All Downloads are FREE. Search and download functionalities are using the official Maven repository.

it.unimi.dsi.fastutil.floats.FloatIterators Maven / Gradle / Ivy

Go to download

fastutil extends the Java Collections Framework by providing type-specific maps, sets, lists, and queues with a small memory footprint and fast access and insertion; it provides also big (64-bit) arrays, sets and lists, sorting algorithms, fast, practical I/O classes for binary and text files, and facilities for memory mapping large files. Note that if you have both this jar and fastutil-core.jar in your dependencies, fastutil-core.jar should be excluded.

There is a newer version: 8.5.13
Show newest version
/*
	* Copyright (C) 2002-2023 Sebastiano Vigna
	*
	* Licensed under the Apache License, Version 2.0 (the "License");
	* you may not use this file except in compliance with the License.
	* You may obtain a copy of the License at
	*
	*     http://www.apache.org/licenses/LICENSE-2.0
	*
	* Unless required by applicable law or agreed to in writing, software
	* distributed under the License is distributed on an "AS IS" BASIS,
	* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
	* See the License for the specific language governing permissions and
	* limitations under the License.
	*/
package it.unimi.dsi.fastutil.floats;

import static it.unimi.dsi.fastutil.BigArrays.grow;
import static it.unimi.dsi.fastutil.BigArrays.length;
import static it.unimi.dsi.fastutil.BigArrays.set;
import static it.unimi.dsi.fastutil.BigArrays.trim;
import java.util.Iterator;
import java.util.ListIterator;
import java.util.NoSuchElementException;
import java.util.Objects;
import java.util.function.Consumer;
import java.util.PrimitiveIterator;
import it.unimi.dsi.fastutil.doubles.DoubleIterator;
import it.unimi.dsi.fastutil.doubles.DoubleIterators;

/**
 * A class providing static methods and objects that do useful things with type-specific iterators.
 *
 * @see Iterator
 */
public final class FloatIterators {
	private FloatIterators() {
	}

	/**
	 * A class returning no elements and a type-specific iterator interface.
	 *
	 * 

* This class may be useful to implement your own in case you subclass a type-specific iterator. */ public static class EmptyIterator implements FloatListIterator, java.io.Serializable, Cloneable { private static final long serialVersionUID = -7046029254386353129L; protected EmptyIterator() { } @Override public boolean hasNext() { return false; } @Override public boolean hasPrevious() { return false; } @Override public float nextFloat() { throw new NoSuchElementException(); } @Override public float previousFloat() { throw new NoSuchElementException(); } @Override public int nextIndex() { return 0; } @Override public int previousIndex() { return -1; } @Override public int skip(int n) { return 0; } @Override public int back(int n) { return 0; } @Override public void forEachRemaining(final FloatConsumer action) { } @Deprecated @Override public void forEachRemaining(final Consumer action) { } @Override public Object clone() { return EMPTY_ITERATOR; } private Object readResolve() { return EMPTY_ITERATOR; } } /** * An empty iterator. It is serializable and cloneable. * *

* The class of this objects represent an abstract empty iterator that can iterate as a * type-specific (list) iterator. */ public static final EmptyIterator EMPTY_ITERATOR = new EmptyIterator(); /** An iterator returning a single element. */ private static class SingletonIterator implements FloatListIterator { private final float element; private byte curr; public SingletonIterator(final float element) { this.element = element; } @Override public boolean hasNext() { return curr == 0; } @Override public boolean hasPrevious() { return curr == 1; } @Override public float nextFloat() { if (!hasNext()) throw new NoSuchElementException(); curr = 1; return element; } @Override public float previousFloat() { if (!hasPrevious()) throw new NoSuchElementException(); curr = 0; return element; } @Override public void forEachRemaining(final FloatConsumer action) { Objects.requireNonNull(action); if (curr == 0) { action.accept(element); curr = 1; } } @Override public int nextIndex() { return curr; } @Override public int previousIndex() { return curr - 1; } @Override public int back(int n) { if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n); if (n == 0 || curr < 1) return 0; curr = 1; return 1; } @Override public int skip(int n) { if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n); if (n == 0 || curr > 0) return 0; curr = 0; return 1; } } /** * Returns an immutable iterator that iterates just over the given element. * * @param element the only element to be returned by a type-specific list iterator. * @return an immutable iterator that iterates just over {@code element}. */ public static FloatListIterator singleton(final float element) { return new SingletonIterator(element); } /** A class to wrap arrays in iterators. */ private static class ArrayIterator implements FloatListIterator { private final float[] array; private final int offset, length; private int curr; public ArrayIterator(final float[] array, final int offset, final int length) { this.array = array; this.offset = offset; this.length = length; } @Override public boolean hasNext() { return curr < length; } @Override public boolean hasPrevious() { return curr > 0; } @Override public float nextFloat() { if (!hasNext()) throw new NoSuchElementException(); return array[offset + curr++]; } @Override public float previousFloat() { if (!hasPrevious()) throw new NoSuchElementException(); return array[offset + --curr]; } @Override public void forEachRemaining(final FloatConsumer action) { Objects.requireNonNull(action); for (; curr < length; ++curr) { action.accept(array[offset + curr]); } } @Override public int skip(int n) { if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n); if (n <= length - curr) { curr += n; return n; } n = length - curr; curr = length; return n; } @Override public int back(int n) { if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n); if (n <= curr) { curr -= n; return n; } n = curr; curr = 0; return n; } @Override public int nextIndex() { return curr; } @Override public int previousIndex() { return curr - 1; } } /** * Wraps the given part of an array into a type-specific list iterator. * *

* The type-specific list iterator returned by this method will iterate {@code length} times, * returning consecutive elements of the given array starting from the one with index * {@code offset}. * * @param array an array to wrap into a type-specific list iterator. * @param offset the first element of the array to be returned. * @param length the number of elements to return. * @return an iterator that will return {@code length} elements of {@code array} starting at * position {@code offset}. */ public static FloatListIterator wrap(final float[] array, final int offset, final int length) { FloatArrays.ensureOffsetLength(array, offset, length); return new ArrayIterator(array, offset, length); } /** * Wraps the given array into a type-specific list iterator. * *

* The type-specific list iterator returned by this method will return all elements of the given * array. * * @param array an array to wrap into a type-specific list iterator. * @return an iterator that will return the elements of {@code array}. */ public static FloatListIterator wrap(final float[] array) { return new ArrayIterator(array, 0, array.length); } /** * Unwraps an iterator into an array starting at a given offset for a given number of elements. * *

* This method iterates over the given type-specific iterator and stores the elements returned, up * to a maximum of {@code length}, in the given array starting at {@code offset}. The number of * actually unwrapped elements is returned (it may be less than {@code max} if the iterator emits * less than {@code max} elements). * * @param i a type-specific iterator. * @param array an array to contain the output of the iterator. * @param offset the first element of the array to be returned. * @param max the maximum number of elements to unwrap. * @return the number of elements unwrapped. */ public static int unwrap(final FloatIterator i, final float array[], int offset, final int max) { if (max < 0) throw new IllegalArgumentException("The maximum number of elements (" + max + ") is negative"); if (offset < 0 || offset + max > array.length) throw new IllegalArgumentException(); int j = max; while (j-- != 0 && i.hasNext()) array[offset++] = i.nextFloat(); return max - j - 1; } /** * Unwraps an iterator into an array. * *

* This method iterates over the given type-specific iterator and stores the elements returned in * the given array. The iteration will stop when the iterator has no more elements or when the end * of the array has been reached. * * @param i a type-specific iterator. * @param array an array to contain the output of the iterator. * @return the number of elements unwrapped. */ public static int unwrap(final FloatIterator i, final float array[]) { return unwrap(i, array, 0, array.length); } /** * Unwraps an iterator, returning an array, with a limit on the number of elements. * *

* This method iterates over the given type-specific iterator and returns an array containing the * elements returned by the iterator. At most {@code max} elements will be returned. * * @param i a type-specific iterator. * @param max the maximum number of elements to be unwrapped. * @return an array containing the elements returned by the iterator (at most {@code max}). */ public static float[] unwrap(final FloatIterator i, int max) { if (max < 0) throw new IllegalArgumentException("The maximum number of elements (" + max + ") is negative"); float array[] = new float[16]; int j = 0; while (max-- != 0 && i.hasNext()) { if (j == array.length) array = FloatArrays.grow(array, j + 1); array[j++] = i.nextFloat(); } return FloatArrays.trim(array, j); } /** * Unwraps an iterator, returning an array. * *

* This method iterates over the given type-specific iterator and returns an array containing the * elements returned by the iterator. * * @param i a type-specific iterator. * @return an array containing the elements returned by the iterator. */ public static float[] unwrap(final FloatIterator i) { return unwrap(i, Integer.MAX_VALUE); } /** * Unwraps an iterator into a big array starting at a given offset for a given number of elements. * *

* This method iterates over the given type-specific iterator and stores the elements returned, up * to a maximum of {@code length}, in the given big array starting at {@code offset}. The number of * actually unwrapped elements is returned (it may be less than {@code max} if the iterator emits * less than {@code max} elements). * * @param i a type-specific iterator. * @param array a big array to contain the output of the iterator. * @param offset the first element of the array to be returned. * @param max the maximum number of elements to unwrap. * @return the number of elements unwrapped. */ public static long unwrap(final FloatIterator i, final float array[][], long offset, final long max) { if (max < 0) throw new IllegalArgumentException("The maximum number of elements (" + max + ") is negative"); if (offset < 0 || offset + max > length(array)) throw new IllegalArgumentException(); long j = max; while (j-- != 0 && i.hasNext()) set(array, offset++, i.nextFloat()); return max - j - 1; } /** * Unwraps an iterator into a big array. * *

* This method iterates over the given type-specific iterator and stores the elements returned in * the given big array. The iteration will stop when the iterator has no more elements or when the * end of the array has been reached. * * @param i a type-specific iterator. * @param array a big array to contain the output of the iterator. * @return the number of elements unwrapped. */ public static long unwrap(final FloatIterator i, final float array[][]) { return unwrap(i, array, 0, length(array)); } /** * Unwraps an iterator into a type-specific collection, with a limit on the number of elements. * *

* This method iterates over the given type-specific iterator and stores the elements returned, up * to a maximum of {@code max}, in the given type-specific collection. The number of actually * unwrapped elements is returned (it may be less than {@code max} if the iterator emits less than * {@code max} elements). * * @param i a type-specific iterator. * @param c a type-specific collection array to contain the output of the iterator. * @param max the maximum number of elements to unwrap. * @return the number of elements unwrapped. Note that this is the number of elements returned by * the iterator, which is not necessarily the number of elements that have been added to the * collection (because of duplicates). */ public static int unwrap(final FloatIterator i, final FloatCollection c, final int max) { if (max < 0) throw new IllegalArgumentException("The maximum number of elements (" + max + ") is negative"); int j = max; while (j-- != 0 && i.hasNext()) c.add(i.nextFloat()); return max - j - 1; } /** * Unwraps an iterator, returning a big array, with a limit on the number of elements. * *

* This method iterates over the given type-specific iterator and returns a big array containing the * elements returned by the iterator. At most {@code max} elements will be returned. * * @param i a type-specific iterator. * @param max the maximum number of elements to be unwrapped. * @return a big array containing the elements returned by the iterator (at most {@code max}). */ public static float[][] unwrapBig(final FloatIterator i, long max) { if (max < 0) throw new IllegalArgumentException("The maximum number of elements (" + max + ") is negative"); float array[][] = FloatBigArrays.newBigArray(16); long j = 0; while (max-- != 0 && i.hasNext()) { if (j == length(array)) array = grow(array, j + 1); set(array, j++, i.nextFloat()); } return trim(array, j); } /** * Unwraps an iterator, returning a big array. * *

* This method iterates over the given type-specific iterator and returns a big array containing the * elements returned by the iterator. * * @param i a type-specific iterator. * @return a big array containing the elements returned by the iterator. */ public static float[][] unwrapBig(final FloatIterator i) { return unwrapBig(i, Long.MAX_VALUE); } /** * Unwraps an iterator into a type-specific collection. * *

* This method iterates over the given type-specific iterator and stores the elements returned in * the given type-specific collection. The returned count on the number unwrapped elements is a * long, so that it will work also with very large collections. * * @param i a type-specific iterator. * @param c a type-specific collection to contain the output of the iterator. * @return the number of elements unwrapped. Note that this is the number of elements returned by * the iterator, which is not necessarily the number of elements that have been added to the * collection (because of duplicates). */ public static long unwrap(final FloatIterator i, final FloatCollection c) { long n = 0; while (i.hasNext()) { c.add(i.nextFloat()); n++; } return n; } /** * Pours an iterator into a type-specific collection, with a limit on the number of elements. * *

* This method iterates over the given type-specific iterator and adds the returned elements to the * given collection (up to {@code max}). * * @param i a type-specific iterator. * @param s a type-specific collection. * @param max the maximum number of elements to be poured. * @return the number of elements poured. Note that this is the number of elements returned by the * iterator, which is not necessarily the number of elements that have been added to the * collection (because of duplicates). */ public static int pour(final FloatIterator i, final FloatCollection s, final int max) { if (max < 0) throw new IllegalArgumentException("The maximum number of elements (" + max + ") is negative"); int j = max; while (j-- != 0 && i.hasNext()) s.add(i.nextFloat()); return max - j - 1; } /** * Pours an iterator into a type-specific collection. * *

* This method iterates over the given type-specific iterator and adds the returned elements to the * given collection. * * @param i a type-specific iterator. * @param s a type-specific collection. * @return the number of elements poured. Note that this is the number of elements returned by the * iterator, which is not necessarily the number of elements that have been added to the * collection (because of duplicates). */ public static int pour(final FloatIterator i, final FloatCollection s) { return pour(i, s, Integer.MAX_VALUE); } /** * Pours an iterator, returning a type-specific list, with a limit on the number of elements. * *

* This method iterates over the given type-specific iterator and returns a type-specific list * containing the returned elements (up to {@code max}). Iteration on the returned list is * guaranteed to produce the elements in the same order in which they appeared in the iterator. * * * @param i a type-specific iterator. * @param max the maximum number of elements to be poured. * @return a type-specific list containing the returned elements, up to {@code max}. */ public static FloatList pour(final FloatIterator i, int max) { final FloatArrayList l = new FloatArrayList(); pour(i, l, max); l.trim(); return l; } /** * Pours an iterator, returning a type-specific list. * *

* This method iterates over the given type-specific iterator and returns a list containing the * returned elements. Iteration on the returned list is guaranteed to produce the elements in the * same order in which they appeared in the iterator. * * @param i a type-specific iterator. * @return a type-specific list containing the returned elements. */ public static FloatList pour(final FloatIterator i) { return pour(i, Integer.MAX_VALUE); } private static class IteratorWrapper implements FloatIterator { final Iterator i; public IteratorWrapper(final Iterator i) { this.i = i; } @Override public boolean hasNext() { return i.hasNext(); } @Override public void remove() { i.remove(); } @Override public float nextFloat() { return (i.next()).floatValue(); } @Override public void forEachRemaining(final FloatConsumer action) { i.forEachRemaining(action); } @Deprecated @Override public void forEachRemaining(final Consumer action) { i.forEachRemaining(action); } } private static class PrimitiveIteratorWrapper implements FloatIterator { final PrimitiveIterator.OfDouble i; public PrimitiveIteratorWrapper(PrimitiveIterator.OfDouble i) { this.i = i; } @Override public boolean hasNext() { return i.hasNext(); } @Override public void remove() { i.remove(); } @Override public float nextFloat() { return (float)i.nextDouble(); } @Override public void forEachRemaining(final FloatConsumer action) { i.forEachRemaining(action); } } private static class CheckedPrimitiveIteratorWrapper extends PrimitiveIteratorWrapper { public CheckedPrimitiveIteratorWrapper(PrimitiveIterator.OfDouble i) { super(i); } @Override public float nextFloat() { return it.unimi.dsi.fastutil.SafeMath.safeDoubleToFloat(i.nextDouble()); } @Override public void forEachRemaining(final FloatConsumer action) { i.forEachRemaining((java.util.function.DoubleConsumer)(double value) -> { action.accept(it.unimi.dsi.fastutil.SafeMath.safeDoubleToFloat(value)); }); } } /** * Wraps a standard iterator into a type-specific iterator. * *

* This method wraps a standard iterator into a type-specific one which will handle the type * conversions for you. Of course, any attempt to wrap an iterator returning the instances of the * wrong class will generate a {@link ClassCastException}. The returned iterator is backed by * {@code i}: changes to one of the iterators will affect the other, too. * * @implNote If {@code i} is already type-specific, it will returned and no new object will be * generated. * * @param i an iterator. * @return a type-specific iterator backed by {@code i}. */ @SuppressWarnings({ "unchecked", "rawtypes" }) public static FloatIterator asFloatIterator(final Iterator i) { if (i instanceof FloatIterator) return (FloatIterator)i; return new IteratorWrapper(i); } /** * Wrap a JDK primitive iterator to a type-specific iterator, making checked narrowed casts. * * @implNote The {@code next} method throws {@link IllegalArgumentException} if any element would * underflow or overflow. * * @param i an iterator. * @return a type-specific iterator backed by {@code i}. * @since 8.5.0 */ public static FloatIterator narrow(final PrimitiveIterator.OfDouble i) { return new CheckedPrimitiveIteratorWrapper(i); } /** * Wrap a JDK primitive iterator to a type-specific iterator, making unchecked narrowing * casts. * *

* No test is done for overflow or underflow. * * @param i an iterator. * @return a type-specific iterator backed by {@code i}. * @since 8.5.0 */ public static FloatIterator uncheckedNarrow(final PrimitiveIterator.OfDouble i) { return new PrimitiveIteratorWrapper(i); } /** * Wrap a type-specific iterator to a JDK compatible primitive iterator. * * @param i an iterator * @return a JDK compatible primitive iterator backed by {@code i} * @since 8.5.0 */ public static DoubleIterator widen(FloatIterator i) { return DoubleIterators.wrap(i); } private static class ListIteratorWrapper implements FloatListIterator { final ListIterator i; public ListIteratorWrapper(final ListIterator i) { this.i = i; } @Override public boolean hasNext() { return i.hasNext(); } @Override public boolean hasPrevious() { return i.hasPrevious(); } @Override public int nextIndex() { return i.nextIndex(); } @Override public int previousIndex() { return i.previousIndex(); } @Override public void set(float k) { i.set(Float.valueOf(k)); } @Override public void add(float k) { i.add(Float.valueOf(k)); } @Override public void remove() { i.remove(); } @Override public float nextFloat() { return (i.next()).floatValue(); } @Override public float previousFloat() { return (i.previous()).floatValue(); } @Override public void forEachRemaining(final FloatConsumer action) { i.forEachRemaining(action); } @Deprecated @Override public void forEachRemaining(final Consumer action) { i.forEachRemaining(action); } } /** * Wraps a standard list iterator into a type-specific list iterator. * *

* This method wraps a standard list iterator into a type-specific one which will handle the type * conversions for you. Of course, any attempt to wrap an iterator returning the instances of the * wrong class will generate a {@link ClassCastException}. The returned iterator is backed by * {@code i}: changes to one of the iterators will affect the other, too. * *

* If {@code i} is already type-specific, it will returned and no new object will be generated. * * @param i a list iterator. * @return a type-specific list iterator backed by {@code i}. */ @SuppressWarnings({ "unchecked", "rawtypes" }) public static FloatListIterator asFloatIterator(final ListIterator i) { if (i instanceof FloatListIterator) return (FloatListIterator)i; return new ListIteratorWrapper(i); } /** * Returns whether an element returned by the given iterator satisfies the given predicate. *

* Short circuit evaluation is performed; the first {@code true} from the predicate terminates the * loop. * * @return true if an element returned by {@code iterator} satisfies {@code predicate}. */ public static boolean any(final FloatIterator iterator, final FloatPredicate predicate) { return indexOf(iterator, predicate) != -1; } /** * Returns whether an element returned by the given iterator satisfies the given predicate. *

* Short circuit evaluation is performed; the first {@code true} from the predicate terminates the * loop. * * @return true if an element returned by {@code iterator} satisfies {@code predicate}. lambda to * perform widening casts. Please use the type-specific overload to avoid this overhead. */ public static boolean any(final FloatIterator iterator, final java.util.function.DoublePredicate predicate) { return any(iterator, predicate instanceof FloatPredicate ? (FloatPredicate)predicate : (FloatPredicate)predicate::test); } /** * Returns whether all elements returned by the given iterator satisfy the given predicate. *

* Short circuit evaluation is performed; the first {@code false} from the predicate terminates the * loop. * * @return true if all elements returned by {@code iterator} satisfy {@code predicate}. */ public static boolean all(final FloatIterator iterator, final FloatPredicate predicate) { Objects.requireNonNull(predicate); do { if (!iterator.hasNext()) return true; } while (predicate.test(iterator.nextFloat())); return false; } /** * Returns whether all elements returned by the given iterator satisfy the given predicate. *

* Short circuit evaluation is performed; the first {@code false} from the predicate terminates the * loop. * * @return true if all elements returned by {@code iterator} satisfy {@code predicate}. * @implNote Unless the argument is type-specific, this method will introduce an intermediary lambda * to perform widening casts. Please use the type-specific overload to avoid this * overhead. */ public static boolean all(final FloatIterator iterator, final java.util.function.DoublePredicate predicate) { return all(iterator, predicate instanceof FloatPredicate ? (FloatPredicate)predicate : (FloatPredicate)predicate::test); } /** * Returns the index of the first element returned by the given iterator that satisfies the given * predicate, or −1 if no such element was found. *

* The next element returned by the iterator always considered element 0, even for * {@link java.util.ListIterator ListIterators}. In other words * {@link java.util.ListIterator#nextIndex ListIterator.nextIndex} is ignored. * * @return the index of the first element returned by {@code iterator} that satisfies * {@code predicate}, or −1 if no such element was found. */ public static int indexOf(final FloatIterator iterator, final FloatPredicate predicate) { Objects.requireNonNull(predicate); for (int i = 0; iterator.hasNext(); ++i) { if (predicate.test(iterator.nextFloat())) return i; } return -1; } /** * Returns the index of the first element returned by the given iterator that satisfies the given * predicate, or −1 if no such element was found. *

* The next element returned by the iterator always considered element 0, even for * {@link java.util.ListIterator ListIterators}. In other words * {@link java.util.ListIterator#nextIndex ListIterator.nextIndex} is ignored. * * @return the index of the first element returned by {@code iterator} that satisfies * {@code predicate}, or −1 if no such element was found. * @implNote Unless the argument is type-specific, this method will introduce an intermediary lambda * to perform widening casts. Please use the type-specific overload to avoid this * overhead. */ public static int indexOf(final FloatIterator iterator, final java.util.function.DoublePredicate predicate) { return indexOf(iterator, predicate instanceof FloatPredicate ? (FloatPredicate)predicate : (FloatPredicate)predicate::test); } /** * A skeletal implementation for an iterator backed by an index-based data store. High performance * concrete implementations (like the main Iterator of ArrayList) generally should avoid using this * and just implement the interface directly, but should be decent for less performance critical * implementations. * *

* This class is only appropriate for sequences that are at most {@link Integer#MAX_VALUE} long. If * your backing data store can be bigger then this, consider the equivalently named class in the * type specific {@code BigListIterators} class. * *

* As the abstract methods in this class are used in inner loops, it is generally a good idea to * override the class as {@code final} as to encourage the JVM to inline them (or alternatively, * override the abstract methods as final). */ public static abstract class AbstractIndexBasedIterator extends AbstractFloatIterator { /** * The minimum pos can be, and is the logical start of the "range". Usually set to the initialPos * unless it is a ListIterator, in which case it can vary. * * There isn't any way for a range to shift its beginning like the end can (through * {@link #remove}), so this is final. */ protected final int minPos; /** * The current position index, the index of the item to be returned after the next call to * {@link #next()}. * *

* This value will be between {@code minPos} and {@link #getMaxPos()} (exclusive) (on a best effort, * so concurrent structural modifications outside this iterator may cause this to be violated, but * that usually invalidates iterators anyways). Thus {@code pos} being {@code minPos + 2} would mean * {@link #next()} was called twice and the next call will return the third element of this * iterator. */ protected int pos; /** * The last returned index by a call to {@link #next} or, if a list-iterator, * {@link java.util.ListIterator#previous(). * * It is −1 if no such call has occurred or a mutation has occurred through this iterator and * no advancement has been done. */ protected int lastReturned; protected AbstractIndexBasedIterator(int minPos, int initialPos) { this.minPos = minPos; this.pos = initialPos; } // When you implement these, you should probably declare them final to encourage the JVM to inline // them. /** * Get the item corresponding to the given index location. * *

* Do not advance {@link #pos} in this method; the default {@code next} method takes care * of this. * *

* The {@code location} given will be between {@code minPos} and {@link #getMaxPos()} (exclusive). * Thus, a {@code location} of {@code minPos + 2} would mean {@link #next()} was called twice and * this method should return what the next call to {@link #next()} should return. */ protected abstract float get(int location); /** * Remove the item at the given index. * *

* Do not modify {@link #pos} in this method; the default {@code #remove()} method takes * care of this. * *

* This method should also do what is needed to track the change to the {@link #getMaxPos}. Usually * this is accomplished by having this method call the parent {@link Collection}'s appropriate * remove method, and having {@link #getMaxPos} track the parent {@linkplain Collection#size() * collection's size}. */ protected abstract void remove(int location); /** * The maximum pos can be, and is the logical end (exclusive) of the "range". * *

* If pos is equal to the return of this method, this means the last element has been returned and * the next call to {@link #next()} will throw. * *

* Usually set return the parent {@linkplain Collection#size() collection's size}, but does not have * to be (for example, sublists and subranges). */ protected abstract int getMaxPos(); @Override public boolean hasNext() { return pos < getMaxPos(); } @Override public float nextFloat() { if (!hasNext()) throw new NoSuchElementException(); return get(lastReturned = pos++); } @Override public void remove() { if (lastReturned == -1) throw new IllegalStateException(); remove(lastReturned); /* If the last operation was a next(), we are removing an element *before* us, and we must decrease pos correspondingly. */ if (lastReturned < pos) pos--; lastReturned = -1; } @Override public void forEachRemaining(final FloatConsumer action) { while (pos < getMaxPos()) { action.accept(get(lastReturned = pos++)); } } // TODO since this method doesn't depend on the type at all, should it be "hoisted" into a // non type-specific superclass in it.unimi.dsi.fastutil? @Override public int skip(int n) { if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n); final int max = getMaxPos(); final int remaining = max - pos; if (n < remaining) { pos += n; } else { n = remaining; pos = max; } lastReturned = pos - 1; return n; } } /** * A skeletal implementation for a list-iterator backed by an index-based data store. High * performance concrete implementations (like the main ListIterator of ArrayList) generally should * avoid using this and just implement the interface directly, but should be decent for less * performance critical implementations. * *

* This class is only appropriate for sequences that are at most {@link Integer#MAX_VALUE} long. If * your backing data store can be bigger then this, consider the equivalently named class in the * type specific {@code BigListSpliterators} class. * *

* As the abstract methods in this class are used in inner loops, it is generally a good idea to * override the class as {@code final} as to encourage the JVM to inline them (or alternatively, * override the abstract methods as final). */ public static abstract class AbstractIndexBasedListIterator extends AbstractIndexBasedIterator implements FloatListIterator { protected AbstractIndexBasedListIterator(int minPos, int initialPos) { super(minPos, initialPos); } // When you implement these, you should probably declare them final to encourage the JVM to inline // them. /** * Add the given item at the given index. * *

* This method should also do what is needed to track the change to the {@link #getMaxPos}. Usually * this is accomplished by having this method call the parent {@link Collection}'s appropriate add * method, and having {@link #getMaxPos} track the parent {@linkplain Collection#size() collection's * size}. * *

* Do not modify {@link #pos} in this method; the default {@code #add()} method takes care * of this. * *

* See {@link #pos} and {@link #get(int)} for discussion on what the location means. */ protected abstract void add(int location, float k); /** * Sets the given item at the given index. * *

* See {@link #pos} and {@link #get(int)} for discussion on what the location means. */ protected abstract void set(int location, float k); @Override public boolean hasPrevious() { return pos > minPos; } @Override public float previousFloat() { if (!hasPrevious()) throw new NoSuchElementException(); return get(lastReturned = --pos); } @Override public int nextIndex() { return pos; } @Override public int previousIndex() { return pos - 1; } @Override public void add(final float k) { add(pos++, k); lastReturned = -1; } @Override public void set(final float k) { if (lastReturned == -1) throw new IllegalStateException(); set(lastReturned, k); } // TODO since this method doesn't depend on the type at all, should it be "hoisted" into a // non type-specific superclass in it.unimi.dsi.fastutil? @Override public int back(int n) { if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n); final int remaining = pos - minPos; if (n < remaining) { pos -= n; } else { n = remaining; pos = minPos; } lastReturned = pos; return n; } } private static class IteratorConcatenator implements FloatIterator { final FloatIterator a[]; int offset, length, lastOffset = -1; public IteratorConcatenator(final FloatIterator a[], int offset, int length) { this.a = a; this.offset = offset; this.length = length; advance(); } private void advance() { while (length != 0) { if (a[offset].hasNext()) break; length--; offset++; } return; } @Override public boolean hasNext() { return length > 0; } @Override public float nextFloat() { if (!hasNext()) throw new NoSuchElementException(); float next = a[lastOffset = offset].nextFloat(); advance(); return next; } @Override public void forEachRemaining(final FloatConsumer action) { while (length > 0) { a[lastOffset = offset].forEachRemaining(action); advance(); } } @Deprecated @Override public void forEachRemaining(final Consumer action) { while (length > 0) { a[lastOffset = offset].forEachRemaining(action); advance(); } } @Override public void remove() { if (lastOffset == -1) throw new IllegalStateException(); a[lastOffset].remove(); } @Override public int skip(int n) { if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n); lastOffset = -1; int skipped = 0; while (skipped < n && length != 0) { skipped += a[offset].skip(n - skipped); if (a[offset].hasNext()) break; length--; offset++; } return skipped; } } /** * Concatenates all iterators contained in an array. * *

* This method returns an iterator that will enumerate in order the elements returned by all * iterators contained in the given array. * * @param a an array of iterators. * @return an iterator obtained by concatenation. */ public static FloatIterator concat(final FloatIterator... a) { return concat(a, 0, a.length); } /** * Concatenates a sequence of iterators contained in an array. * *

* This method returns an iterator that will enumerate in order the elements returned by * {@code a[offset]}, then those returned by {@code a[offset + 1]}, and so on up to * {@code a[offset + length - 1]}. * * @param a an array of iterators. * @param offset the index of the first iterator to concatenate. * @param length the number of iterators to concatenate. * @return an iterator obtained by concatenation of {@code length} elements of {@code a} starting at * {@code offset}. */ public static FloatIterator concat(final FloatIterator a[], final int offset, final int length) { return new IteratorConcatenator(a, offset, length); } /** An unmodifiable wrapper class for iterators. */ public static class UnmodifiableIterator implements FloatIterator { protected final FloatIterator i; public UnmodifiableIterator(final FloatIterator i) { this.i = i; } @Override public boolean hasNext() { return i.hasNext(); } @Override public float nextFloat() { return i.nextFloat(); } @Override public void forEachRemaining(final FloatConsumer action) { i.forEachRemaining(action); } @Deprecated @Override public void forEachRemaining(final Consumer action) { i.forEachRemaining(action); } } /** * Returns an unmodifiable iterator backed by the specified iterator. * * @param i the iterator to be wrapped in an unmodifiable iterator. * @return an unmodifiable view of the specified iterator. */ public static FloatIterator unmodifiable(final FloatIterator i) { return new UnmodifiableIterator(i); } /** An unmodifiable wrapper class for bidirectional iterators. */ public static class UnmodifiableBidirectionalIterator implements FloatBidirectionalIterator { protected final FloatBidirectionalIterator i; public UnmodifiableBidirectionalIterator(final FloatBidirectionalIterator i) { this.i = i; } @Override public boolean hasNext() { return i.hasNext(); } @Override public boolean hasPrevious() { return i.hasPrevious(); } @Override public float nextFloat() { return i.nextFloat(); } @Override public float previousFloat() { return i.previousFloat(); } @Override public void forEachRemaining(final FloatConsumer action) { i.forEachRemaining(action); } @Deprecated @Override public void forEachRemaining(final Consumer action) { i.forEachRemaining(action); } } /** * Returns an unmodifiable bidirectional iterator backed by the specified bidirectional iterator. * * @param i the bidirectional iterator to be wrapped in an unmodifiable bidirectional iterator. * @return an unmodifiable view of the specified bidirectional iterator. */ public static FloatBidirectionalIterator unmodifiable(final FloatBidirectionalIterator i) { return new UnmodifiableBidirectionalIterator(i); } /** An unmodifiable wrapper class for list iterators. */ public static class UnmodifiableListIterator implements FloatListIterator { protected final FloatListIterator i; public UnmodifiableListIterator(final FloatListIterator i) { this.i = i; } @Override public boolean hasNext() { return i.hasNext(); } @Override public boolean hasPrevious() { return i.hasPrevious(); } @Override public float nextFloat() { return i.nextFloat(); } @Override public float previousFloat() { return i.previousFloat(); } @Override public int nextIndex() { return i.nextIndex(); } @Override public int previousIndex() { return i.previousIndex(); } @Override public void forEachRemaining(final FloatConsumer action) { i.forEachRemaining(action); } @Deprecated @Override public void forEachRemaining(final Consumer action) { i.forEachRemaining(action); } } /** * Returns an unmodifiable list iterator backed by the specified list iterator. * * @param i the list iterator to be wrapped in an unmodifiable list iterator. * @return an unmodifiable view of the specified list iterator. */ public static FloatListIterator unmodifiable(final FloatListIterator i) { return new UnmodifiableListIterator(i); } /** A wrapper promoting the results of a ByteIterator. */ private final static class ByteIteratorWrapper implements FloatIterator { final it.unimi.dsi.fastutil.bytes.ByteIterator iterator; public ByteIteratorWrapper(final it.unimi.dsi.fastutil.bytes.ByteIterator iterator) { this.iterator = iterator; } @Override public boolean hasNext() { return iterator.hasNext(); } @Deprecated @Override public Float next() { return Float.valueOf(iterator.nextByte()); } @Override public float nextFloat() { return iterator.nextByte(); } @Override public void forEachRemaining(final FloatConsumer action) { Objects.requireNonNull(action); iterator.forEachRemaining(action::accept); } @Override public void remove() { iterator.remove(); } @Override public int skip(final int n) { return iterator.skip(n); } } /** * Returns an iterator backed by the specified byte iterator. * * @param iterator a byte iterator. * @return an iterator backed by the specified byte iterator. */ public static FloatIterator wrap(final it.unimi.dsi.fastutil.bytes.ByteIterator iterator) { return new ByteIteratorWrapper(iterator); } /** A wrapper promoting the results of a ShortIterator. */ private final static class ShortIteratorWrapper implements FloatIterator { final it.unimi.dsi.fastutil.shorts.ShortIterator iterator; public ShortIteratorWrapper(final it.unimi.dsi.fastutil.shorts.ShortIterator iterator) { this.iterator = iterator; } @Override public boolean hasNext() { return iterator.hasNext(); } @Deprecated @Override public Float next() { return Float.valueOf(iterator.nextShort()); } @Override public float nextFloat() { return iterator.nextShort(); } @Override public void forEachRemaining(final FloatConsumer action) { Objects.requireNonNull(action); iterator.forEachRemaining(action::accept); } @Override public void remove() { iterator.remove(); } @Override public int skip(final int n) { return iterator.skip(n); } } /** * Returns an iterator backed by the specified short iterator. * * @param iterator a short iterator. * @return an iterator backed by the specified short iterator. */ public static FloatIterator wrap(final it.unimi.dsi.fastutil.shorts.ShortIterator iterator) { return new ShortIteratorWrapper(iterator); } /** A wrapper promoting the results of a CharIterator. */ private final static class CharIteratorWrapper implements FloatIterator { final it.unimi.dsi.fastutil.chars.CharIterator iterator; public CharIteratorWrapper(final it.unimi.dsi.fastutil.chars.CharIterator iterator) { this.iterator = iterator; } @Override public boolean hasNext() { return iterator.hasNext(); } @Deprecated @Override public Float next() { return Float.valueOf(iterator.nextChar()); } @Override public float nextFloat() { return iterator.nextChar(); } @Override public void forEachRemaining(final FloatConsumer action) { Objects.requireNonNull(action); iterator.forEachRemaining(action::accept); } @Override public void remove() { iterator.remove(); } @Override public int skip(final int n) { return iterator.skip(n); } } /** * Returns an iterator backed by the specified char iterator. * *

* WARNING: This is not the same as converting the source to a sequence of code * points. This returned instance literally performs {@code (int)(charValue)} casts. Surrogate pairs * will be left as separate elements instead of combined into a single element with the code point * it represents. See {@link Character} for more discussion on code points, char values, and * surrogate pairs. * * @param iterator a char iterator. * @return an iterator backed by the specified char iterator. */ public static FloatIterator wrap(final it.unimi.dsi.fastutil.chars.CharIterator iterator) { return new CharIteratorWrapper(iterator); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy