All Downloads are FREE. Search and download functionalities are using the official Maven repository.

it.unimi.dsi.fastutil.objects.ObjectBigArrays Maven / Gradle / Ivy

Go to download

fastutil extends the Java Collections Framework by providing type-specific maps, sets, lists, and queues with a small memory footprint and fast access and insertion; it provides also big (64-bit) arrays, sets and lists, sorting algorithms, fast, practical I/O classes for binary and text files, and facilities for memory mapping large files. Note that if you have both this jar and fastutil-core.jar in your dependencies, fastutil-core.jar should be excluded.

There is a newer version: 8.5.13
Show newest version
/*
	* Copyright (C) 2009-2023 Sebastiano Vigna
	*
	* Licensed under the Apache License, Version 2.0 (the "License");
	* you may not use this file except in compliance with the License.
	* You may obtain a copy of the License at
	*
	*     http://www.apache.org/licenses/LICENSE-2.0
	*
	* Unless required by applicable law or agreed to in writing, software
	* distributed under the License is distributed on an "AS IS" BASIS,
	* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
	* See the License for the specific language governing permissions and
	* limitations under the License.
	*
	*
	*
	* Copyright (C) 1999 CERN - European Organization for Nuclear Research.
	*
	*   Permission to use, copy, modify, distribute and sell this software and
	*   its documentation for any purpose is hereby granted without fee,
	*   provided that the above copyright notice appear in all copies and that
	*   both that copyright notice and this permission notice appear in
	*   supporting documentation. CERN makes no representations about the
	*   suitability of this software for any purpose. It is provided "as is"
	*   without expressed or implied warranty.
	*/
package it.unimi.dsi.fastutil.objects;

import java.util.Arrays;
import java.util.Random;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.ForkJoinTask;
import java.util.concurrent.RecursiveAction;
import it.unimi.dsi.fastutil.BigArrays;
import it.unimi.dsi.fastutil.Hash;
import static it.unimi.dsi.fastutil.BigArrays.ensureLength;
import static it.unimi.dsi.fastutil.BigArrays.start;
import static it.unimi.dsi.fastutil.BigArrays.segment;
import static it.unimi.dsi.fastutil.BigArrays.displacement;
import static it.unimi.dsi.fastutil.BigArrays.SEGMENT_MASK;
import static it.unimi.dsi.fastutil.BigArrays.SEGMENT_SHIFT;
import static it.unimi.dsi.fastutil.BigArrays.SEGMENT_SIZE;
import java.util.Comparator;

/**
 * A class providing static methods and objects that do useful things with {@linkplain BigArrays big
 * arrays}.
 *
 * 

* Note that {@link it.unimi.dsi.fastutil.io.BinIO} and {@link it.unimi.dsi.fastutil.io.TextIO} * contain several methods make it possible to load and save big arrays of primitive types as * sequences of elements in {@link java.io.DataInput} format (i.e., not as objects) or as sequences * of lines of text. * *

Parallel operations

Some algorithms provide a parallel version that will by default use * the {@linkplain ForkJoinPool#commonPool() common pool}, but this can be overridden by calling the * function in a task already in the {@link ForkJoinPool} that the operation should run in. For * example, something along the lines of * "{@code poolToParallelSortIn.invoke(() -> parallelQuickSort(arrayToSort))}" will run the parallel * sort in {@code poolToParallelSortIn} instead of the default pool. * *

* Warning: creating arrays using * {@linkplain java.lang.reflect.Array#newInstance(Class,int) reflection}, as it happens in * {@link #ensureCapacity(Object[][],long,long)} and {@link #grow(Object[][],long,long)}, is * significantly slower than using {@code new}. This phenomenon is particularly evident in * the first growth phases of an array reallocated with doubling (or similar) logic. * * @see BigArrays */ public final class ObjectBigArrays { private ObjectBigArrays() { } /** A static, final, empty big array. */ public static final Object[][] EMPTY_BIG_ARRAY = {}; /** * A static, final, empty big array to be used as default big array in allocations. An object * distinct from {@link #EMPTY_BIG_ARRAY} makes it possible to have different behaviors depending on * whether the user required an empty allocation, or we are just lazily delaying allocation. * * @see java.util.ArrayList */ public static final Object[][] DEFAULT_EMPTY_BIG_ARRAY = {}; /** * Returns the element of the given big array of specified index. * * @param array a big array. * @param index a position in the big array. * @return the element of the big array at the specified position. * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static K get(final K[][] array, final long index) { return array[segment(index)][displacement(index)]; } /** * Sets the element of the given big array of specified index. * * @param array a big array. * @param index a position in the big array. * @param value the new value for the array element at the specified position. * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static void set(final K[][] array, final long index, K value) { array[segment(index)][displacement(index)] = value; } /** * Swaps the element of the given big array of specified indices. * * @param array a big array. * @param first a position in the big array. * @param second a position in the big array. * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static void swap(final K[][] array, final long first, final long second) { final K t = array[segment(first)][displacement(first)]; array[segment(first)][displacement(first)] = array[segment(second)][displacement(second)]; array[segment(second)][displacement(second)] = t; } /** * Returns the length of the given big array. * * @param array a big array. * @return the length of the given big array. * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static long length(final K[][] array) { final int length = array.length; return length == 0 ? 0 : start(length - 1) + array[length - 1].length; } /** * Copies a big array from the specified source big array, beginning at the specified position, to * the specified position of the destination big array. Handles correctly overlapping regions of the * same big array. * * @param srcArray the source big array. * @param srcPos the starting position in the source big array. * @param destArray the destination big array. * @param destPos the starting position in the destination data. * @param length the number of elements to be copied. * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static void copy(final K[][] srcArray, final long srcPos, final K[][] destArray, final long destPos, long length) { BigArrays.copy(srcArray, srcPos, destArray, destPos, length); } /** * Copies a big array from the specified source big array, beginning at the specified position, to * the specified position of the destination array. * * @param srcArray the source big array. * @param srcPos the starting position in the source big array. * @param destArray the destination array. * @param destPos the starting position in the destination data. * @param length the number of elements to be copied. * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static void copyFromBig(final K[][] srcArray, final long srcPos, final K[] destArray, int destPos, int length) { BigArrays.copyFromBig(srcArray, srcPos, destArray, destPos, length); } /** * Copies an array from the specified source array, beginning at the specified position, to the * specified position of the destination big array. * * @param srcArray the source array. * @param srcPos the starting position in the source array. * @param destArray the destination big array. * @param destPos the starting position in the destination data. * @param length the number of elements to be copied. * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static void copyToBig(final K[] srcArray, int srcPos, final K[][] destArray, final long destPos, long length) { BigArrays.copyToBig(srcArray, srcPos, destArray, destPos, length); } /** * Creates a new big array using the given one as prototype. * *

* This method returns a new big array of the given length whose element are of the same class as of * those of {@code prototype}. In case of an empty big array, it tries to return * {@link #EMPTY_BIG_ARRAY}, if possible. * * @param prototype a big array that will be used to type the new one. * @param length the length of the new big array. * @return a new big array of given type and length. */ @SuppressWarnings("unchecked") public static K[][] newBigArray(final K[][] prototype, final long length) { return (K[][])newBigArray(prototype.getClass().getComponentType(), length); } /** * Creates a new big array using a given component type. * *

* This method returns a new big array whose segments are of class {@code componentType}. In case of * an empty big array, it tries to return {@link #EMPTY_BIG_ARRAY}, if possible. * * @param componentType a class representing the type of segments of the array to be created. * @param length the length of the new big array. * @return a new big array of given type and length. */ public static Object[][] newBigArray(Class componentType, final long length) { if (length == 0 && componentType == Object[].class) return EMPTY_BIG_ARRAY; ensureLength(length); final int baseLength = (int)((length + SEGMENT_MASK) >>> SEGMENT_SHIFT); Object[][] base = (Object[][])java.lang.reflect.Array.newInstance(componentType, baseLength); final int residual = (int)(length & SEGMENT_MASK); if (residual != 0) { for (int i = 0; i < baseLength - 1; i++) base[i] = (Object[])java.lang.reflect.Array.newInstance(componentType.getComponentType(), SEGMENT_SIZE); base[baseLength - 1] = (Object[])java.lang.reflect.Array.newInstance(componentType.getComponentType(), residual); } else for (int i = 0; i < baseLength; i++) base[i] = (Object[])java.lang.reflect.Array.newInstance(componentType.getComponentType(), SEGMENT_SIZE); return base; } /** * Creates a new big array. * * @param length the length of the new big array. * @return a new big array of given length. */ public static Object[][] newBigArray(final long length) { if (length == 0) return EMPTY_BIG_ARRAY; ensureLength(length); final int baseLength = (int)((length + SEGMENT_MASK) >>> SEGMENT_SHIFT); Object[][] base = new Object[baseLength][]; final int residual = (int)(length & SEGMENT_MASK); if (residual != 0) { for (int i = 0; i < baseLength - 1; i++) base[i] = new Object[SEGMENT_SIZE]; base[baseLength - 1] = new Object[residual]; } else for (int i = 0; i < baseLength; i++) base[i] = new Object[SEGMENT_SIZE]; return base; } /** * Turns a standard array into a big array. * *

* Note that the returned big array might contain as a segment the original array. * * @param array an array. * @return a new big array with the same length and content of {@code array}. * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated @SuppressWarnings("unchecked") public static K[][] wrap(final K[] array) { return BigArrays.wrap(array); } /** * Ensures that a big array can contain the given number of entries. * *

* If you cannot foresee whether this big array will need again to be enlarged, you should probably * use {@code grow()} instead. * *

* Warning: the returned array might use part of the segments of the original * array, which must be considered read-only after calling this method. * * @param array a big array. * @param length the new minimum length for this big array. * @return {@code array}, if it contains {@code length} entries or more; otherwise, a big array with * {@code length} entries whose first {@code length(array)} entries are the same as those of * {@code array}. * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static K[][] ensureCapacity(final K[][] array, final long length) { return ensureCapacity(array, length, length(array)); } /** * Forces a big array to contain the given number of entries, preserving just a part of the big * array. * *

* This method returns a new big array of the given length whose element are of the same class as of * those of {@code array}. * *

* Warning: the returned array might use part of the segments of the original * array, which must be considered read-only after calling this method. * * @param array a big array. * @param length the new minimum length for this big array. * @param preserve the number of elements of the big array that must be preserved in case a new * allocation is necessary. * @return a big array with {@code length} entries whose first {@code preserve} entries are the same * as those of {@code array}. * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated @SuppressWarnings("unchecked") public static K[][] forceCapacity(final K[][] array, final long length, final long preserve) { return BigArrays.forceCapacity(array, length, preserve); } /** * Ensures that a big array can contain the given number of entries, preserving just a part of the * big array. * *

* This method returns a new big array of the given length whose element are of the same class as of * those of {@code array}. * *

* Warning: the returned array might use part of the segments of the original * array, which must be considered read-only after calling this method. * * @param array a big array. * @param length the new minimum length for this big array. * @param preserve the number of elements of the big array that must be preserved in case a new * allocation is necessary. * @return {@code array}, if it can contain {@code length} entries or more; otherwise, a big array * with {@code length} entries whose first {@code preserve} entries are the same as those of * {@code array}. * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static K[][] ensureCapacity(final K[][] array, final long length, final long preserve) { return length > length(array) ? forceCapacity(array, length, preserve) : array; } /** * Grows the given big array to the maximum between the given length and the current length * increased by 50%, provided that the given length is larger than the current length. * *

* If you want complete control on the big array growth, you should probably use * {@code ensureCapacity()} instead. * *

* Warning: the returned array might use part of the segments of the original * array, which must be considered read-only after calling this method. * * @param array a big array. * @param length the new minimum length for this big array. * @return {@code array}, if it can contain {@code length} entries; otherwise, a big array with * max({@code length},{@code length(array)}/φ) entries whose first {@code length(array)} * entries are the same as those of {@code array}. * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static K[][] grow(final K[][] array, final long length) { final long oldLength = length(array); return length > oldLength ? grow(array, length, oldLength) : array; } /** * Grows the given big array to the maximum between the given length and the current length * increased by 50%, provided that the given length is larger than the current length, preserving * just a part of the big array. * *

* If you want complete control on the big array growth, you should probably use * {@code ensureCapacity()} instead. * *

* Warning: the returned array might use part of the segments of the original * array, which must be considered read-only after calling this method. * * @param array a big array. * @param length the new minimum length for this big array. * @param preserve the number of elements of the big array that must be preserved in case a new * allocation is necessary. * @return {@code array}, if it can contain {@code length} entries; otherwise, a big array with * max({@code length},{@code length(array)}/φ) entries whose first {@code preserve} * entries are the same as those of {@code array}. * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static K[][] grow(final K[][] array, final long length, final long preserve) { final long oldLength = length(array); return length > oldLength ? ensureCapacity(array, Math.max(oldLength + (oldLength >> 1), length), preserve) : array; } /** * Trims the given big array to the given length. * *

* Warning: the returned array might use part of the segments of the original * array, which must be considered read-only after calling this method. * * @param array a big array. * @param length the new maximum length for the big array. * @return {@code array}, if it contains {@code length} entries or less; otherwise, a big array with * {@code length} entries whose entries are the same as the first {@code length} entries of * {@code array}. * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static K[][] trim(final K[][] array, final long length) { return BigArrays.trim(array, length); } /** * Sets the length of the given big array. * *

* Warning: the returned array might use part of the segments of the original * array, which must be considered read-only after calling this method. * * @param array a big array. * @param length the new length for the big array. * @return {@code array}, if it contains exactly {@code length} entries; otherwise, if it contains * more than {@code length} entries, a big array with {@code length} entries whose * entries are the same as the first {@code length} entries of {@code array}; otherwise, a * big array with {@code length} entries whose first {@code length(array)} entries are the * same as those of {@code array}. * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static K[][] setLength(final K[][] array, final long length) { return BigArrays.setLength(array, length); } /** * Returns a copy of a portion of a big array. * * @param array a big array. * @param offset the first element to copy. * @param length the number of elements to copy. * @return a new big array containing {@code length} elements of {@code array} starting at * {@code offset}. * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static K[][] copy(final K[][] array, final long offset, final long length) { return BigArrays.copy(array, offset, length); } /** * Returns a copy of a big array. * * @param array a big array. * @return a copy of {@code array}. * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static K[][] copy(final K[][] array) { return BigArrays.copy(array); } /** * Fills the given big array with the given value. * *

* This method uses a backward loop. It is significantly faster than the corresponding method in * {@link java.util.Arrays}. * * @param array a big array. * @param value the new value for all elements of the big array. * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static void fill(final K[][] array, final K value) { for (int i = array.length; i-- != 0;) Arrays.fill(array[i], value); } /** * Fills a portion of the given big array with the given value. * *

* If possible (i.e., {@code from} is 0) this method uses a backward loop. In this case, it is * significantly faster than the corresponding method in {@link java.util.Arrays}. * * @param array a big array. * @param from the starting index of the portion to fill. * @param to the end index of the portion to fill. * @param value the new value for all elements of the specified portion of the big array. * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static void fill(final K[][] array, final long from, long to, final K value) { BigArrays.fill(array, from, to, value); } /** * Returns true if the two big arrays are elementwise equal. * *

* This method uses a backward loop. It is significantly faster than the corresponding method in * {@link java.util.Arrays}. * * @param a1 a big array. * @param a2 another big array. * @return true if the two big arrays are of the same length, and their elements are equal. * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static boolean equals(final K[][] a1, final K a2[][]) { return BigArrays.equals(a1, a2); } /* Returns a string representation of the contents of the specified big array. * * The string representation consists of a list of the big array's elements, enclosed in square brackets ("[]"). Adjacent elements are separated by the characters ", " (a comma followed by a space). Returns "null" if {@code a} is null. * @param a the big array whose string representation to return. * @return the string representation of {@code a}. * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static String toString(final K[][] a) { return BigArrays.toString(a); } /** * Ensures that a range given by its first (inclusive) and last (exclusive) elements fits a big * array. * *

* This method may be used whenever a big array range check is needed. * * @param a a big array. * @param from a start index (inclusive). * @param to an end index (inclusive). * @throws IllegalArgumentException if {@code from} is greater than {@code to}. * @throws ArrayIndexOutOfBoundsException if {@code from} or {@code to} are greater than the big * array length or negative. * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static void ensureFromTo(final K[][] a, final long from, final long to) { BigArrays.ensureFromTo(length(a), from, to); } /** * Ensures that a range given by an offset and a length fits a big array. * *

* This method may be used whenever a big array range check is needed. * * @param a a big array. * @param offset a start index. * @param length a length (the number of elements in the range). * @throws IllegalArgumentException if {@code length} is negative. * @throws ArrayIndexOutOfBoundsException if {@code offset} is negative or * {@code offset}+{@code length} is greater than the big array length. * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static void ensureOffsetLength(final K[][] a, final long offset, final long length) { BigArrays.ensureOffsetLength(length(a), offset, length); } /** * Ensures that two big arrays are of the same length. * * @param a a big array. * @param b another big array. * @throws IllegalArgumentException if the two argument arrays are not of the same length. * @deprecated Please use the version in {@link it.unimi.dsi.fastutil.BigArrays}. */ @Deprecated public static void ensureSameLength(final K[][] a, final K[][] b) { if (length(a) != length(b)) throw new IllegalArgumentException("Array size mismatch: " + length(a) + " != " + length(b)); } /** A type-specific content-based hash strategy for big arrays. */ private static final class BigArrayHashStrategy implements Hash.Strategy, java.io.Serializable { private static final long serialVersionUID = -7046029254386353129L; @Override public int hashCode(final K[][] o) { return java.util.Arrays.deepHashCode(o); } @Override public boolean equals(final K[][] a, final K[][] b) { return ObjectBigArrays.equals(a, b); } } /** * A type-specific content-based hash strategy for big arrays. * *

* This hash strategy may be used in custom hash collections whenever keys are big arrays, and they * must be considered equal by content. This strategy will handle {@code null} correctly, and it is * serializable. */ @SuppressWarnings({ "rawtypes" }) public static final Hash.Strategy HASH_STRATEGY = new BigArrayHashStrategy(); private static final int QUICKSORT_NO_REC = 7; private static final int PARALLEL_QUICKSORT_NO_FORK = 8192; private static final int MEDIUM = 40; private static ForkJoinPool getPool() { // Make sure to update Arrays.drv, BigArrays.drv, and src/it/unimi/dsi/fastutil/Arrays.java as well ForkJoinPool current = ForkJoinTask.getPool(); return current == null ? ForkJoinPool.commonPool() : current; } private static void swap(final K[][] x, long a, long b, final long n) { for (int i = 0; i < n; i++, a++, b++) BigArrays.swap(x, a, b); } private static long med3(final K x[][], final long a, final long b, final long c, Comparator comp) { int ab = comp.compare(BigArrays.get(x, a), BigArrays.get(x, b)); int ac = comp.compare(BigArrays.get(x, a), BigArrays.get(x, c)); int bc = comp.compare(BigArrays.get(x, b), BigArrays.get(x, c)); return (ab < 0 ? (bc < 0 ? b : ac < 0 ? c : a) : (bc > 0 ? b : ac > 0 ? c : a)); } private static void selectionSort(final K[][] a, final long from, final long to, final Comparator comp) { for (long i = from; i < to - 1; i++) { long m = i; for (long j = i + 1; j < to; j++) if (comp.compare(BigArrays.get(a, j), BigArrays.get(a, m)) < 0) m = j; if (m != i) BigArrays.swap(a, i, m); } } /** * Sorts the specified range of elements according to the order induced by the specified comparator * using quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas McIlroy, * “Engineering a Sort Function”, Software: Practice and Experience, 23(11), * pages 1249−1265, 1993. * * @param x the big array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. * @param comp the comparator to determine the sorting order. */ public static void quickSort(final K[][] x, final long from, final long to, final Comparator comp) { final long len = to - from; // Selection sort on smallest arrays if (len < QUICKSORT_NO_REC) { selectionSort(x, from, to, comp); return; } // Choose a partition element, v long m = from + len / 2; // Small arrays, middle element if (len > QUICKSORT_NO_REC) { long l = from; long n = to - 1; if (len > MEDIUM) { // Big arrays, pseudomedian of 9 long s = len / 8; l = med3(x, l, l + s, l + 2 * s, comp); m = med3(x, m - s, m, m + s, comp); n = med3(x, n - 2 * s, n - s, n, comp); } m = med3(x, l, m, n, comp); // Mid-size, med of 3 } final K v = BigArrays.get(x, m); // Establish Invariant: v* (v)* v* long a = from, b = a, c = to - 1, d = c; while (true) { int comparison; while (b <= c && (comparison = comp.compare(BigArrays.get(x, b), v)) <= 0) { if (comparison == 0) BigArrays.swap(x, a++, b); b++; } while (c >= b && (comparison = comp.compare(BigArrays.get(x, c), v)) >= 0) { if (comparison == 0) BigArrays.swap(x, c, d--); c--; } if (b > c) break; BigArrays.swap(x, b++, c--); } // Swap partition elements back to middle long s, n = to; s = Math.min(a - from, b - a); swap(x, from, b - s, s); s = Math.min(d - c, n - d - 1); swap(x, b, n - s, s); // Recursively sort non-partition-elements if ((s = b - a) > 1) quickSort(x, from, from + s, comp); if ((s = d - c) > 1) quickSort(x, n - s, n, comp); } @SuppressWarnings("unchecked") private static long med3(final K x[][], final long a, final long b, final long c) { int ab = (((Comparable)(BigArrays.get(x, a))).compareTo(BigArrays.get(x, b))); int ac = (((Comparable)(BigArrays.get(x, a))).compareTo(BigArrays.get(x, c))); int bc = (((Comparable)(BigArrays.get(x, b))).compareTo(BigArrays.get(x, c))); return (ab < 0 ? (bc < 0 ? b : ac < 0 ? c : a) : (bc > 0 ? b : ac > 0 ? c : a)); } @SuppressWarnings("unchecked") private static void selectionSort(final K[][] a, final long from, final long to) { for (long i = from; i < to - 1; i++) { long m = i; for (long j = i + 1; j < to; j++) if ((((Comparable)(BigArrays.get(a, j))).compareTo(BigArrays.get(a, m)) < 0)) m = j; if (m != i) BigArrays.swap(a, i, m); } } /** * Sorts the specified big array according to the order induced by the specified comparator using * quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas McIlroy, * “Engineering a Sort Function”, Software: Practice and Experience, 23(11), * pages 1249−1265, 1993. * * @param x the big array to be sorted. * @param comp the comparator to determine the sorting order. * */ public static void quickSort(final K[][] x, final Comparator comp) { quickSort(x, 0, BigArrays.length(x), comp); } /** * Sorts the specified range of elements according to the natural ascending order using quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas McIlroy, * “Engineering a Sort Function”, Software: Practice and Experience, 23(11), * pages 1249−1265, 1993. * * @param x the big array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. */ @SuppressWarnings("unchecked") public static void quickSort(final K[][] x, final long from, final long to) { final long len = to - from; // Selection sort on smallest arrays if (len < QUICKSORT_NO_REC) { selectionSort(x, from, to); return; } // Choose a partition element, v long m = from + len / 2; // Small arrays, middle element if (len > QUICKSORT_NO_REC) { long l = from; long n = to - 1; if (len > MEDIUM) { // Big arrays, pseudomedian of 9 long s = len / 8; l = med3(x, l, l + s, l + 2 * s); m = med3(x, m - s, m, m + s); n = med3(x, n - 2 * s, n - s, n); } m = med3(x, l, m, n); // Mid-size, med of 3 } final K v = BigArrays.get(x, m); // Establish Invariant: v* (v)* v* long a = from, b = a, c = to - 1, d = c; while (true) { int comparison; while (b <= c && (comparison = (((Comparable)(BigArrays.get(x, b))).compareTo(v))) <= 0) { if (comparison == 0) BigArrays.swap(x, a++, b); b++; } while (c >= b && (comparison = (((Comparable)(BigArrays.get(x, c))).compareTo(v))) >= 0) { if (comparison == 0) BigArrays.swap(x, c, d--); c--; } if (b > c) break; BigArrays.swap(x, b++, c--); } // Swap partition elements back to middle long s, n = to; s = Math.min(a - from, b - a); swap(x, from, b - s, s); s = Math.min(d - c, n - d - 1); swap(x, b, n - s, s); // Recursively sort non-partition-elements if ((s = b - a) > 1) quickSort(x, from, from + s); if ((s = d - c) > 1) quickSort(x, n - s, n); } /** * Sorts the specified big array according to the natural ascending order using quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas McIlroy, * “Engineering a Sort Function”, Software: Practice and Experience, 23(11), * pages 1249−1265, 1993. * * @param x the big array to be sorted. */ public static void quickSort(final K[][] x) { quickSort(x, 0, BigArrays.length(x)); } protected static class ForkJoinQuickSort extends RecursiveAction { private static final long serialVersionUID = 1L; private final long from; private final long to; private final K[][] x; public ForkJoinQuickSort(final K[][] x, final long from, final long to) { this.from = from; this.to = to; this.x = x; } @Override @SuppressWarnings("unchecked") protected void compute() { final K[][] x = this.x; final long len = to - from; if (len < PARALLEL_QUICKSORT_NO_FORK) { quickSort(x, from, to); return; } // Choose a partition element, v long m = from + len / 2; long l = from; long n = to - 1; long s = len / 8; l = med3(x, l, l + s, l + 2 * s); m = med3(x, m - s, m, m + s); n = med3(x, n - 2 * s, n - s, n); m = med3(x, l, m, n); final K v = BigArrays.get(x, m); // Establish Invariant: v* (v)* v* long a = from, b = a, c = to - 1, d = c; while (true) { int comparison; while (b <= c && (comparison = (((Comparable)(BigArrays.get(x, b))).compareTo(v))) <= 0) { if (comparison == 0) BigArrays.swap(x, a++, b); b++; } while (c >= b && (comparison = (((Comparable)(BigArrays.get(x, c))).compareTo(v))) >= 0) { if (comparison == 0) BigArrays.swap(x, c, d--); c--; } if (b > c) break; BigArrays.swap(x, b++, c--); } // Swap partition elements back to middle long t; s = Math.min(a - from, b - a); swap(x, from, b - s, s); s = Math.min(d - c, to - d - 1); swap(x, b, to - s, s); // Recursively sort non-partition-elements s = b - a; t = d - c; if (s > 1 && t > 1) invokeAll(new ForkJoinQuickSort<>(x, from, from + s), new ForkJoinQuickSort<>(x, to - t, to)); else if (s > 1) invokeAll(new ForkJoinQuickSort<>(x, from, from + s)); else invokeAll(new ForkJoinQuickSort<>(x, to - t, to)); } } /** * Sorts the specified range of elements according to the natural ascending order using a parallel * quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas McIlroy, * “Engineering a Sort Function”, Software: Practice and Experience, 23(11), * pages 1249−1265, 1993. * * @param x the big array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. */ public static void parallelQuickSort(final K[][] x, final long from, final long to) { ForkJoinPool pool = getPool(); if (to - from < PARALLEL_QUICKSORT_NO_FORK || pool.getParallelism() == 1) quickSort(x, from, to); else { pool.invoke(new ForkJoinQuickSort<>(x, from, to)); } } /** * Sorts a big array according to the natural ascending order using a parallel quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas McIlroy, * “Engineering a Sort Function”, Software: Practice and Experience, 23(11), * pages 1249−1265, 1993. * * @param x the big array to be sorted. */ public static void parallelQuickSort(final K[][] x) { parallelQuickSort(x, 0, BigArrays.length(x)); } protected static class ForkJoinQuickSortComp extends RecursiveAction { private static final long serialVersionUID = 1L; private final long from; private final long to; private final K[][] x; private final Comparator comp; public ForkJoinQuickSortComp(final K[][] x, final long from, final long to, final Comparator comp) { this.from = from; this.to = to; this.x = x; this.comp = comp; } @Override protected void compute() { final K[][] x = this.x; final long len = to - from; if (len < PARALLEL_QUICKSORT_NO_FORK) { quickSort(x, from, to, comp); return; } // Choose a partition element, v long m = from + len / 2; long l = from; long n = to - 1; long s = len / 8; l = med3(x, l, l + s, l + 2 * s, comp); m = med3(x, m - s, m, m + s, comp); n = med3(x, n - 2 * s, n - s, n, comp); m = med3(x, l, m, n, comp); final K v = BigArrays.get(x, m); // Establish Invariant: v* (v)* v* long a = from, b = a, c = to - 1, d = c; while (true) { int comparison; while (b <= c && (comparison = comp.compare(BigArrays.get(x, b), v)) <= 0) { if (comparison == 0) BigArrays.swap(x, a++, b); b++; } while (c >= b && (comparison = comp.compare(BigArrays.get(x, c), v)) >= 0) { if (comparison == 0) BigArrays.swap(x, c, d--); c--; } if (b > c) break; BigArrays.swap(x, b++, c--); } // Swap partition elements back to middle long t; s = Math.min(a - from, b - a); swap(x, from, b - s, s); s = Math.min(d - c, to - d - 1); swap(x, b, to - s, s); // Recursively sort non-partition-elements s = b - a; t = d - c; if (s > 1 && t > 1) invokeAll(new ForkJoinQuickSortComp<>(x, from, from + s, comp), new ForkJoinQuickSortComp<>(x, to - t, to, comp)); else if (s > 1) invokeAll(new ForkJoinQuickSortComp<>(x, from, from + s, comp)); else invokeAll(new ForkJoinQuickSortComp<>(x, to - t, to, comp)); } } /** * Sorts the specified range of elements according to the order induced by the specified comparator * using a parallel quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas McIlroy, * “Engineering a Sort Function”, Software: Practice and Experience, 23(11), * pages 1249−1265, 1993. * * @param x the big array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. * @param comp the comparator to determine the sorting order. */ public static void parallelQuickSort(final K[][] x, final long from, final long to, final Comparator comp) { ForkJoinPool pool = getPool(); if (to - from < PARALLEL_QUICKSORT_NO_FORK || pool.getParallelism() == 1) quickSort(x, from, to, comp); else { pool.invoke(new ForkJoinQuickSortComp<>(x, from, to, comp)); } } /** * Sorts a big array according to the order induced by the specified comparator using a parallel * quicksort. * *

* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas McIlroy, * “Engineering a Sort Function”, Software: Practice and Experience, 23(11), * pages 1249−1265, 1993. * * @param x the big array to be sorted. * @param comp the comparator to determine the sorting order. */ public static void parallelQuickSort(final K[][] x, final Comparator comp) { parallelQuickSort(x, 0, BigArrays.length(x), comp); } /** * Searches a range of the specified big array for the specified value using the binary search * algorithm. The range must be sorted prior to making this call. If it is not sorted, the results * are undefined. If the range contains multiple elements with the specified value, there is no * guarantee which one will be found. * * @param a the big array to be searched. * @param from the index of the first element (inclusive) to be searched. * @param to the index of the last element (exclusive) to be searched. * @param key the value to be searched for. * @return index of the search key, if it is contained in the big array; otherwise, * (-(insertion point) - 1). The insertion point is defined as * the the point at which the value would be inserted into the big array: the index of the * first element greater than the key, or the length of the big array, if all elements in * the big array are less than the specified key. Note that this guarantees that the return * value will be >= 0 if and only if the key is found. * @see java.util.Arrays */ @SuppressWarnings("unchecked") public static long binarySearch(final K[][] a, long from, long to, final K key) { K midVal; to--; while (from <= to) { final long mid = (from + to) >>> 1; midVal = BigArrays.get(a, mid); final int cmp = ((Comparable)midVal).compareTo(key); if (cmp < 0) from = mid + 1; else if (cmp > 0) to = mid - 1; else return mid; } return -(from + 1); } /** * Searches a big array for the specified value using the binary search algorithm. The range must be * sorted prior to making this call. If it is not sorted, the results are undefined. If the range * contains multiple elements with the specified value, there is no guarantee which one will be * found. * * @param a the big array to be searched. * @param key the value to be searched for. * @return index of the search key, if it is contained in the big array; otherwise, * (-(insertion point) - 1). The insertion point is defined as * the the point at which the value would be inserted into the big array: the index of the * first element greater than the key, or the length of the big array, if all elements in * the big array are less than the specified key. Note that this guarantees that the return * value will be >= 0 if and only if the key is found. * @see java.util.Arrays */ public static long binarySearch(final K[][] a, final Object key) { return binarySearch(a, 0, BigArrays.length(a), key); } /** * Searches a range of the specified big array for the specified value using the binary search * algorithm and a specified comparator. The range must be sorted following the comparator prior to * making this call. If it is not sorted, the results are undefined. If the range contains multiple * elements with the specified value, there is no guarantee which one will be found. * * @param a the big array to be searched. * @param from the index of the first element (inclusive) to be searched. * @param to the index of the last element (exclusive) to be searched. * @param key the value to be searched for. * @param c a comparator. * @return index of the search key, if it is contained in the big array; otherwise, * (-(insertion point) - 1). The insertion point is defined as * the the point at which the value would be inserted into the big array: the index of the * first element greater than the key, or the length of the big array, if all elements in * the big array are less than the specified key. Note that this guarantees that the return * value will be >= 0 if and only if the key is found. * @see java.util.Arrays */ public static long binarySearch(final K[][] a, long from, long to, final K key, final Comparator c) { K midVal; to--; while (from <= to) { final long mid = (from + to) >>> 1; midVal = BigArrays.get(a, mid); final int cmp = c.compare(midVal, key); if (cmp < 0) from = mid + 1; else if (cmp > 0) to = mid - 1; else return mid; // key found } return -(from + 1); } /** * Searches a big array for the specified value using the binary search algorithm and a specified * comparator. The range must be sorted following the comparator prior to making this call. If it is * not sorted, the results are undefined. If the range contains multiple elements with the specified * value, there is no guarantee which one will be found. * * @param a the big array to be searched. * @param key the value to be searched for. * @param c a comparator. * @return index of the search key, if it is contained in the big array; otherwise, * (-(insertion point) - 1). The insertion point is defined as * the the point at which the value would be inserted into the big array: the index of the * first element greater than the key, or the length of the big array, if all elements in * the big array are less than the specified key. Note that this guarantees that the return * value will be >= 0 if and only if the key is found. * @see java.util.Arrays */ public static long binarySearch(final K[][] a, final K key, final Comparator c) { return binarySearch(a, 0, BigArrays.length(a), key, c); } /** * Shuffles the specified big array fragment using the specified pseudorandom number generator. * * @param a the big array to be shuffled. * @param from the index of the first element (inclusive) to be shuffled. * @param to the index of the last element (exclusive) to be shuffled. * @param random a pseudorandom number generator. * @return {@code a}. */ public static K[][] shuffle(final K[][] a, final long from, final long to, final Random random) { return BigArrays.shuffle(a, from, to, random); } /** * Shuffles the specified big array using the specified pseudorandom number generator. * * @param a the big array to be shuffled. * @param random a pseudorandom number generator. * @return {@code a}. */ public static K[][] shuffle(final K[][] a, final Random random) { return BigArrays.shuffle(a, random); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy