All Downloads are FREE. Search and download functionalities are using the official Maven repository.

it.unimi.dsi.fastutil.floats.FloatLinkedOpenHashSet Maven / Gradle / Ivy

Go to download

fastutil extends the Java Collections Framework by providing type-specific maps, sets, lists, and queues with a small memory footprint and fast access and insertion; it provides also big (64-bit) arrays, sets and lists, sorting algorithms, fast, practical I/O classes for binary and text files, and facilities for memory mapping large files. Note that if you have both this jar and fastutil-core.jar in your dependencies, fastutil-core.jar should be excluded.

There is a newer version: 8.5.13
Show newest version
/*
	* Copyright (C) 2002-2023 Sebastiano Vigna
	*
	* Licensed under the Apache License, Version 2.0 (the "License");
	* you may not use this file except in compliance with the License.
	* You may obtain a copy of the License at
	*
	*     http://www.apache.org/licenses/LICENSE-2.0
	*
	* Unless required by applicable law or agreed to in writing, software
	* distributed under the License is distributed on an "AS IS" BASIS,
	* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
	* See the License for the specific language governing permissions and
	* limitations under the License.
	*/
package it.unimi.dsi.fastutil.floats;

import it.unimi.dsi.fastutil.Hash;
import it.unimi.dsi.fastutil.HashCommon;
import static it.unimi.dsi.fastutil.HashCommon.arraySize;
import static it.unimi.dsi.fastutil.HashCommon.maxFill;
import java.util.Arrays;
import java.util.Collection;
import java.util.Iterator;
import java.util.NoSuchElementException;

/**
 * A type-specific linked hash set with with a fast, small-footprint implementation.
 *
 * 

* Instances of this class use a hash table to represent a set. The table is filled up to a * specified load factor, and then doubled in size to accommodate new entries. If the table * is emptied below one fourth of the load factor, it is halved in size; however, the table * is never reduced to a size smaller than that at creation time: this approach makes it possible to * create sets with a large capacity in which insertions and deletions do not cause immediately * rehashing. Moreover, halving is not performed when deleting entries from an iterator, as it would * interfere with the iteration process. * *

* Note that {@link #clear()} does not modify the hash table size. Rather, a family of * {@linkplain #trim() trimming methods} lets you control the size of the table; this is * particularly useful if you reuse instances of this class. * *

* Iterators generated by this set will enumerate elements in the same order in which they have been * added to the set (addition of elements already present in the set does not change the iteration * order). Note that this order has nothing in common with the natural order of the keys. The order * is kept by means of a doubly linked list, represented via an array of longs parallel to * the table. * *

* This class implements the interface of a sorted set, so to allow easy access of the iteration * order: for instance, you can get the first element in iteration order with {@code first()} * without having to create an iterator; however, this class partially violates the * {@link java.util.SortedSet} contract because all subset methods throw an exception and * {@link #comparator()} returns always {@code null}. * *

* Additional methods, such as {@code addAndMoveToFirst()}, make it easy to use instances of this * class as a cache (e.g., with LRU policy). * *

* The iterators provided by this class are type-specific {@linkplain java.util.ListIterator list * iterators}, and can be started at any element which is in the set (if the provided * element is not in the set, a {@link NoSuchElementException} exception will be thrown). If, * however, the provided element is not the first or last element in the set, the first access to * the list index will require linear time, as in the worst case the entire set must be scanned in * iteration order to retrieve the positional index of the starting element. If you use just the * methods of a type-specific {@link it.unimi.dsi.fastutil.BidirectionalIterator}, however, all * operations will be performed in constant time. * * @see Hash * @see HashCommon */ public class FloatLinkedOpenHashSet extends AbstractFloatSortedSet implements java.io.Serializable, Cloneable, Hash { private static final long serialVersionUID = 0L; private static final boolean ASSERTS = false; /** The array of keys. */ protected transient float[] key; /** The mask for wrapping a position counter. */ protected transient int mask; /** Whether this set contains the null key. */ protected transient boolean containsNull; /** * The index of the first entry in iteration order. It is valid iff {@link #size} is nonzero; * otherwise, it contains -1. */ protected transient int first = -1; /** * The index of the last entry in iteration order. It is valid iff {@link #size} is nonzero; * otherwise, it contains -1. */ protected transient int last = -1; /** * For each entry, the next and the previous entry in iteration order, stored as * {@code ((prev & 0xFFFFFFFFL) << 32) | (next & 0xFFFFFFFFL)}. The first entry contains predecessor * -1, and the last entry contains successor -1. */ protected transient long[] link; /** * The current table size. Note that an additional element is allocated for storing the null key. */ protected transient int n; /** Threshold after which we rehash. It must be the table size times {@link #f}. */ protected transient int maxFill; /** We never resize below this threshold, which is the construction-time {#n}. */ protected final transient int minN; /** Number of entries in the set (including the null key, if present). */ protected int size; /** The acceptable load factor. */ protected final float f; /** * Creates a new hash set. * *

* The actual table size will be the least power of two greater than {@code expected}/{@code f}. * * @param expected the expected number of elements in the hash set. * @param f the load factor. */ public FloatLinkedOpenHashSet(final int expected, final float f) { if (f <= 0 || f >= 1) throw new IllegalArgumentException("Load factor must be greater than 0 and smaller than 1"); if (expected < 0) throw new IllegalArgumentException("The expected number of elements must be nonnegative"); this.f = f; minN = n = arraySize(expected, f); mask = n - 1; maxFill = maxFill(n, f); key = new float[n + 1]; link = new long[n + 1]; } /** * Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. * * @param expected the expected number of elements in the hash set. */ public FloatLinkedOpenHashSet(final int expected) { this(expected, DEFAULT_LOAD_FACTOR); } /** * Creates a new hash set with initial expected {@link Hash#DEFAULT_INITIAL_SIZE} elements and * {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. */ public FloatLinkedOpenHashSet() { this(DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR); } /** * Creates a new hash set copying a given collection. * * @param c a {@link Collection} to be copied into the new hash set. * @param f the load factor. */ public FloatLinkedOpenHashSet(final Collection c, final float f) { this(c.size(), f); addAll(c); } /** * Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor copying a given * collection. * * @param c a {@link Collection} to be copied into the new hash set. */ public FloatLinkedOpenHashSet(final Collection c) { this(c, DEFAULT_LOAD_FACTOR); } /** * Creates a new hash set copying a given type-specific collection. * * @param c a type-specific collection to be copied into the new hash set. * @param f the load factor. */ public FloatLinkedOpenHashSet(final FloatCollection c, final float f) { this(c.size(), f); addAll(c); } /** * Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor copying a given * type-specific collection. * * @param c a type-specific collection to be copied into the new hash set. */ public FloatLinkedOpenHashSet(final FloatCollection c) { this(c, DEFAULT_LOAD_FACTOR); } /** * Creates a new hash set using elements provided by a type-specific iterator. * * @param i a type-specific iterator whose elements will fill the set. * @param f the load factor. */ public FloatLinkedOpenHashSet(final FloatIterator i, final float f) { this(DEFAULT_INITIAL_SIZE, f); while (i.hasNext()) add(i.nextFloat()); } /** * Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using elements * provided by a type-specific iterator. * * @param i a type-specific iterator whose elements will fill the set. */ public FloatLinkedOpenHashSet(final FloatIterator i) { this(i, DEFAULT_LOAD_FACTOR); } /** * Creates a new hash set using elements provided by an iterator. * * @param i an iterator whose elements will fill the set. * @param f the load factor. */ public FloatLinkedOpenHashSet(final Iterator i, final float f) { this(FloatIterators.asFloatIterator(i), f); } /** * Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using elements * provided by an iterator. * * @param i an iterator whose elements will fill the set. */ public FloatLinkedOpenHashSet(final Iterator i) { this(FloatIterators.asFloatIterator(i)); } /** * Creates a new hash set and fills it with the elements of a given array. * * @param a an array whose elements will be used to fill the set. * @param offset the first element to use. * @param length the number of elements to use. * @param f the load factor. */ public FloatLinkedOpenHashSet(final float[] a, final int offset, final int length, final float f) { this(length < 0 ? 0 : length, f); FloatArrays.ensureOffsetLength(a, offset, length); for (int i = 0; i < length; i++) add(a[offset + i]); } /** * Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor and fills it with the * elements of a given array. * * @param a an array whose elements will be used to fill the set. * @param offset the first element to use. * @param length the number of elements to use. */ public FloatLinkedOpenHashSet(final float[] a, final int offset, final int length) { this(a, offset, length, DEFAULT_LOAD_FACTOR); } /** * Creates a new hash set copying the elements of an array. * * @param a an array to be copied into the new hash set. * @param f the load factor. */ public FloatLinkedOpenHashSet(final float[] a, final float f) { this(a, 0, a.length, f); } /** * Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor copying the elements * of an array. * * @param a an array to be copied into the new hash set. */ public FloatLinkedOpenHashSet(final float[] a) { this(a, DEFAULT_LOAD_FACTOR); } /** * Creates a new empty hash set. * * @return a new empty hash set. */ public static FloatLinkedOpenHashSet of() { return new FloatLinkedOpenHashSet(); } /** * Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using the given * element. * * @param e the element that the returned set will contain. * @return a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor containing {@code e}. */ public static FloatLinkedOpenHashSet of(final float e) { FloatLinkedOpenHashSet result = new FloatLinkedOpenHashSet(1, DEFAULT_LOAD_FACTOR); result.add(e); return result; } /** * Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using the elements * given. * * @param e0 the first element. * @param e1 the second element. * @return a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor containing {@code e0} * and {@code e1}. * @throws IllegalArgumentException if there were duplicate entries. */ public static FloatLinkedOpenHashSet of(final float e0, final float e1) { FloatLinkedOpenHashSet result = new FloatLinkedOpenHashSet(2, DEFAULT_LOAD_FACTOR); result.add(e0); if (!result.add(e1)) { throw new IllegalArgumentException("Duplicate element: " + e1); } return result; } /** * Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using the elements * given. * * @param e0 the first element. * @param e1 the second element. * @param e2 the third element. * @return a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor containing * {@code e0}, {@code e1}, and {@code e2}. * @throws IllegalArgumentException if there were duplicate entries. */ public static FloatLinkedOpenHashSet of(final float e0, final float e1, final float e2) { FloatLinkedOpenHashSet result = new FloatLinkedOpenHashSet(3, DEFAULT_LOAD_FACTOR); result.add(e0); if (!result.add(e1)) { throw new IllegalArgumentException("Duplicate element: " + e1); } if (!result.add(e2)) { throw new IllegalArgumentException("Duplicate element: " + e2); } return result; } /** * Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using a list of * elements. * * @param a a list of elements that will be used to initialize the new hash set. * @return a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor containing the * elements of {@code a}. * @throws IllegalArgumentException if a duplicate entry was encountered. */ public static FloatLinkedOpenHashSet of(final float... a) { FloatLinkedOpenHashSet result = new FloatLinkedOpenHashSet(a.length, DEFAULT_LOAD_FACTOR); for (float element : a) { if (!result.add(element)) { throw new IllegalArgumentException("Duplicate element " + element); } } return result; } private int realSize() { return containsNull ? size - 1 : size; } /** * Ensures that this set can hold a certain number of elements without rehashing. * * @param capacity a number of elements; there will be no rehashing unless the set * {@linkplain #size() size} exceeds this number. */ public void ensureCapacity(final int capacity) { final int needed = arraySize(capacity, f); if (needed > n) rehash(needed); } private void tryCapacity(final long capacity) { final int needed = (int)Math.min(1 << 30, Math.max(2, HashCommon.nextPowerOfTwo((long)Math.ceil(capacity / f)))); if (needed > n) rehash(needed); } @Override public boolean addAll(FloatCollection c) { if (f <= .5) ensureCapacity(c.size()); // The resulting collection will be sized for c.size() elements else tryCapacity(size() + c.size()); // The resulting collection will be tentatively sized for size() + c.size() // elements return super.addAll(c); } @Override public boolean addAll(Collection c) { // The resulting collection will be at least c.size() big if (f <= .5) ensureCapacity(c.size()); // The resulting collection will be sized for c.size() elements else tryCapacity(size() + c.size()); // The resulting collection will be tentatively sized for size() + c.size() // elements return super.addAll(c); } @Override public boolean add(final float k) { int pos; if ((Float.floatToIntBits(k) == 0)) { if (containsNull) return false; pos = n; containsNull = true; } else { float curr; final float[] key = this.key; // The starting point. if (!(Float.floatToIntBits(curr = key[pos = it.unimi.dsi.fastutil.HashCommon.mix(it.unimi.dsi.fastutil.HashCommon.float2int(k)) & mask]) == 0)) { if ((Float.floatToIntBits(curr) == Float.floatToIntBits(k))) return false; while (!(Float.floatToIntBits(curr = key[pos = (pos + 1) & mask]) == 0)) if ((Float.floatToIntBits(curr) == Float.floatToIntBits(k))) return false; } key[pos] = k; } if (size == 0) { first = last = pos; // Special case of SET_UPPER_LOWER(link[pos], -1, -1); link[pos] = -1L; } else { link[last] ^= ((link[last] ^ (pos & 0xFFFFFFFFL)) & 0xFFFFFFFFL); link[pos] = ((last & 0xFFFFFFFFL) << 32) | (-1 & 0xFFFFFFFFL); last = pos; } if (size++ >= maxFill) rehash(arraySize(size + 1, f)); if (ASSERTS) checkTable(); return true; } /** * Shifts left entries with the specified hash code, starting at the specified position, and empties * the resulting free entry. * * @param pos a starting position. */ protected final void shiftKeys(int pos) { // Shift entries with the same hash. int last, slot; float curr; final float[] key = this.key; for (;;) { pos = ((last = pos) + 1) & mask; for (;;) { if ((Float.floatToIntBits(curr = key[pos]) == 0)) { key[last] = (0); return; } slot = it.unimi.dsi.fastutil.HashCommon.mix(it.unimi.dsi.fastutil.HashCommon.float2int(curr)) & mask; if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break; pos = (pos + 1) & mask; } key[last] = curr; fixPointers(pos, last); } } private boolean removeEntry(final int pos) { size--; fixPointers(pos); shiftKeys(pos); if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2); return true; } private boolean removeNullEntry() { containsNull = false; key[n] = (0); size--; fixPointers(n); if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2); return true; } @Override public boolean remove(final float k) { if ((Float.floatToIntBits(k) == 0)) { if (containsNull) return removeNullEntry(); return false; } float curr; final float[] key = this.key; int pos; // The starting point. if ((Float.floatToIntBits(curr = key[pos = it.unimi.dsi.fastutil.HashCommon.mix(it.unimi.dsi.fastutil.HashCommon.float2int(k)) & mask]) == 0)) return false; if ((Float.floatToIntBits(k) == Float.floatToIntBits(curr))) return removeEntry(pos); while (true) { if ((Float.floatToIntBits(curr = key[pos = (pos + 1) & mask]) == 0)) return false; if ((Float.floatToIntBits(k) == Float.floatToIntBits(curr))) return removeEntry(pos); } } @Override public boolean contains(final float k) { if ((Float.floatToIntBits(k) == 0)) return containsNull; float curr; final float[] key = this.key; int pos; // The starting point. if ((Float.floatToIntBits(curr = key[pos = it.unimi.dsi.fastutil.HashCommon.mix(it.unimi.dsi.fastutil.HashCommon.float2int(k)) & mask]) == 0)) return false; if ((Float.floatToIntBits(k) == Float.floatToIntBits(curr))) return true; while (true) { if ((Float.floatToIntBits(curr = key[pos = (pos + 1) & mask]) == 0)) return false; if ((Float.floatToIntBits(k) == Float.floatToIntBits(curr))) return true; } } /** * Removes the first key in iteration order. * * @return the first key. * @throws NoSuchElementException is this set is empty. */ public float removeFirstFloat() { if (size == 0) throw new NoSuchElementException(); final int pos = first; // Abbreviated version of fixPointers(pos) if (size == 1) first = last = -1; else { first = (int)link[pos]; if (0 <= first) { // Special case of SET_PREV(link[first], -1) link[first] |= (-1 & 0xFFFFFFFFL) << 32; } } final float k = key[pos]; size--; if ((Float.floatToIntBits(k) == 0)) { containsNull = false; key[n] = (0); } else shiftKeys(pos); if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2); return k; } /** * Removes the the last key in iteration order. * * @return the last key. * @throws NoSuchElementException is this set is empty. */ public float removeLastFloat() { if (size == 0) throw new NoSuchElementException(); final int pos = last; // Abbreviated version of fixPointers(pos) if (size == 1) first = last = -1; else { last = (int)(link[pos] >>> 32); if (0 <= last) { // Special case of SET_NEXT(link[last], -1) link[last] |= -1 & 0xFFFFFFFFL; } } final float k = key[pos]; size--; if ((Float.floatToIntBits(k) == 0)) { containsNull = false; key[n] = (0); } else shiftKeys(pos); if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2); return k; } private void moveIndexToFirst(final int i) { if (size == 1 || first == i) return; if (last == i) { last = (int)(link[i] >>> 32); // Special case of SET_NEXT(link[last], -1); link[last] |= -1 & 0xFFFFFFFFL; } else { final long linki = link[i]; final int prev = (int)(linki >>> 32); final int next = (int)linki; link[prev] ^= ((link[prev] ^ (linki & 0xFFFFFFFFL)) & 0xFFFFFFFFL); link[next] ^= ((link[next] ^ (linki & 0xFFFFFFFF00000000L)) & 0xFFFFFFFF00000000L); } link[first] ^= ((link[first] ^ ((i & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L); link[i] = ((-1 & 0xFFFFFFFFL) << 32) | (first & 0xFFFFFFFFL); first = i; } private void moveIndexToLast(final int i) { if (size == 1 || last == i) return; if (first == i) { first = (int)link[i]; // Special case of SET_PREV(link[first], -1); link[first] |= (-1 & 0xFFFFFFFFL) << 32; } else { final long linki = link[i]; final int prev = (int)(linki >>> 32); final int next = (int)linki; link[prev] ^= ((link[prev] ^ (linki & 0xFFFFFFFFL)) & 0xFFFFFFFFL); link[next] ^= ((link[next] ^ (linki & 0xFFFFFFFF00000000L)) & 0xFFFFFFFF00000000L); } link[last] ^= ((link[last] ^ (i & 0xFFFFFFFFL)) & 0xFFFFFFFFL); link[i] = ((last & 0xFFFFFFFFL) << 32) | (-1 & 0xFFFFFFFFL); last = i; } /** * Adds a key to the set; if the key is already present, it is moved to the first position of the * iteration order. * * @param k the key. * @return true if the key was not present. */ public boolean addAndMoveToFirst(final float k) { int pos; if ((Float.floatToIntBits(k) == 0)) { if (containsNull) { moveIndexToFirst(n); return false; } containsNull = true; pos = n; } else { // The starting point. final float key[] = this.key; pos = it.unimi.dsi.fastutil.HashCommon.mix(it.unimi.dsi.fastutil.HashCommon.float2int(k)) & mask; // There's always an unused entry. TODO while (!(Float.floatToIntBits(key[pos]) == 0)) { if ((Float.floatToIntBits(k) == Float.floatToIntBits(key[pos]))) { moveIndexToFirst(pos); return false; } pos = (pos + 1) & mask; } } key[pos] = k; if (size == 0) { first = last = pos; // Special case of SET_UPPER_LOWER(link[pos], -1, -1); link[pos] = -1L; } else { link[first] ^= ((link[first] ^ ((pos & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L); link[pos] = ((-1 & 0xFFFFFFFFL) << 32) | (first & 0xFFFFFFFFL); first = pos; } if (size++ >= maxFill) rehash(arraySize(size, f)); if (ASSERTS) checkTable(); return true; } /** * Adds a key to the set; if the key is already present, it is moved to the last position of the * iteration order. * * @param k the key. * @return true if the key was not present. */ public boolean addAndMoveToLast(final float k) { int pos; if ((Float.floatToIntBits(k) == 0)) { if (containsNull) { moveIndexToLast(n); return false; } containsNull = true; pos = n; } else { // The starting point. final float key[] = this.key; pos = it.unimi.dsi.fastutil.HashCommon.mix(it.unimi.dsi.fastutil.HashCommon.float2int(k)) & mask; // There's always an unused entry. while (!(Float.floatToIntBits(key[pos]) == 0)) { if ((Float.floatToIntBits(k) == Float.floatToIntBits(key[pos]))) { moveIndexToLast(pos); return false; } pos = (pos + 1) & mask; } } key[pos] = k; if (size == 0) { first = last = pos; // Special case of SET_UPPER_LOWER(link[pos], -1, -1); link[pos] = -1L; } else { link[last] ^= ((link[last] ^ (pos & 0xFFFFFFFFL)) & 0xFFFFFFFFL); link[pos] = ((last & 0xFFFFFFFFL) << 32) | (-1 & 0xFFFFFFFFL); last = pos; } if (size++ >= maxFill) rehash(arraySize(size, f)); if (ASSERTS) checkTable(); return true; } /* Removes all elements from this set. * *

To increase object reuse, this method does not change the table size. * If you want to reduce the table size, you must use {@link #trim()}. * */ @Override public void clear() { if (size == 0) return; size = 0; containsNull = false; Arrays.fill(key, (0)); first = last = -1; } @Override public int size() { return size; } @Override public boolean isEmpty() { return size == 0; } /** * Modifies the {@link #link} vector so that the given entry is removed. This method will complete * in constant time. * * @param i the index of an entry. */ protected void fixPointers(final int i) { if (size == 0) { first = last = -1; return; } if (first == i) { first = (int)link[i]; if (0 <= first) { // Special case of SET_PREV(link[first], -1) link[first] |= (-1 & 0xFFFFFFFFL) << 32; } return; } if (last == i) { last = (int)(link[i] >>> 32); if (0 <= last) { // Special case of SET_NEXT(link[last], -1) link[last] |= -1 & 0xFFFFFFFFL; } return; } final long linki = link[i]; final int prev = (int)(linki >>> 32); final int next = (int)linki; link[prev] ^= ((link[prev] ^ (linki & 0xFFFFFFFFL)) & 0xFFFFFFFFL); link[next] ^= ((link[next] ^ (linki & 0xFFFFFFFF00000000L)) & 0xFFFFFFFF00000000L); } /** * Modifies the {@link #link} vector for a shift from s to d. This method will complete in constant * time. * * @param s the source position. * @param d the destination position. */ protected void fixPointers(int s, int d) { if (size == 1) { first = last = d; // Special case of SET(link[d], -1, -1) link[d] = -1L; return; } if (first == s) { first = d; link[(int)link[s]] ^= ((link[(int)link[s]] ^ ((d & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L); link[d] = link[s]; return; } if (last == s) { last = d; link[(int)(link[s] >>> 32)] ^= ((link[(int)(link[s] >>> 32)] ^ (d & 0xFFFFFFFFL)) & 0xFFFFFFFFL); link[d] = link[s]; return; } final long links = link[s]; final int prev = (int)(links >>> 32); final int next = (int)links; link[prev] ^= ((link[prev] ^ (d & 0xFFFFFFFFL)) & 0xFFFFFFFFL); link[next] ^= ((link[next] ^ ((d & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L); link[d] = links; } /** * Returns the first element of this set in iteration order. * * @return the first element in iteration order. */ @Override public float firstFloat() { if (size == 0) throw new NoSuchElementException(); return key[first]; } /** * Returns the last element of this set in iteration order. * * @return the last element in iteration order. */ @Override public float lastFloat() { if (size == 0) throw new NoSuchElementException(); return key[last]; } /** * {@inheritDoc} * * @implSpec This implementation just throws an {@link UnsupportedOperationException}. */ @Override public FloatSortedSet tailSet(float from) { throw new UnsupportedOperationException(); } /** * {@inheritDoc} * * @implSpec This implementation just throws an {@link UnsupportedOperationException}. */ @Override public FloatSortedSet headSet(float to) { throw new UnsupportedOperationException(); } /** * {@inheritDoc} * * @implSpec This implementation just throws an {@link UnsupportedOperationException}. */ @Override public FloatSortedSet subSet(float from, float to) { throw new UnsupportedOperationException(); } /** * {@inheritDoc} * * @implSpec This implementation just returns {@code null}. */ @Override public FloatComparator comparator() { return null; } /** * A list iterator over a linked set. * *

* This class provides a list iterator over a linked hash set. The constructor runs in constant * time. */ private final class SetIterator implements FloatListIterator { /** * The entry that will be returned by the next call to {@link java.util.ListIterator#previous()} (or * {@code null} if no previous entry exists). */ int prev = -1; /** * The entry that will be returned by the next call to {@link java.util.ListIterator#next()} (or * {@code null} if no next entry exists). */ int next = -1; /** The last entry that was returned (or -1 if we did not iterate or used {@link #remove()}). */ int curr = -1; /** * The current index (in the sense of a {@link java.util.ListIterator}). When -1, we do not know the * current index. */ int index = -1; SetIterator() { next = first; index = 0; } SetIterator(float from) { if ((Float.floatToIntBits(from) == 0)) { if (FloatLinkedOpenHashSet.this.containsNull) { next = (int)link[n]; prev = n; return; } else throw new NoSuchElementException("The key " + from + " does not belong to this set."); } if ((Float.floatToIntBits(key[last]) == Float.floatToIntBits(from))) { prev = last; index = size; return; } // The starting point. final float key[] = FloatLinkedOpenHashSet.this.key; int pos = it.unimi.dsi.fastutil.HashCommon.mix(it.unimi.dsi.fastutil.HashCommon.float2int(from)) & mask; // There's always an unused entry. while (!(Float.floatToIntBits(key[pos]) == 0)) { if ((Float.floatToIntBits(key[pos]) == Float.floatToIntBits(from))) { // Note: no valid index known. next = (int)link[pos]; prev = pos; return; } pos = (pos + 1) & mask; } throw new NoSuchElementException("The key " + from + " does not belong to this set."); } @Override public boolean hasNext() { return next != -1; } @Override public boolean hasPrevious() { return prev != -1; } @Override public float nextFloat() { if (!hasNext()) throw new NoSuchElementException(); curr = next; next = (int)link[curr]; prev = curr; if (index >= 0) index++; if (ASSERTS) assert curr == n || !(Float.floatToIntBits(key[curr]) == 0) : "Position " + curr + " is not used"; return key[curr]; } @Override public float previousFloat() { if (!hasPrevious()) throw new NoSuchElementException(); curr = prev; prev = (int)(link[curr] >>> 32); next = curr; if (index >= 0) index--; return key[curr]; } @Override public void forEachRemaining(final FloatConsumer action) { final float key[] = FloatLinkedOpenHashSet.this.key; final long link[] = FloatLinkedOpenHashSet.this.link; while (next != -1) { curr = next; next = (int)link[curr]; prev = curr; if (index >= 0) index++; if (ASSERTS) assert curr == n || !(Float.floatToIntBits(key[curr]) == 0) : "Position " + curr + " is not used"; action.accept(key[curr]); } } private final void ensureIndexKnown() { if (index >= 0) return; if (prev == -1) { index = 0; return; } if (next == -1) { index = size; return; } int pos = first; index = 1; while (pos != prev) { pos = (int)link[pos]; index++; } } @Override public int nextIndex() { ensureIndexKnown(); return index; } @Override public int previousIndex() { ensureIndexKnown(); return index - 1; } @Override public void remove() { ensureIndexKnown(); if (curr == -1) throw new IllegalStateException(); if (curr == prev) { /* If the last operation was a next(), we are removing an entry that preceeds * the current index, and thus we must decrement it. */ index--; prev = (int)(link[curr] >>> 32); } else next = (int)link[curr]; size--; /* Now we manually fix the pointers. Because of our knowledge of next * and prev, this is going to be faster than calling fixPointers(). */ if (prev == -1) first = next; else link[prev] ^= ((link[prev] ^ (next & 0xFFFFFFFFL)) & 0xFFFFFFFFL); if (next == -1) last = prev; else link[next] ^= ((link[next] ^ ((prev & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L); int last, slot, pos = curr; curr = -1; if (pos == n) { FloatLinkedOpenHashSet.this.containsNull = false; FloatLinkedOpenHashSet.this.key[n] = (0); } else { float curr; final float[] key = FloatLinkedOpenHashSet.this.key; // We have to horribly duplicate the shiftKeys() code because we need to update next/prev. for (;;) { pos = ((last = pos) + 1) & mask; for (;;) { if ((Float.floatToIntBits(curr = key[pos]) == 0)) { key[last] = (0); return; } slot = it.unimi.dsi.fastutil.HashCommon.mix(it.unimi.dsi.fastutil.HashCommon.float2int(curr)) & mask; if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break; pos = (pos + 1) & mask; } key[last] = curr; if (next == pos) next = last; if (prev == pos) prev = last; fixPointers(pos, last); } } } } /** * Returns a type-specific list iterator on the elements in this set, starting from a given element * of the set. Please see the class documentation for implementation details. * * @param from an element to start from. * @return a type-specific list iterator starting at the given element. * @throws IllegalArgumentException if {@code from} does not belong to the set. */ @Override public FloatListIterator iterator(float from) { return new SetIterator(from); } /** * Returns a type-specific list iterator on the elements in this set, starting from the first * element. Please see the class documentation for implementation details. * * @return a type-specific list iterator starting at the first element. */ @Override public FloatListIterator iterator() { return new SetIterator(); } private static final int SPLITERATOR_CHARACTERISTICS = FloatSpliterators.SET_SPLITERATOR_CHARACTERISTICS | java.util.Spliterator.ORDERED; /** * {@inheritDoc} * *

* There isn't a way to split efficiently while still preserving order for a linked data structure, * so this implementation is just backed by the iterator. Thus, this spliterator is not well * optimized for parallel streams. * *

* Note, contrary to the specification of {@link java.util.SortedSet}, this spliterator does not, * report {@link java.util.Spliterator#SORTED}. This is because iteration order is based on * insertion order, not natural ordering. */ @Override public FloatSpliterator spliterator() { return FloatSpliterators.asSpliterator(iterator(), it.unimi.dsi.fastutil.Size64.sizeOf(this), SPLITERATOR_CHARACTERISTICS); } @Override public void forEach(final FloatConsumer action) { int curr; int next = first; while (next != -1) { curr = next; next = (int)link[curr]; if (ASSERTS) assert curr == n || !(Float.floatToIntBits(key[curr]) == 0) : "Position " + curr + " is not used"; action.accept(key[curr]); } } /** * Rehashes this set, making the table as small as possible. * *

* This method rehashes the table to the smallest size satisfying the load factor. It can be used * when the set will not be changed anymore, so to optimize access speed and size. * *

* If the table size is already the minimum possible, this method does nothing. * * @return true if there was enough memory to trim the set. * @see #trim(int) */ public boolean trim() { return trim(size); } /** * Rehashes this set if the table is too large. * *

* Let N be the smallest table size that can hold max(n,{@link #size()}) * entries, still satisfying the load factor. If the current table size is smaller than or equal to * N, this method does nothing. Otherwise, it rehashes this set in a table of size * N. * *

* This method is useful when reusing sets. {@linkplain #clear() Clearing a set} leaves the table * size untouched. If you are reusing a set many times, you can call this method with a typical size * to avoid keeping around a very large table just because of a few large transient sets. * * @param n the threshold for the trimming. * @return true if there was enough memory to trim the set. * @see #trim() */ public boolean trim(final int n) { final int l = HashCommon.nextPowerOfTwo((int)Math.ceil(n / f)); if (l >= this.n || size > maxFill(l, f)) return true; try { rehash(l); } catch (OutOfMemoryError cantDoIt) { return false; } return true; } /** * Rehashes the set. * *

* This method implements the basic rehashing strategy, and may be overriden by subclasses * implementing different rehashing strategies (e.g., disk-based rehashing). However, you should not * override this method unless you understand the internal workings of this class. * * @param newN the new size */ protected void rehash(final int newN) { final float key[] = this.key; final int mask = newN - 1; // Note that this is used by the hashing macro final float newKey[] = new float[newN + 1]; int i = first, prev = -1, newPrev = -1, t, pos; final long link[] = this.link; final long newLink[] = new long[newN + 1]; first = -1; for (int j = size; j-- != 0;) { if ((Float.floatToIntBits(key[i]) == 0)) pos = newN; else { pos = it.unimi.dsi.fastutil.HashCommon.mix(it.unimi.dsi.fastutil.HashCommon.float2int(key[i])) & mask; while (!(Float.floatToIntBits(newKey[pos]) == 0)) pos = (pos + 1) & mask; } newKey[pos] = key[i]; if (prev != -1) { newLink[newPrev] ^= ((newLink[newPrev] ^ (pos & 0xFFFFFFFFL)) & 0xFFFFFFFFL); newLink[pos] ^= ((newLink[pos] ^ ((newPrev & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L); newPrev = pos; } else { newPrev = first = pos; // Special case of SET(newLink[pos], -1, -1); newLink[pos] = -1L; } t = i; i = (int)link[i]; prev = t; } this.link = newLink; this.last = newPrev; if (newPrev != -1) // Special case of SET_NEXT(newLink[newPrev], -1); newLink[newPrev] |= -1 & 0xFFFFFFFFL; n = newN; this.mask = mask; maxFill = maxFill(n, f); this.key = newKey; } /** * Returns a deep copy of this set. * *

* This method performs a deep copy of this hash set; the data stored in the set, however, is not * cloned. Note that this makes a difference only for object keys. * * @return a deep copy of this set. */ @Override public FloatLinkedOpenHashSet clone() { FloatLinkedOpenHashSet c; try { c = (FloatLinkedOpenHashSet)super.clone(); } catch (CloneNotSupportedException cantHappen) { throw new InternalError(); } c.key = key.clone(); c.containsNull = containsNull; c.link = link.clone(); return c; } /** * Returns a hash code for this set. * * This method overrides the generic method provided by the superclass. Since {@code equals()} is * not overriden, it is important that the value returned by this method is the same value as the * one returned by the overriden method. * * @return a hash code for this set. */ @Override public int hashCode() { int h = 0; for (int j = realSize(), i = 0; j-- != 0;) { while ((Float.floatToIntBits(key[i]) == 0)) i++; h += it.unimi.dsi.fastutil.HashCommon.float2int(key[i]); i++; } // Zero / null have hash zero. return h; } private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { final FloatIterator i = iterator(); s.defaultWriteObject(); for (int j = size; j-- != 0;) s.writeFloat(i.nextFloat()); } private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); n = arraySize(size, f); maxFill = maxFill(n, f); mask = n - 1; final float key[] = this.key = new float[n + 1]; final long link[] = this.link = new long[n + 1]; int prev = -1; first = last = -1; float k; for (int i = size, pos; i-- != 0;) { k = s.readFloat(); if ((Float.floatToIntBits(k) == 0)) { pos = n; containsNull = true; } else { if (!(Float.floatToIntBits(key[pos = it.unimi.dsi.fastutil.HashCommon.mix(it.unimi.dsi.fastutil.HashCommon.float2int(k)) & mask]) == 0)) while (!(Float.floatToIntBits(key[pos = (pos + 1) & mask]) == 0)); } key[pos] = k; if (first != -1) { link[prev] ^= ((link[prev] ^ (pos & 0xFFFFFFFFL)) & 0xFFFFFFFFL); link[pos] ^= ((link[pos] ^ ((prev & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L); prev = pos; } else { prev = first = pos; // Special case of SET_PREV(newLink[pos], -1); link[pos] |= (-1L & 0xFFFFFFFFL) << 32; } } last = prev; if (prev != -1) // Special case of SET_NEXT(link[prev], -1); link[prev] |= -1 & 0xFFFFFFFFL; if (ASSERTS) checkTable(); } private void checkTable() { } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy