays.SEGMENT_SIZE;
import java.util.concurrent.atomic.AtomicIntegerArray;
import it.unimi.dsi.fastutil.bytes.ByteBigArrays;
/**
 * A class providing static methods and objects that do useful things with
 * {@linkplain BigArrays big arrays}.
 *
 * 

* WARNING: as of 8.3.0, many methods such as {@code length()} * have been moved to {@link BigArrays}, as they can be imported statically in a * more convenient way. * *

* Note that {@link it.unimi.dsi.fastutil.io.BinIO} and * {@link it.unimi.dsi.fastutil.io.TextIO} contain several methods that make it * possible to load and save big arrays of primitive types as sequences of * elements in {@link java.io.DataInput} format (i.e., not as objects) or as * sequences of lines of text. * *

Sorting

* *

* There are several sorting methods available. The main theme is that of * letting you choose the sorting algorithm you prefer. Some algorithms provide * a parallel version that will use the {@linkplain ForkJoinPool#commonPool() * common pool}. * *

* All comparison-based algorithm have an implementation based on a * type-specific comparator. * *

* In any case, if sorting time is important I suggest that you benchmark your * sorting load with your data distribution and on your architecture. * * @see BigArrays */ public final class IntBigArrays { private IntBigArrays() { } /** A static, final, empty big array. */ public static final int[][] EMPTY_BIG_ARRAY = {}; /** * A static, final, empty big array to be used as default big array in * allocations. An object distinct from {@link #EMPTY_BIG_ARRAY} makes it * possible to have different behaviors depending on whether the user required * an empty allocation, or we are just lazily delaying allocation. * * @see java.util.ArrayList */ public static final int[][] DEFAULT_EMPTY_BIG_ARRAY = {}; /** * Returns the element of the given big array of specified index. * * @param array * a big array. * @param index * a position in the big array. * @return the element of the big array at the specified position. * @deprecated Please use the version in * {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static int get(final int[][] array, final long index) { return array[segment(index)][displacement(index)]; } /** * Sets the element of the given big array of specified index. * * @param array * a big array. * @param index * a position in the big array. * @param value * the new value for the array element at the specified position. * @deprecated Please use the version in * {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static void set(final int[][] array, final long index, int value) { array[segment(index)][displacement(index)] = value; } /** * Swaps the element of the given big array of specified indices. * * @param array * a big array. * @param first * a position in the big array. * @param second * a position in the big array. * @deprecated Please use the version in * {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static void swap(final int[][] array, final long first, final long second) { final int t = array[segment(first)][displacement(first)]; array[segment(first)][displacement(first)] = array[segment(second)][displacement(second)]; array[segment(second)][displacement(second)] = t; } /** * Adds the specified increment the element of the given big array of specified * index. * * @param array * a big array. * @param index * a position in the big array. * @param incr * the increment * @deprecated Please use the version in * {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static void add(final int[][] array, final long index, int incr) { array[segment(index)][displacement(index)] += incr; } /** * Multiplies by the specified factor the element of the given big array of * specified index. * * @param array * a big array. * @param index * a position in the big array. * @param factor * the factor * @deprecated Please use the version in * {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static void mul(final int[][] array, final long index, int factor) { array[segment(index)][displacement(index)] *= factor; } /** * Increments the element of the given big array of specified index. * * @param array * a big array. * @param index * a position in the big array. * @deprecated Please use the version in * {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static void incr(final int[][] array, final long index) { array[segment(index)][displacement(index)]++; } /** * Decrements the element of the given big array of specified index. * * @param array * a big array. * @param index * a position in the big array. * @deprecated Please use the version in * {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static void decr(final int[][] array, final long index) { array[segment(index)][displacement(index)]--; } /** * Returns the length of the given big array. * * @param array * a big array. * @return the length of the given big array. * @deprecated Please use the version in * {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static long length(final int[][] array) { final int length = array.length; return length == 0 ? 0 : start(length - 1) + array[length - 1].length; } /** * Copies a big array from the specified source big array, beginning at the * specified position, to the specified position of the destination big array. * Handles correctly overlapping regions of the same big array. * * @param srcArray * the source big array. * @param srcPos * the starting position in the source big array. * @param destArray * the destination big array. * @param destPos * the starting position in the destination data. * @param length * the number of elements to be copied. * @deprecated Please use the version in * {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static void copy(final int[][] srcArray, final long srcPos, final int[][] destArray, final long destPos, long length) { BigArrays.copy(srcArray, srcPos, destArray, destPos, length); } /** * Copies a big array from the specified source big array, beginning at the * specified position, to the specified position of the destination array. * * @param srcArray * the source big array. * @param srcPos * the starting position in the source big array. * @param destArray * the destination array. * @param destPos * the starting position in the destination data. * @param length * the number of elements to be copied. * @deprecated Please use the version in * {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static void copyFromBig(final int[][] srcArray, final long srcPos, final int[] destArray, int destPos, int length) { BigArrays.copyFromBig(srcArray, srcPos, destArray, destPos, length); } /** * Copies an array from the specified source array, beginning at the specified * position, to the specified position of the destination big array. * * @param srcArray * the source array. * @param srcPos * the starting position in the source array. * @param destArray * the destination big array. * @param destPos * the starting position in the destination data. * @param length * the number of elements to be copied. * @deprecated Please use the version in * {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static void copyToBig(final int[] srcArray, int srcPos, final int[][] destArray, final long destPos, long length) { BigArrays.copyToBig(srcArray, srcPos, destArray, destPos, length); } /** * Creates a new big array. * * @param length * the length of the new big array. * @return a new big array of given length. */ public static int[][] newBigArray(final long length) { if (length == 0) return EMPTY_BIG_ARRAY; ensureLength(length); final int baseLength = (int) ((length + SEGMENT_MASK) >>> SEGMENT_SHIFT); int[][] base = new int[baseLength][]; final int residual = (int) (length & SEGMENT_MASK); if (residual != 0) { for (int i = 0; i < baseLength - 1; i++) base[i] = new int[SEGMENT_SIZE]; base[baseLength - 1] = new int[residual]; } else for (int i = 0; i < baseLength; i++) base[i] = new int[SEGMENT_SIZE]; return base; } /** A static, final, empty big atomic array. */ public static final AtomicIntegerArray[] EMPTY_BIG_ATOMIC_ARRAY = {}; /** * Creates a new big atomic array. * * @param length * the length of the new big array. * @return a new big atomic array of given length. */ public static AtomicIntegerArray[] newBigAtomicArray(final long length) { if (length == 0) return EMPTY_BIG_ATOMIC_ARRAY; ensureLength(length); final int baseLength = (int) ((length + SEGMENT_MASK) >>> SEGMENT_SHIFT); AtomicIntegerArray[] base = new AtomicIntegerArray[baseLength]; final int residual = (int) (length & SEGMENT_MASK); if (residual != 0) { for (int i = 0; i < baseLength - 1; i++) base[i] = new AtomicIntegerArray(SEGMENT_SIZE); base[baseLength - 1] = new AtomicIntegerArray(residual); } else for (int i = 0; i < baseLength; i++) base[i] = new AtomicIntegerArray(SEGMENT_SIZE); return base; } /** * Turns a standard array into a big array. * *

* Note that the returned big array might contain as a segment the original * array. * * @param array * an array. * @return a new big array with the same length and content of {@code array}. * @deprecated Please use the version in * {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static int[][] wrap(final int[] array) { return BigArrays.wrap(array); } /** * Ensures that a big array can contain the given number of entries. * *

* If you cannot foresee whether this big array will need again to be enlarged, * you should probably use {@code grow()} instead. * *

* Warning: the returned array might use part of the segments * of the original array, which must be considered read-only after calling this * method. * * @param array * a big array. * @param length * the new minimum length for this big array. * @return {@code array}, if it contains {@code length} entries or more; * otherwise, a big array with {@code length} entries whose first * {@code length(array)} entries are the same as those of {@code array}. * @deprecated Please use the version in * {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static int[][] ensureCapacity(final int[][] array, final long length) { return ensureCapacity(array, length, length(array)); } /** * Forces a big array to contain the given number of entries, preserving just a * part of the big array. * *

* Warning: the returned array might use part of the segments * of the original array, which must be considered read-only after calling this * method. * * @param array * a big array. * @param length * the new minimum length for this big array. * @param preserve * the number of elements of the big array that must be preserved in * case a new allocation is necessary. * @return a big array with {@code length} entries whose first {@code preserve} * entries are the same as those of {@code array}. * @deprecated Please use the version in * {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static int[][] forceCapacity(final int[][] array, final long length, final long preserve) { return BigArrays.forceCapacity(array, length, preserve); } /** * Ensures that a big array can contain the given number of entries, preserving * just a part of the big array. * *

* Warning: the returned array might use part of the segments * of the original array, which must be considered read-only after calling this * method. * * @param array * a big array. * @param length * the new minimum length for this big array. * @param preserve * the number of elements of the big array that must be preserved in * case a new allocation is necessary. * @return {@code array}, if it can contain {@code length} entries or more; * otherwise, a big array with {@code length} entries whose first * {@code preserve} entries are the same as those of {@code array}. * @deprecated Please use the version in * {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static int[][] ensureCapacity(final int[][] array, final long length, final long preserve) { return length > length(array) ? forceCapacity(array, length, preserve) : array; } /** * Grows the given big array to the maximum between the given length and the * current length increased by 50%, provided that the given length is larger * than the current length. * *

* If you want complete control on the big array growth, you should probably use * {@code ensureCapacity()} instead. * *

* Warning: the returned array might use part of the segments * of the original array, which must be considered read-only after calling this * method. * * @param array * a big array. * @param length * the new minimum length for this big array. * @return {@code array}, if it can contain {@code length} entries; otherwise, a * big array with max({@code length},{@code length(array)}/φ) * entries whose first {@code length(array)} entries are the same as * those of {@code array}. * @deprecated Please use the version in * {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static int[][] grow(final int[][] array, final long length) { final long oldLength = length(array); return length > oldLength ? grow(array, length, oldLength) : array; } /** * Grows the given big array to the maximum between the given length and the * current length increased by 50%, provided that the given length is larger * than the current length, preserving just a part of the big array. * *

* If you want complete control on the big array growth, you should probably use * {@code ensureCapacity()} instead. * *

* Warning: the returned array might use part of the segments * of the original array, which must be considered read-only after calling this * method. * * @param array * a big array. * @param length * the new minimum length for this big array. * @param preserve * the number of elements of the big array that must be preserved in * case a new allocation is necessary. * @return {@code array}, if it can contain {@code length} entries; otherwise, a * big array with max({@code length},{@code length(array)}/φ) * entries whose first {@code preserve} entries are the same as those of * {@code array}. * @deprecated Please use the version in * {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static int[][] grow(final int[][] array, final long length, final long preserve) { final long oldLength = length(array); return length > oldLength ? ensureCapacity(array, Math.max(oldLength + (oldLength >> 1), length), preserve) : array; } /** * Trims the given big array to the given length. * *

* Warning: the returned array might use part of the segments * of the original array, which must be considered read-only after calling this * method. * * @param array * a big array. * @param length * the new maximum length for the big array. * @return {@code array}, if it contains {@code length} entries or less; * otherwise, a big array with {@code length} entries whose entries are * the same as the first {@code length} entries of {@code array}. * @deprecated Please use the version in * {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static int[][] trim(final int[][] array, final long length) { ensureLength(length); final long oldLength = length(array); if (length >= oldLength) return array; final int baseLength = (int) ((length + SEGMENT_MASK) >>> SEGMENT_SHIFT); final int[][] base = Arrays.copyOf(array, baseLength); final int residual = (int) (length & SEGMENT_MASK); if (residual != 0) base[baseLength - 1] = IntArrays.trim(base[baseLength - 1], residual); return base; } /** * Sets the length of the given big array. * *

* Warning: the returned array might use part of the segments * of the original array, which must be considered read-only after calling this * method. * * @param array * a big array. * @param length * the new length for the big array. * @return {@code array}, if it contains exactly {@code length} entries; * otherwise, if it contains more than {@code length} entries, * a big array with {@code length} entries whose entries are the same as * the first {@code length} entries of {@code array}; otherwise, a big * array with {@code length} entries whose first {@code length(array)} * entries are the same as those of {@code array}. * @deprecated Please use the version in * {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static int[][] setLength(final int[][] array, final long length) { return BigArrays.setLength(array, length); } /** * Returns a copy of a portion of a big array. * * @param array * a big array. * @param offset * the first element to copy. * @param length * the number of elements to copy. * @return a new big array containing {@code length} elements of {@code array} * starting at {@code offset}. * @deprecated Please use the version in * {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static int[][] copy(final int[][] array, final long offset, final long length) { return BigArrays.copy(array, offset, length); } /** * Returns a copy of a big array. * * @param array * a big array. * @return a copy of {@code array}. * @deprecated Please use the version in * {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static int[][] copy(final int[][] array) { return BigArrays.copy(array); } /** * Fills the given big array with the given value. * *

* This method uses a backward loop. It is significantly faster than the * corresponding method in {@link java.util.Arrays}. * * @param array * a big array. * @param value * the new value for all elements of the big array. * @deprecated Please use the version in * {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static void fill(final int[][] array, final int value) { for (int i = array.length; i-- != 0;) Arrays.fill(array[i], value); } /** * Fills a portion of the given big array with the given value. * *

* If possible (i.e., {@code from} is 0) this method uses a backward loop. In * this case, it is significantly faster than the corresponding method in * {@link java.util.Arrays}. * * @param array * a big array. * @param from * the starting index of the portion to fill. * @param to * the end index of the portion to fill. * @param value * the new value for all elements of the specified portion of the big * array. * @deprecated Please use the version in * {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static void fill(final int[][] array, final long from, long to, final int value) { BigArrays.fill(array, from, to, value); } /** * Returns true if the two big arrays are elementwise equal. * *

* This method uses a backward loop. It is significantly faster than the * corresponding method in {@link java.util.Arrays}. * * @param a1 * a big array. * @param a2 * another big array. * @return true if the two big arrays are of the same length, and their elements * are equal. * @deprecated Please use the version in * {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static boolean equals(final int[][] a1, final int a2[][]) { return BigArrays.equals(a1, a2); } /* * Returns a string representation of the contents of the specified big array. * * The string representation consists of a list of the big array's elements, * enclosed in square brackets ("[]"). Adjacent elements are separated by the * characters ", " (a comma followed by a space). Returns "null" if {@code a} is * null. * * @param a the big array whose string representation to return. * * @return the string representation of {@code a}. * * @deprecated Please use the version in {@link * it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static String toString(final int[][] a) { return BigArrays.toString(a); } /** * Ensures that a range given by its first (inclusive) and last (exclusive) * elements fits a big array. * *

* This method may be used whenever a big array range check is needed. * * @param a * a big array. * @param from * a start index (inclusive). * @param to * an end index (inclusive). * @throws IllegalArgumentException * if {@code from} is greater than {@code to}. * @throws ArrayIndexOutOfBoundsException * if {@code from} or {@code to} are greater than the big array * length or negative. * @deprecated Please use the version in * {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static void ensureFromTo(final int[][] a, final long from, final long to) { BigArrays.ensureFromTo(length(a), from, to); } /** * Ensures that a range given by an offset and a length fits a big array. * *

* This method may be used whenever a big array range check is needed. * * @param a * a big array. * @param offset * a start index. * @param length * a length (the number of elements in the range). * @throws IllegalArgumentException * if {@code length} is negative. * @throws ArrayIndexOutOfBoundsException * if {@code offset} is negative or {@code offset}+{@code length} is * greater than the big array length. * @deprecated Please use the version in * {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static void ensureOffsetLength(final int[][] a, final long offset, final long length) { BigArrays.ensureOffsetLength(length(a), offset, length); } /** * Ensures that two big arrays are of the same length. * * @param a * a big array. * @param b * another big array. * @throws IllegalArgumentException * if the two argument arrays are not of the same length. * @deprecated Please use the version in * {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static void ensureSameLength(final int[][] a, final int[][] b) { if (length(a) != length(b)) throw new IllegalArgumentException("Array size mismatch: " + length(a) + " != " + length(b)); } /** A type-specific content-based hash strategy for big arrays. */ private static final class BigArrayHashStrategy implements Hash.Strategy, java.io.Serializable { private static final long serialVersionUID = -7046029254386353129L; @Override public int hashCode(final int[][] o) { return java.util.Arrays.deepHashCode(o); } @Override public boolean equals(final int[][] a, final int[][] b) { return IntBigArrays.equals(a, b); } } /** * A type-specific content-based hash strategy for big arrays. * *

* This hash strategy may be used in custom hash collections whenever keys are * big arrays, and they must be considered equal by content. This strategy will * handle {@code null} correctly, and it is serializable. */ @SuppressWarnings({"rawtypes"}) public static final Hash.Strategy HASH_STRATEGY = new BigArrayHashStrategy(); private static final int QUICKSORT_NO_REC = 7; private static final int PARALLEL_QUICKSORT_NO_FORK = 8192; private static final int MEDIUM = 40; private static void swap(final int[][] x, long a, long b, final long n) { for (int i = 0; i < n; i++, a++, b++) BigArrays.swap(x, a, b); } private static long med3(final int x[][], final long a, final long b, final long c, IntComparator comp) { int ab = comp.compare(BigArrays.get(x, a), BigArrays.get(x, b)); int ac = comp.compare(BigArrays.get(x, a), BigArrays.get(x, c)); int bc = comp.compare(BigArrays.get(x, b), BigArrays.get(x, c)); return (ab < 0 ? (bc < 0 ? b : ac < 0 ? c : a) : (bc > 0 ? b : ac > 0 ? c : a)); } private static void selectionSort(final int[][] a, final long from, final long to, final IntComparator comp) { for (long i = from; i < to - 1; i++) { long m = i; for (long j = i + 1; j < to; j++) if (comp.compare(BigArrays.get(a, j), BigArrays.get(a, m)) < 0) m = j; if (m != i) BigArrays.swap(a, i, m); } } /** * Sorts the specified range of elements according to the order induced by the * specified comparator using quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. * Douglas McIlroy, “Engineering a Sort Function”, Software: * Practice and Experience, 23(11), pages 1249−1265, 1993. * * @param x * the big array to be sorted. * @param from * the index of the first element (inclusive) to be sorted. * @param to * the index of the last element (exclusive) to be sorted. * @param comp * the comparator to determine the sorting order. */ public static void quickSort(final int[][] x, final long from, final long to, final IntComparator comp) { final long len = to - from; // Selection sort on smallest arrays if (len < QUICKSORT_NO_REC) { selectionSort(x, from, to, comp); return; } // Choose a partition element, v long m = from + len / 2; // Small arrays, middle element if (len > QUICKSORT_NO_REC) { long l = from; long n = to - 1; if (len > MEDIUM) { // Big arrays, pseudomedian of 9 long s = len / 8; l = med3(x, l, l + s, l + 2 * s, comp); m = med3(x, m - s, m, m + s, comp); n = med3(x, n - 2 * s, n - s, n, comp); } m = med3(x, l, m, n, comp); // Mid-size, med of 3 } final int v = BigArrays.get(x, m); // Establish Invariant: v* (v)* v* long a = from, b = a, c = to - 1, d = c; while (true) { int comparison; while (b <= c && (comparison = comp.compare(BigArrays.get(x, b), v)) <= 0) { if (comparison == 0) BigArrays.swap(x, a++, b); b++; } while (c >= b && (comparison = comp.compare(BigArrays.get(x, c), v)) >= 0) { if (comparison == 0) BigArrays.swap(x, c, d--); c--; } if (b > c) break; BigArrays.swap(x, b++, c--); } // Swap partition elements back to middle long s, n = to; s = Math.min(a - from, b - a); swap(x, from, b - s, s); s = Math.min(d - c, n - d - 1); swap(x, b, n - s, s); // Recursively sort non-partition-elements if ((s = b - a) > 1) quickSort(x, from, from + s, comp); if ((s = d - c) > 1) quickSort(x, n - s, n, comp); } private static long med3(final int x[][], final long a, final long b, final long c) { int ab = (Integer.compare((BigArrays.get(x, a)), (BigArrays.get(x, b)))); int ac = (Integer.compare((BigArrays.get(x, a)), (BigArrays.get(x, c)))); int bc = (Integer.compare((BigArrays.get(x, b)), (BigArrays.get(x, c)))); return (ab < 0 ? (bc < 0 ? b : ac < 0 ? c : a) : (bc > 0 ? b : ac > 0 ? c : a)); } private static void selectionSort(final int[][] a, final long from, final long to) { for (long i = from; i < to - 1; i++) { long m = i; for (long j = i + 1; j < to; j++) if (((BigArrays.get(a, j)) < (BigArrays.get(a, m)))) m = j; if (m != i) BigArrays.swap(a, i, m); } } /** * Sorts the specified big array according to the order induced by the specified * comparator using quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. * Douglas McIlroy, “Engineering a Sort Function”, Software: * Practice and Experience, 23(11), pages 1249−1265, 1993. * * @param x * the big array to be sorted. * @param comp * the comparator to determine the sorting order. * */ public static void quickSort(final int[][] x, final IntComparator comp) { quickSort(x, 0, BigArrays.length(x), comp); } /** * Sorts the specified range of elements according to the natural ascending * order using quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. * Douglas McIlroy, “Engineering a Sort Function”, Software: * Practice and Experience, 23(11), pages 1249−1265, 1993. * * @param x * the big array to be sorted. * @param from * the index of the first element (inclusive) to be sorted. * @param to * the index of the last element (exclusive) to be sorted. */ public static void quickSort(final int[][] x, final long from, final long to) { final long len = to - from; // Selection sort on smallest arrays if (len < QUICKSORT_NO_REC) { selectionSort(x, from, to); return; } // Choose a partition element, v long m = from + len / 2; // Small arrays, middle element if (len > QUICKSORT_NO_REC) { long l = from; long n = to - 1; if (len > MEDIUM) { // Big arrays, pseudomedian of 9 long s = len / 8; l = med3(x, l, l + s, l + 2 * s); m = med3(x, m - s, m, m + s); n = med3(x, n - 2 * s, n - s, n); } m = med3(x, l, m, n); // Mid-size, med of 3 } final int v = BigArrays.get(x, m); // Establish Invariant: v* (v)* v* long a = from, b = a, c = to - 1, d = c; while (true) { int comparison; while (b <= c && (comparison = (Integer.compare((BigArrays.get(x, b)), (v)))) <= 0) { if (comparison == 0) BigArrays.swap(x, a++, b); b++; } while (c >= b && (comparison = (Integer.compare((BigArrays.get(x, c)), (v)))) >= 0) { if (comparison == 0) BigArrays.swap(x, c, d--); c--; } if (b > c) break; BigArrays.swap(x, b++, c--); } // Swap partition elements back to middle long s, n = to; s = Math.min(a - from, b - a); swap(x, from, b - s, s); s = Math.min(d - c, n - d - 1); swap(x, b, n - s, s); // Recursively sort non-partition-elements if ((s = b - a) > 1) quickSort(x, from, from + s); if ((s = d - c) > 1) quickSort(x, n - s, n); } /** * Sorts the specified big array according to the natural ascending order using * quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. * Douglas McIlroy, “Engineering a Sort Function”, Software: * Practice and Experience, 23(11), pages 1249−1265, 1993. * * @param x * the big array to be sorted. */ public static void quickSort(final int[][] x) { quickSort(x, 0, BigArrays.length(x)); } protected static class ForkJoinQuickSort extends RecursiveAction { private static final long serialVersionUID = 1L; private final long from; private final long to; private final int[][] x; public ForkJoinQuickSort(final int[][] x, final long from, final long to) { this.from = from; this.to = to; this.x = x; } @Override protected void compute() { final int[][] x = this.x; final long len = to - from; if (len < PARALLEL_QUICKSORT_NO_FORK) { quickSort(x, from, to); return; } // Choose a partition element, v long m = from + len / 2; long l = from; long n = to - 1; long s = len / 8; l = med3(x, l, l + s, l + 2 * s); m = med3(x, m - s, m, m + s); n = med3(x, n - 2 * s, n - s, n); m = med3(x, l, m, n); final int v = BigArrays.get(x, m); // Establish Invariant: v* (v)* v* long a = from, b = a, c = to - 1, d = c; while (true) { int comparison; while (b <= c && (comparison = (Integer.compare((BigArrays.get(x, b)), (v)))) <= 0) { if (comparison == 0) BigArrays.swap(x, a++, b); b++; } while (c >= b && (comparison = (Integer.compare((BigArrays.get(x, c)), (v)))) >= 0) { if (comparison == 0) BigArrays.swap(x, c, d--); c--; } if (b > c) break; BigArrays.swap(x, b++, c--); } // Swap partition elements back to middle long t; s = Math.min(a - from, b - a); swap(x, from, b - s, s); s = Math.min(d - c, to - d - 1); swap(x, b, to - s, s); // Recursively sort non-partition-elements s = b - a; t = d - c; if (s > 1 && t > 1) invokeAll(new ForkJoinQuickSort(x, from, from + s), new ForkJoinQuickSort(x, to - t, to)); else if (s > 1) invokeAll(new ForkJoinQuickSort(x, from, from + s)); else invokeAll(new ForkJoinQuickSort(x, to - t, to)); } } /** * Sorts the specified range of elements according to the natural ascending * order using a parallel quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. * Douglas McIlroy, “Engineering a Sort Function”, Software: * Practice and Experience, 23(11), pages 1249−1265, 1993. * *

* This implementation uses the {@link ForkJoinPool#commonPool() common pool}. * * @param x * the big array to be sorted. * @param from * the index of the first element (inclusive) to be sorted. * @param to * the index of the last element (exclusive) to be sorted. */ public static void parallelQuickSort(final int[][] x, final long from, final long to) { if (to - from < PARALLEL_QUICKSORT_NO_FORK || ForkJoinPool.getCommonPoolParallelism() == 1) quickSort(x, from, to); else { final ForkJoinPool pool = ForkJoinPool.commonPool();; pool.invoke(new ForkJoinQuickSort(x, from, to)); pool.shutdown(); } } /** * Sorts a big array according to the natural ascending order using a parallel * quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. * Douglas McIlroy, “Engineering a Sort Function”, Software: * Practice and Experience, 23(11), pages 1249−1265, 1993. * *

* This implementation uses the {@link ForkJoinPool#commonPool() common pool}. * * @param x * the big array to be sorted. */ public static void parallelQuickSort(final int[][] x) { parallelQuickSort(x, 0, BigArrays.length(x)); } protected static class ForkJoinQuickSortComp extends RecursiveAction { private static final long serialVersionUID = 1L; private final long from; private final long to; private final int[][] x; private final IntComparator comp; public ForkJoinQuickSortComp(final int[][] x, final long from, final long to, final IntComparator comp) { this.from = from; this.to = to; this.x = x; this.comp = comp; } @Override protected void compute() { final int[][] x = this.x; final long len = to - from; if (len < PARALLEL_QUICKSORT_NO_FORK) { quickSort(x, from, to, comp); return; } // Choose a partition element, v long m = from + len / 2; long l = from; long n = to - 1; long s = len / 8; l = med3(x, l, l + s, l + 2 * s, comp); m = med3(x, m - s, m, m + s, comp); n = med3(x, n - 2 * s, n - s, n, comp); m = med3(x, l, m, n, comp); final int v = BigArrays.get(x, m); // Establish Invariant: v* (v)* v* long a = from, b = a, c = to - 1, d = c; while (true) { int comparison; while (b <= c && (comparison = comp.compare(BigArrays.get(x, b), v)) <= 0) { if (comparison == 0) BigArrays.swap(x, a++, b); b++; } while (c >= b && (comparison = comp.compare(BigArrays.get(x, c), v)) >= 0) { if (comparison == 0) BigArrays.swap(x, c, d--); c--; } if (b > c) break; BigArrays.swap(x, b++, c--); } // Swap partition elements back to middle long t; s = Math.min(a - from, b - a); swap(x, from, b - s, s); s = Math.min(d - c, to - d - 1); swap(x, b, to - s, s); // Recursively sort non-partition-elements s = b - a; t = d - c; if (s > 1 && t > 1) invokeAll(new ForkJoinQuickSortComp(x, from, from + s, comp), new ForkJoinQuickSortComp(x, to - t, to, comp)); else if (s > 1) invokeAll(new ForkJoinQuickSortComp(x, from, from + s, comp)); else invokeAll(new ForkJoinQuickSortComp(x, to - t, to, comp)); } } /** * Sorts the specified range of elements according to the order induced by the * specified comparator using a parallel quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. * Douglas McIlroy, “Engineering a Sort Function”, Software: * Practice and Experience, 23(11), pages 1249−1265, 1993. * *

* This implementation uses the {@link ForkJoinPool#commonPool() common pool}. * * @param x * the big array to be sorted. * @param from * the index of the first element (inclusive) to be sorted. * @param to * the index of the last element (exclusive) to be sorted. * @param comp * the comparator to determine the sorting order. */ public static void parallelQuickSort(final int[][] x, final long from, final long to, final IntComparator comp) { if (to - from < PARALLEL_QUICKSORT_NO_FORK || ForkJoinPool.getCommonPoolParallelism() == 1) quickSort(x, from, to, comp); else { final ForkJoinPool pool = ForkJoinPool.commonPool();; pool.invoke(new ForkJoinQuickSortComp(x, from, to, comp)); pool.shutdown(); } } /** * Sorts a big array according to the order induced by the specified comparator * using a parallel quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. * Douglas McIlroy, “Engineering a Sort Function”, Software: * Practice and Experience, 23(11), pages 1249−1265, 1993. * *

* This implementation uses the {@link ForkJoinPool#commonPool() common pool}. * * @param x * the big array to be sorted. * @param comp * the comparator to determine the sorting order. */ public static void parallelQuickSort(final int[][] x, final IntComparator comp) { parallelQuickSort(x, 0, BigArrays.length(x), comp); } /** * Searches a range of the specified big array for the specified value using the * binary search algorithm. The range must be sorted prior to making this call. * If it is not sorted, the results are undefined. If the range contains * multiple elements with the specified value, there is no guarantee which one * will be found. * * @param a * the big array to be searched. * @param from * the index of the first element (inclusive) to be searched. * @param to * the index of the last element (exclusive) to be searched. * @param key * the value to be searched for. * @return index of the search key, if it is contained in the big array; * otherwise, (-(insertion point) - 1). The * insertion point is defined as the the point at which the value * would be inserted into the big array: the index of the first element * greater than the key, or the length of the big array, if all elements * in the big array are less than the specified key. Note that this * guarantees that the return value will be >= 0 if and only if the * key is found. * @see java.util.Arrays */ public static long binarySearch(final int[][] a, long from, long to, final int key) { int midVal; to--; while (from <= to) { final long mid = (from + to) >>> 1; midVal = BigArrays.get(a, mid); if (midVal < key) from = mid + 1; else if (midVal > key) to = mid - 1; else return mid; } return -(from + 1); } /** * Searches a big array for the specified value using the binary search * algorithm. The range must be sorted prior to making this call. If it is not * sorted, the results are undefined. If the range contains multiple elements * with the specified value, there is no guarantee which one will be found. * * @param a * the big array to be searched. * @param key * the value to be searched for. * @return index of the search key, if it is contained in the big array; * otherwise, (-(insertion point) - 1). The * insertion point is defined as the the point at which the value * would be inserted into the big array: the index of the first element * greater than the key, or the length of the big array, if all elements * in the big array are less than the specified key. Note that this * guarantees that the return value will be >= 0 if and only if the * key is found. * @see java.util.Arrays */ public static long binarySearch(final int[][] a, final int key) { return binarySearch(a, 0, BigArrays.length(a), key); } /** * Searches a range of the specified big array for the specified value using the * binary search algorithm and a specified comparator. The range must be sorted * following the comparator prior to making this call. If it is not sorted, the * results are undefined. If the range contains multiple elements with the * specified value, there is no guarantee which one will be found. * * @param a * the big array to be searched. * @param from * the index of the first element (inclusive) to be searched. * @param to * the index of the last element (exclusive) to be searched. * @param key * the value to be searched for. * @param c * a comparator. * @return index of the search key, if it is contained in the big array; * otherwise, (-(insertion point) - 1). The * insertion point is defined as the the point at which the value * would be inserted into the big array: the index of the first element * greater than the key, or the length of the big array, if all elements * in the big array are less than the specified key. Note that this * guarantees that the return value will be >= 0 if and only if the * key is found. * @see java.util.Arrays */ public static long binarySearch(final int[][] a, long from, long to, final int key, final IntComparator c) { int midVal; to--; while (from <= to) { final long mid = (from + to) >>> 1; midVal = BigArrays.get(a, mid); final int cmp = c.compare(midVal, key); if (cmp < 0) from = mid + 1; else if (cmp > 0) to = mid - 1; else return mid; // key found } return -(from + 1); } /** * Searches a big array for the specified value using the binary search * algorithm and a specified comparator. The range must be sorted following the * comparator prior to making this call. If it is not sorted, the results are * undefined. If the range contains multiple elements with the specified value, * there is no guarantee which one will be found. * * @param a * the big array to be searched. * @param key * the value to be searched for. * @param c * a comparator. * @return index of the search key, if it is contained in the big array; * otherwise, (-(insertion point) - 1). The * insertion point is defined as the the point at which the value * would be inserted into the big array: the index of the first element * greater than the key, or the length of the big array, if all elements * in the big array are less than the specified key. Note that this * guarantees that the return value will be >= 0 if and only if the * key is found. * @see java.util.Arrays */ public static long binarySearch(final int[][] a, final int key, final IntComparator c) { return binarySearch(a, 0, BigArrays.length(a), key, c); } /** The size of a digit used during radix sort (must be a power of 2). */ private static final int DIGIT_BITS = 8; /** The mask to extract a digit of {@link #DIGIT_BITS} bits. */ private static final int DIGIT_MASK = (1 << DIGIT_BITS) - 1; /** The number of digits per element. */ private static final int DIGITS_PER_ELEMENT = Integer.SIZE / DIGIT_BITS; /** * This method fixes negative numbers so that the combination * exponent/significand is lexicographically sorted. */ /** * Sorts the specified big array using radix sort. * *

* The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, * Keith Bostic and M. Douglas McIlroy, “Engineering radix sort”, * Computing Systems, 6(1), pages 5−27 (1993), and further improved * using the digit-oracle idea described by Juha Kärkkäinen and Tommi * Rantala in “Engineering radix sort for strings”, String * Processing and Information Retrieval, 15th International Symposium, * volume 5280 of Lecture Notes in Computer Science, pages 3−14, Springer * (2008). * *

* This implementation is significantly faster than quicksort already at small * sizes (say, more than 10000 elements), but it can only sort in ascending * order. It will allocate a support array of bytes with the same number of * elements as the array to be sorted. * * @param a * the big array to be sorted. */ public static void radixSort(final int[][] a) { radixSort(a, 0, BigArrays.length(a)); } /** * Sorts the specified big array using radix sort. * *

* The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, * Keith Bostic and M. Douglas McIlroy, “Engineering radix sort”, * Computing Systems, 6(1), pages 5−27 (1993), and further improved * using the digit-oracle idea described by Juha Kärkkäinen and Tommi * Rantala in “Engineering radix sort for strings”, String * Processing and Information Retrieval, 15th International Symposium, * volume 5280 of Lecture Notes in Computer Science, pages 3−14, Springer * (2008). * *

* This implementation is significantly faster than quicksort already at small * sizes (say, more than 10000 elements), but it can only sort in ascending * order. It will allocate a support array of bytes with the same number of * elements as the array to be sorted. * * @param a * the big array to be sorted. * @param from * the index of the first element (inclusive) to be sorted. * @param to * the index of the last element (exclusive) to be sorted. */ public static void radixSort(final int[][] a, final long from, final long to) { final int maxLevel = DIGITS_PER_ELEMENT - 1; final int stackSize = ((1 << DIGIT_BITS) - 1) * (DIGITS_PER_ELEMENT - 1) + 1; final long[] offsetStack = new long[stackSize]; int offsetPos = 0; final long[] lengthStack = new long[stackSize]; int lengthPos = 0; final int[] levelStack = new int[stackSize]; int levelPos = 0; offsetStack[offsetPos++] = from; lengthStack[lengthPos++] = to - from; levelStack[levelPos++] = 0; final long[] count = new long[1 << DIGIT_BITS]; final long[] pos = new long[1 << DIGIT_BITS]; final byte[][] digit = ByteBigArrays.newBigArray(to - from); while (offsetPos > 0) { final long first = offsetStack[--offsetPos]; final long length = lengthStack[--lengthPos]; final int level = levelStack[--levelPos]; final int signMask = level % DIGITS_PER_ELEMENT == 0 ? 1 << DIGIT_BITS - 1 : 0; if (length < MEDIUM) { selectionSort(a, first, first + length); continue; } final int shift = (DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT) * DIGIT_BITS; // This is the shift // that extract the // right byte from a // key // Count keys. for (long i = length; i-- != 0;) BigArrays.set(digit, i, (byte) ((((BigArrays.get(a, first + i)) >>> shift) & DIGIT_MASK) ^ signMask)); for (long i = length; i-- != 0;) count[BigArrays.get(digit, i) & 0xFF]++; // Compute cumulative distribution and push non-singleton keys on stack. int lastUsed = -1; long p = 0; for (int i = 0; i < 1 << DIGIT_BITS; i++) { if (count[i] != 0) { lastUsed = i; if (level < maxLevel && count[i] > 1) { // System.err.println(" Pushing " + new StackEntry(first + pos[i - 1], first + // pos[i], level + 1)); offsetStack[offsetPos++] = p + first; lengthStack[lengthPos++] = count[i]; levelStack[levelPos++] = level + 1; } } pos[i] = (p += count[i]); } // When all slots are OK, the last slot is necessarily OK. final long end = length - count[lastUsed]; count[lastUsed] = 0; // i moves through the start of each block int c = -1; for (long i = 0, d; i < end; i += count[c], count[c] = 0) { int t = BigArrays.get(a, i + first); c = BigArrays.get(digit, i) & 0xFF; while ((d = --pos[c]) > i) { final int z = t; final int zz = c; t = BigArrays.get(a, d + first); c = BigArrays.get(digit, d) & 0xFF; BigArrays.set(a, d + first, z); BigArrays.set(digit, d, (byte) zz); } BigArrays.set(a, i + first, t); } } } private static void selectionSort(final int[][] a, final int[][] b, final long from, final long to) { for (long i = from; i < to - 1; i++) { long m = i; for (long j = i + 1; j < to; j++) if (((BigArrays.get(a, j)) < (BigArrays.get(a, m))) || ((BigArrays.get(a, j)) == (BigArrays.get(a, m))) && ((BigArrays.get(b, j)) < (BigArrays.get(b, m)))) m = j; if (m != i) { int t = BigArrays.get(a, i); BigArrays.set(a, i, BigArrays.get(a, m)); BigArrays.set(a, m, t); t = BigArrays.get(b, i); BigArrays.set(b, i, BigArrays.get(b, m)); BigArrays.set(b, m, t); } } } /** * Sorts the specified pair of big arrays lexicographically using radix sort. *

* The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, * Keith Bostic and M. Douglas McIlroy, “Engineering radix sort”, * Computing Systems, 6(1), pages 5−27 (1993), and further improved * using the digit-oracle idea described by Juha Kärkkäinen and Tommi * Rantala in “Engineering radix sort for strings”, String * Processing and Information Retrieval, 15th International Symposium, * volume 5280 of Lecture Notes in Computer Science, pages 3−14, Springer * (2008). * *

* This method implements a lexicographical sorting of the arguments. * Pairs of elements in the same position in the two provided arrays will be * considered a single key, and permuted accordingly. In the end, either * {@code a[i] < a[i + 1]} or {@code a[i] == a[i + 1]} and * {@code b[i] <= b[i + 1]}. * *

* This implementation is significantly faster than quicksort already at small * sizes (say, more than 10000 elements), but it can only sort in ascending * order. It will allocate a support array of bytes with the same number of * elements as the arrays to be sorted. * * @param a * the first big array to be sorted. * @param b * the second big array to be sorted. */ public static void radixSort(final int[][] a, final int[][] b) { radixSort(a, b, 0, BigArrays.length(a)); } /** * Sorts the specified pair of big arrays lexicographically using radix sort. * *

* The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, * Keith Bostic and M. Douglas McIlroy, “Engineering radix sort”, * Computing Systems, 6(1), pages 5−27 (1993), and further improved * using the digit-oracle idea described by Juha Kärkkäinen and Tommi * Rantala in “Engineering radix sort for strings”, String * Processing and Information Retrieval, 15th International Symposium, * volume 5280 of Lecture Notes in Computer Science, pages 3−14, Springer * (2008). * *

* This method implements a lexicographical sorting of the arguments. * Pairs of elements in the same position in the two provided arrays will be * considered a single key, and permuted accordingly. In the end, either * {@code a[i] < a[i + 1]} or {@code a[i] == a[i + 1]} and * {@code b[i] <= b[i + 1]}. * *

* This implementation is significantly faster than quicksort already at small * sizes (say, more than 10000 elements), but it can only sort in ascending * order. It will allocate a support array of bytes with the same number of * elements as the arrays to be sorted. * * @param a * the first big array to be sorted. * @param b * the second big array to be sorted. * @param from * the index of the first element (inclusive) to be sorted. * @param to * the index of the last element (exclusive) to be sorted. */ public static void radixSort(final int[][] a, final int[][] b, final long from, final long to) { final int layers = 2; if (BigArrays.length(a) != BigArrays.length(b)) throw new IllegalArgumentException("Array size mismatch."); final int maxLevel = DIGITS_PER_ELEMENT * layers - 1; final int stackSize = ((1 << DIGIT_BITS) - 1) * (layers * DIGITS_PER_ELEMENT - 1) + 1; final long[] offsetStack = new long[stackSize]; int offsetPos = 0; final long[] lengthStack = new long[stackSize]; int lengthPos = 0; final int[] levelStack = new int[stackSize]; int levelPos = 0; offsetStack[offsetPos++] = from; lengthStack[lengthPos++] = to - from; levelStack[levelPos++] = 0; final long[] count = new long[1 << DIGIT_BITS]; final long[] pos = new long[1 << DIGIT_BITS]; final byte[][] digit = ByteBigArrays.newBigArray(to - from); while (offsetPos > 0) { final long first = offsetStack[--offsetPos]; final long length = lengthStack[--lengthPos]; final int level = levelStack[--levelPos]; final int signMask = level % DIGITS_PER_ELEMENT == 0 ? 1 << DIGIT_BITS - 1 : 0; if (length < MEDIUM) { selectionSort(a, b, first, first + length); continue; } final int[][] k = level < DIGITS_PER_ELEMENT ? a : b; // This is the key array final int shift = (DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT) * DIGIT_BITS; // This is the shift // that extract the // right byte from a // key // Count keys. for (long i = length; i-- != 0;) BigArrays.set(digit, i, (byte) ((((BigArrays.get(k, first + i)) >>> shift) & DIGIT_MASK) ^ signMask)); for (long i = length; i-- != 0;) count[BigArrays.get(digit, i) & 0xFF]++; // Compute cumulative distribution and push non-singleton keys on stack. int lastUsed = -1; long p = 0; for (int i = 0; i < 1 << DIGIT_BITS; i++) { if (count[i] != 0) { lastUsed = i; if (level < maxLevel && count[i] > 1) { offsetStack[offsetPos++] = p + first; lengthStack[lengthPos++] = count[i]; levelStack[levelPos++] = level + 1; } } pos[i] = (p += count[i]); } // When all slots are OK, the last slot is necessarily OK. final long end = length - count[lastUsed]; count[lastUsed] = 0; // i moves through the start of each block int c = -1; for (long i = 0, d; i < end; i += count[c], count[c] = 0) { int t = BigArrays.get(a, i + first); int u = BigArrays.get(b, i + first); c = BigArrays.get(digit, i) & 0xFF; while ((d = --pos[c]) > i) { int z = t; final int zz = c; t = BigArrays.get(a, d + first); BigArrays.set(a, d + first, z); z = u; u = BigArrays.get(b, d + first); BigArrays.set(b, d + first, z); c = BigArrays.get(digit, d) & 0xFF; BigArrays.set(digit, d, (byte) zz); } BigArrays.set(a, i + first, t); BigArrays.set(b, i + first, u); } } } private static final int RADIXSORT_NO_REC = 1024; private static void insertionSortIndirect(final long[][] perm, final int[][] a, final int[][] b, final long from, final long to) { for (long i = from; ++i < to;) { long t = BigArrays.get(perm, i); long j = i; for (long u = BigArrays.get(perm, j - 1); ((BigArrays.get(a, t)) < (BigArrays.get(a, u))) || ((BigArrays.get(a, t)) == (BigArrays.get(a, u))) && ((BigArrays.get(b, t)) < (BigArrays.get(b, u))); u = BigArrays.get(perm, --j - 1)) { BigArrays.set(perm, j, u); if (from == j - 1) { --j; break; } } BigArrays.set(perm, j, t); } } /** * Sorts the specified pair of arrays lexicographically using indirect radix * sort. * *

* The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, * Keith Bostic and M. Douglas McIlroy, “Engineering radix sort”, * Computing Systems, 6(1), pages 5−27 (1993). * *

* This method implement an indirect sort. The elements of {@code perm} * (which must be exactly the numbers in the interval {@code [0..length(perm))}) * will be permuted so that {@code a[perm[i]] ≤ a[perm[i + 1]]} or * {@code a[perm[i]] == a[perm[i + 1]]} and * {@code b[perm[i]] ≤ b[perm[i + 1]]}. * *

* This implementation will allocate, in the stable case, a further support * array as large as {@code perm} (note that the stable version is slightly * faster). * * @param perm * a permutation array indexing {@code a}. * @param a * the array to be sorted. * @param b * the second array to be sorted. * @param stable * whether the sorting algorithm should be stable. */ public static void radixSortIndirect(final long[][] perm, final int[][] a, final int[][] b, final boolean stable) { ensureSameLength(a, b); radixSortIndirect(perm, a, b, 0, BigArrays.length(a), stable); } /** * Sorts the specified pair of arrays lexicographically using indirect radix * sort. * *

* The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, * Keith Bostic and M. Douglas McIlroy, “Engineering radix sort”, * Computing Systems, 6(1), pages 5−27 (1993). * *

* This method implement an indirect sort. The elements of {@code perm} * (which must be exactly the numbers in the interval {@code [0..length(perm))}) * will be permuted so that {@code a[perm[i]] ≤ a[perm[i + 1]]} or * {@code a[perm[i]] == a[perm[i + 1]]} and * {@code b[perm[i]] ≤ b[perm[i + 1]]}. * *

* This implementation will allocate, in the stable case, a further support * array as large as {@code perm} (note that the stable version is slightly * faster). * * @param perm * a permutation array indexing {@code a}. * @param a * the array to be sorted. * @param b * the second array to be sorted. * @param from * the index of the first element of {@code perm} (inclusive) to be * permuted. * @param to * the index of the last element of {@code perm} (exclusive) to be * permuted. * @param stable * whether the sorting algorithm should be stable. */ public static void radixSortIndirect(final long[][] perm, final int[][] a, final int[][] b, final long from, final long to, final boolean stable) { if (to - from < RADIXSORT_NO_REC) { insertionSortIndirect(perm, a, b, from, to); return; } final int layers = 2; final int maxLevel = DIGITS_PER_ELEMENT * layers - 1; final int stackSize = ((1 << DIGIT_BITS) - 1) * (layers * DIGITS_PER_ELEMENT - 1) + 1; int stackPos = 0; final long[] offsetStack = new long[stackSize]; final long[] lengthStack = new long[stackSize]; final int[] levelStack = new int[stackSize]; offsetStack[stackPos] = from; lengthStack[stackPos] = to - from; levelStack[stackPos++] = 0; final long[] count = new long[1 << DIGIT_BITS]; final long[] pos = new long[1 << DIGIT_BITS]; final long[][] support = stable ? it.unimi.dsi.fastutil.longs.LongBigArrays.newBigArray(BigArrays.length(perm)) : null; while (stackPos > 0) { final long first = offsetStack[--stackPos]; final long length = lengthStack[stackPos]; final int level = levelStack[stackPos]; final int signMask = level % DIGITS_PER_ELEMENT == 0 ? 1 << DIGIT_BITS - 1 : 0; final int[][] k = level < DIGITS_PER_ELEMENT ? a : b; // This is the key array final int shift = (DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT) * DIGIT_BITS; // This is the shift // that extract the // right byte from a // key // Count keys. for (long i = first + length; i-- != first;) count[((BigArrays.get(k, BigArrays.get(perm, i))) >>> shift & DIGIT_MASK ^ signMask)]++; // Compute cumulative distribution int lastUsed = -1; long p = stable ? 0 : first; for (int i = 0; i < 1 << DIGIT_BITS; i++) { if (count[i] != 0) lastUsed = i; pos[i] = (p += count[i]); } if (stable) { for (long i = first + length; i-- != first;) BigArrays.set(support, --pos[((BigArrays.get(k, BigArrays.get(perm, i))) >>> shift & DIGIT_MASK ^ signMask)], BigArrays.get(perm, i)); BigArrays.copy(support, 0, perm, first, length); p = first; for (int i = 0; i < 1 << DIGIT_BITS; i++) { if (level < maxLevel && count[i] > 1) { if (count[i] < RADIXSORT_NO_REC) insertionSortIndirect(perm, a, b, p, p + count[i]); else { offsetStack[stackPos] = p; lengthStack[stackPos] = count[i]; levelStack[stackPos++] = level + 1; } } p += count[i]; } java.util.Arrays.fill(count, 0); } else { final long end = first + length - count[lastUsed]; // i moves through the start of each block int c = -1; for (long i = first, d; i <= end; i += count[c], count[c] = 0) { long t = BigArrays.get(perm, i); c = ((BigArrays.get(k, t)) >>> shift & DIGIT_MASK ^ signMask); if (i < end) { // When all slots are OK, the last slot is necessarily OK. while ((d = --pos[c]) > i) { final long z = t; t = BigArrays.get(perm, d); BigArrays.set(perm, d, z); c = ((BigArrays.get(k, t)) >>> shift & DIGIT_MASK ^ signMask); } BigArrays.set(perm, i, t); } if (level < maxLevel && count[c] > 1) { if (count[c] < RADIXSORT_NO_REC) insertionSortIndirect(perm, a, b, i, i + count[c]); else { offsetStack[stackPos] = i; lengthStack[stackPos] = count[c]; levelStack[stackPos++] = level + 1; } } } } } } /** * Shuffles the specified big array fragment using the specified pseudorandom * number generator. * * @param a * the big array to be shuffled. * @param from * the index of the first element (inclusive) to be shuffled. * @param to * the index of the last element (exclusive) to be shuffled. * @param random * a pseudorandom number generator. * @return {@code a}. */ public static int[][] shuffle(final int[][] a, final long from, final long to, final Random random) { return BigArrays.shuffle(a, from, to, random); } /** * Shuffles the specified big array using the specified pseudorandom number * generator. * * @param a * the big array to be shuffled. * @param random * a pseudorandom number generator. * @return {@code a}. */ public static int[][] shuffle(final int[][] a, final Random random) { return BigArrays.shuffle(a, random); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy