All Downloads are FREE. Search and download functionalities are using the official Maven repository.

it.unimi.dsi.fastutil.floats.Float2FloatLinkedOpenHashMap Maven / Gradle / Ivy

Go to download

fastutil extends the Java Collections Framework by providing type-specific maps, sets, lists and priority queues with a small memory footprint and fast access and insertion; provides also big (64-bit) arrays, sets and lists, and fast, practical I/O classes for binary and text files.

There is a newer version: 8.5.15
Show newest version
/*
	* Copyright (C) 2002-2021 Sebastiano Vigna
	*
	* Licensed under the Apache License, Version 2.0 (the "License");
	* you may not use this file except in compliance with the License.
	* You may obtain a copy of the License at
	*
	*     http://www.apache.org/licenses/LICENSE-2.0
	*
	* Unless required by applicable law or agreed to in writing, software
	* distributed under the License is distributed on an "AS IS" BASIS,
	* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
	* See the License for the specific language governing permissions and
	* limitations under the License.
	*/
package it.unimi.dsi.fastutil.floats;
import it.unimi.dsi.fastutil.Hash;
import it.unimi.dsi.fastutil.HashCommon;
import static it.unimi.dsi.fastutil.HashCommon.arraySize;
import static it.unimi.dsi.fastutil.HashCommon.maxFill;
import java.util.Map;
import java.util.Arrays;
import java.util.NoSuchElementException;
import java.util.function.Consumer;
import java.util.Comparator;
import it.unimi.dsi.fastutil.objects.AbstractObjectSortedSet;
import it.unimi.dsi.fastutil.objects.ObjectListIterator;
import it.unimi.dsi.fastutil.objects.ObjectBidirectionalIterator;
import it.unimi.dsi.fastutil.objects.ObjectSpliterator;
import it.unimi.dsi.fastutil.objects.ObjectSpliterators;
import it.unimi.dsi.fastutil.objects.ObjectSortedSet;
/**  A type-specific linked hash map with with a fast, small-footprint implementation.
	*
	* 

Instances of this class use a hash table to represent a map. The table is * filled up to a specified load factor, and then doubled in size to * accommodate new entries. If the table is emptied below one fourth * of the load factor, it is halved in size; however, the table is never reduced to a * size smaller than that at creation time: this approach makes it * possible to create maps with a large capacity in which insertions and * deletions do not cause immediately rehashing. Moreover, halving is * not performed when deleting entries from an iterator, as it would interfere * with the iteration process. * *

Note that {@link #clear()} does not modify the hash table size. * Rather, a family of {@linkplain #trim() trimming * methods} lets you control the size of the table; this is particularly useful * if you reuse instances of this class. * *

Entries returned by the type-specific {@link #entrySet()} method implement * the suitable type-specific {@link it.unimi.dsi.fastutil.Pair Pair} interface; * only values are mutable. * *

Iterators generated by this map will enumerate pairs in the same order in which they * have been added to the map (addition of pairs whose key is already present * in the map does not change the iteration order). Note that this order has nothing in common with the natural * order of the keys. The order is kept by means of a doubly linked list, represented * via an array of longs parallel to the table. * *

This class implements the interface of a sorted map, so to allow easy * access of the iteration order: for instance, you can get the first key * in iteration order with {@code firstKey()} without having to create an * iterator; however, this class partially violates the {@link java.util.SortedMap} * contract because all submap methods throw an exception and {@link * #comparator()} returns always {@code null}. * *

Additional methods, such as {@code getAndMoveToFirst()}, make it easy * to use instances of this class as a cache (e.g., with LRU policy). * *

The iterators provided by the views of this class using are type-specific * {@linkplain java.util.ListIterator list iterators}, and can be started at any * element which is a key of the map, or * a {@link NoSuchElementException} exception will be thrown. * If, however, the provided element is not the first or last key in the * map, the first access to the list index will require linear time, as in the worst case * the entire key set must be scanned in iteration order to retrieve the positional * index of the starting key. If you use just the methods of a type-specific {@link it.unimi.dsi.fastutil.BidirectionalIterator}, * however, all operations will be performed in constant time. * * @see Hash * @see HashCommon */ public class Float2FloatLinkedOpenHashMap extends AbstractFloat2FloatSortedMap implements java.io.Serializable, Cloneable, Hash { private static final long serialVersionUID = 0L; private static final boolean ASSERTS = false; /** The array of keys. */ protected transient float[] key; /** The array of values. */ protected transient float[] value; /** The mask for wrapping a position counter. */ protected transient int mask; /** Whether this map contains the key zero. */ protected transient boolean containsNullKey; /** The index of the first entry in iteration order. It is valid iff {@link #size} is nonzero; otherwise, it contains -1. */ protected transient int first = -1; /** The index of the last entry in iteration order. It is valid iff {@link #size} is nonzero; otherwise, it contains -1. */ protected transient int last = -1; /** For each entry, the next and the previous entry in iteration order, * stored as {@code ((prev & 0xFFFFFFFFL) << 32) | (next & 0xFFFFFFFFL)}. * The first entry contains predecessor -1, and the last entry * contains successor -1. */ protected transient long[] link; /** The current table size. */ protected transient int n; /** Threshold after which we rehash. It must be the table size times {@link #f}. */ protected transient int maxFill; /** We never resize below this threshold, which is the construction-time {#n}. */ protected final transient int minN; /** Number of entries in the set (including the key zero, if present). */ protected int size; /** The acceptable load factor. */ protected final float f; /** Cached set of entries. */ protected transient FastSortedEntrySet entries; /** Cached set of keys. */ protected transient FloatSortedSet keys; /** Cached collection of values. */ protected transient FloatCollection values; /** Creates a new hash map. * *

The actual table size will be the least power of two greater than {@code expected}/{@code f}. * * @param expected the expected number of elements in the hash map. * @param f the load factor. */ public Float2FloatLinkedOpenHashMap(final int expected, final float f) { if (f <= 0 || f >= 1) throw new IllegalArgumentException("Load factor must be greater than 0 and smaller than 1"); if (expected < 0) throw new IllegalArgumentException("The expected number of elements must be nonnegative"); this.f = f; minN = n = arraySize(expected, f); mask = n - 1; maxFill = maxFill(n, f); key = new float[n + 1]; value = new float[n + 1]; link = new long[n + 1]; } /** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. * * @param expected the expected number of elements in the hash map. */ public Float2FloatLinkedOpenHashMap(final int expected) { this(expected, DEFAULT_LOAD_FACTOR); } /** Creates a new hash map with initial expected {@link Hash#DEFAULT_INITIAL_SIZE} entries * and {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. */ public Float2FloatLinkedOpenHashMap() { this(DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR); } /** Creates a new hash map copying a given one. * * @param m a {@link Map} to be copied into the new hash map. * @param f the load factor. */ public Float2FloatLinkedOpenHashMap(final Map m, final float f) { this(m.size(), f); putAll(m); } /** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor copying a given one. * * @param m a {@link Map} to be copied into the new hash map. */ public Float2FloatLinkedOpenHashMap(final Map m) { this(m, DEFAULT_LOAD_FACTOR); } /** Creates a new hash map copying a given type-specific one. * * @param m a type-specific map to be copied into the new hash map. * @param f the load factor. */ public Float2FloatLinkedOpenHashMap(final Float2FloatMap m, final float f) { this(m.size(), f); putAll(m); } /** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor copying a given type-specific one. * * @param m a type-specific map to be copied into the new hash map. */ public Float2FloatLinkedOpenHashMap(final Float2FloatMap m) { this(m, DEFAULT_LOAD_FACTOR); } /** Creates a new hash map using the elements of two parallel arrays. * * @param k the array of keys of the new hash map. * @param v the array of corresponding values in the new hash map. * @param f the load factor. * @throws IllegalArgumentException if {@code k} and {@code v} have different lengths. */ public Float2FloatLinkedOpenHashMap(final float[] k, final float[] v, final float f) { this(k.length, f); if (k.length != v.length) throw new IllegalArgumentException("The key array and the value array have different lengths (" + k.length + " and " + v.length + ")"); for(int i = 0; i < k.length; i++) this.put(k[i], v[i]); } /** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using the elements of two parallel arrays. * * @param k the array of keys of the new hash map. * @param v the array of corresponding values in the new hash map. * @throws IllegalArgumentException if {@code k} and {@code v} have different lengths. */ public Float2FloatLinkedOpenHashMap(final float[] k, final float[] v) { this(k, v, DEFAULT_LOAD_FACTOR); } private int realSize() { return containsNullKey ? size - 1 : size; } private void ensureCapacity(final int capacity) { final int needed = arraySize(capacity, f); if (needed > n) rehash(needed); } private void tryCapacity(final long capacity) { final int needed = (int)Math.min(1 << 30, Math.max(2, HashCommon.nextPowerOfTwo((long)Math.ceil(capacity / f)))); if (needed > n) rehash(needed); } private float removeEntry(final int pos) { final float oldValue = value[pos]; size--; fixPointers(pos); shiftKeys(pos); if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2); return oldValue; } private float removeNullEntry() { containsNullKey = false; final float oldValue = value[n]; size--; fixPointers(n); if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2); return oldValue; } @Override public void putAll(Map m) { if (f <= .5) ensureCapacity(m.size()); // The resulting map will be sized for m.size() elements else tryCapacity(size() + m.size()); // The resulting map will be tentatively sized for size() + m.size() elements super.putAll(m); } private int find(final float k) { if (( Float.floatToIntBits(k) == 0 )) return containsNullKey ? n : -(n + 1); float curr; final float[] key = this.key; int pos; // The starting point. if (( Float.floatToIntBits(curr = key[pos = it.unimi.dsi.fastutil.HashCommon.mix( it.unimi.dsi.fastutil.HashCommon.float2int(k) ) & mask]) == 0 )) return -(pos + 1); if (( Float.floatToIntBits(k) == Float.floatToIntBits(curr) )) return pos; // There's always an unused entry. while(true) { if (( Float.floatToIntBits(curr = key[pos = (pos + 1) & mask]) == 0 )) return -(pos + 1); if (( Float.floatToIntBits(k) == Float.floatToIntBits(curr) )) return pos; } } private void insert(final int pos, final float k, final float v) { if (pos == n) containsNullKey = true; key[pos] = k; value[pos] = v; if (size == 0) { first = last = pos; // Special case of SET_UPPER_LOWER(link[pos], -1, -1); link[pos] = -1L; } else { link[last] ^= ( ( link[last] ^ ( pos & 0xFFFFFFFFL ) ) & 0xFFFFFFFFL ); link[pos] = ( ( last & 0xFFFFFFFFL ) << 32 ) | ( -1 & 0xFFFFFFFFL ); last = pos; } if (size++ >= maxFill) rehash(arraySize(size + 1, f)); if (ASSERTS) checkTable(); } @Override public float put(final float k, final float v) { final int pos = find(k); if (pos < 0) { insert(-pos - 1, k, v); return defRetValue; } final float oldValue = value[pos]; value[pos] = v; return oldValue; } private float addToValue(final int pos, final float incr) { final float oldValue = value[pos]; value[pos] = oldValue + incr; return oldValue; } /** Adds an increment to value currently associated with a key. * *

Note that this method respects the {@linkplain #defaultReturnValue() default return value} semantics: when * called with a key that does not currently appears in the map, the key * will be associated with the default return value plus * the given increment. * * @param k the key. * @param incr the increment. * @return the old value, or the {@linkplain #defaultReturnValue() default return value} if no value was present for the given key. */ public float addTo(final float k, final float incr) { int pos; if (( Float.floatToIntBits(k) == 0 )) { if (containsNullKey) return addToValue(n, incr); pos = n; containsNullKey = true; } else { float curr; final float[] key = this.key; // The starting point. if (! ( Float.floatToIntBits(curr = key[pos = it.unimi.dsi.fastutil.HashCommon.mix( it.unimi.dsi.fastutil.HashCommon.float2int(k) ) & mask]) == 0 )) { if (( Float.floatToIntBits(curr) == Float.floatToIntBits(k) )) return addToValue(pos, incr); while(! ( Float.floatToIntBits(curr = key[pos = (pos + 1) & mask]) == 0 )) if (( Float.floatToIntBits(curr) == Float.floatToIntBits(k) )) return addToValue(pos, incr); } } key[pos] = k; value[pos] = defRetValue + incr; if (size == 0) { first = last = pos; // Special case of SET_UPPER_LOWER(link[pos], -1, -1); link[pos] = -1L; } else { link[last] ^= ( ( link[last] ^ ( pos & 0xFFFFFFFFL ) ) & 0xFFFFFFFFL ); link[pos] = ( ( last & 0xFFFFFFFFL ) << 32 ) | ( -1 & 0xFFFFFFFFL ); last = pos; } if (size++ >= maxFill) rehash(arraySize(size + 1, f)); if (ASSERTS) checkTable(); return defRetValue; } /** Shifts left entries with the specified hash code, starting at the specified position, * and empties the resulting free entry. * * @param pos a starting position. */ protected final void shiftKeys(int pos) { // Shift entries with the same hash. int last, slot; float curr; final float[] key = this.key; for(;;) { pos = ((last = pos) + 1) & mask; for(;;) { if (( Float.floatToIntBits(curr = key[pos]) == 0 )) { key[last] = (0); return; } slot = it.unimi.dsi.fastutil.HashCommon.mix( it.unimi.dsi.fastutil.HashCommon.float2int(curr) ) & mask; if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break; pos = (pos + 1) & mask; } key[last] = curr; value[last] = value[pos]; fixPointers(pos, last); } } @Override public float remove(final float k) { if (( Float.floatToIntBits(k) == 0 )) { if (containsNullKey) return removeNullEntry(); return defRetValue; } float curr; final float[] key = this.key; int pos; // The starting point. if (( Float.floatToIntBits(curr = key[pos = it.unimi.dsi.fastutil.HashCommon.mix( it.unimi.dsi.fastutil.HashCommon.float2int(k) ) & mask]) == 0 )) return defRetValue; if (( Float.floatToIntBits(k) == Float.floatToIntBits(curr) )) return removeEntry(pos); while(true) { if (( Float.floatToIntBits(curr = key[pos = (pos + 1) & mask]) == 0 )) return defRetValue; if (( Float.floatToIntBits(k) == Float.floatToIntBits(curr) )) return removeEntry(pos); } } private float setValue(final int pos, final float v) { final float oldValue = value[pos]; value[pos] = v; return oldValue; } /** Removes the mapping associated with the first key in iteration order. * @return the value previously associated with the first key in iteration order. * @throws NoSuchElementException is this map is empty. */ public float removeFirstFloat() { if (size == 0) throw new NoSuchElementException(); final int pos = first; // Abbreviated version of fixPointers(pos) first = (int) link[pos]; if (0 <= first) { // Special case of SET_PREV(link[first], -1) link[first] |= (-1 & 0xFFFFFFFFL) << 32; } size--; final float v = value[pos]; if (pos == n) { containsNullKey = false; } else shiftKeys(pos); if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2); return v; } /** Removes the mapping associated with the last key in iteration order. * @return the value previously associated with the last key in iteration order. * @throws NoSuchElementException is this map is empty. */ public float removeLastFloat() { if (size == 0) throw new NoSuchElementException(); final int pos = last; // Abbreviated version of fixPointers(pos) last = (int) ( link[pos] >>> 32 ); if (0 <= last) { // Special case of SET_NEXT(link[last], -1) link[last] |= -1 & 0xFFFFFFFFL; } size--; final float v = value[pos]; if (pos == n) { containsNullKey = false; } else shiftKeys(pos); if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2); return v; } private void moveIndexToFirst(final int i) { if (size == 1 || first == i) return; if (last == i) { last = (int) ( link[i] >>> 32 ); // Special case of SET_NEXT(link[last], -1); link[last] |= -1 & 0xFFFFFFFFL; } else { final long linki = link[i]; final int prev = (int) ( linki >>> 32 ); final int next = (int) linki; link[prev] ^= ( ( link[prev] ^ ( linki & 0xFFFFFFFFL ) ) & 0xFFFFFFFFL ); link[next] ^= ( ( link[next] ^ ( linki & 0xFFFFFFFF00000000L ) ) & 0xFFFFFFFF00000000L ); } link[first] ^= ( ( link[first] ^ ( ( i & 0xFFFFFFFFL ) << 32 ) ) & 0xFFFFFFFF00000000L ); link[i] = ( ( -1 & 0xFFFFFFFFL ) << 32 ) | ( first & 0xFFFFFFFFL ); first = i; } private void moveIndexToLast(final int i) { if (size == 1 || last == i) return; if (first == i) { first = (int) link[i]; // Special case of SET_PREV(link[first], -1); link[first] |= (-1 & 0xFFFFFFFFL) << 32; } else { final long linki = link[i]; final int prev = (int) ( linki >>> 32 ); final int next = (int) linki; link[prev] ^= ( ( link[prev] ^ ( linki & 0xFFFFFFFFL ) ) & 0xFFFFFFFFL ); link[next] ^= ( ( link[next] ^ ( linki & 0xFFFFFFFF00000000L ) ) & 0xFFFFFFFF00000000L ); } link[last] ^= ( ( link[last] ^ ( i & 0xFFFFFFFFL ) ) & 0xFFFFFFFFL ); link[i] = ( ( last & 0xFFFFFFFFL ) << 32 ) | ( -1 & 0xFFFFFFFFL ); last = i; } /** Returns the value to which the given key is mapped; if the key is present, it is moved to the first position of the iteration order. * * @param k the key. * @return the corresponding value, or the {@linkplain #defaultReturnValue() default return value} if no value was present for the given key. */ public float getAndMoveToFirst(final float k) { if (( Float.floatToIntBits(k) == 0 )) { if (containsNullKey) { moveIndexToFirst(n); return value[n]; } return defRetValue; } float curr; final float[] key = this.key; int pos; // The starting point. if (( Float.floatToIntBits(curr = key[pos = it.unimi.dsi.fastutil.HashCommon.mix( it.unimi.dsi.fastutil.HashCommon.float2int(k) ) & mask]) == 0 )) return defRetValue; if (( Float.floatToIntBits(k) == Float.floatToIntBits(curr) )) { moveIndexToFirst(pos); return value[pos]; } // There's always an unused entry. while(true) { if (( Float.floatToIntBits(curr = key[pos = (pos + 1) & mask]) == 0 )) return defRetValue; if (( Float.floatToIntBits(k) == Float.floatToIntBits(curr) )) { moveIndexToFirst(pos); return value[pos]; } } } /** Returns the value to which the given key is mapped; if the key is present, it is moved to the last position of the iteration order. * * @param k the key. * @return the corresponding value, or the {@linkplain #defaultReturnValue() default return value} if no value was present for the given key. */ public float getAndMoveToLast(final float k) { if (( Float.floatToIntBits(k) == 0 )) { if (containsNullKey) { moveIndexToLast(n); return value[n]; } return defRetValue; } float curr; final float[] key = this.key; int pos; // The starting point. if (( Float.floatToIntBits(curr = key[pos = it.unimi.dsi.fastutil.HashCommon.mix( it.unimi.dsi.fastutil.HashCommon.float2int(k) ) & mask]) == 0 )) return defRetValue; if (( Float.floatToIntBits(k) == Float.floatToIntBits(curr) )) { moveIndexToLast(pos); return value[pos]; } // There's always an unused entry. while(true) { if (( Float.floatToIntBits(curr = key[pos = (pos + 1) & mask]) == 0 )) return defRetValue; if (( Float.floatToIntBits(k) == Float.floatToIntBits(curr) )) { moveIndexToLast(pos); return value[pos]; } } } /** Adds a pair to the map; if the key is already present, it is moved to the first position of the iteration order. * * @param k the key. * @param v the value. * @return the old value, or the {@linkplain #defaultReturnValue() default return value} if no value was present for the given key. */ public float putAndMoveToFirst(final float k, final float v) { int pos; if (( Float.floatToIntBits(k) == 0 )) { if (containsNullKey) { moveIndexToFirst(n); return setValue(n, v); } containsNullKey = true; pos = n; } else { float curr; final float[] key = this.key; // The starting point. if (! ( Float.floatToIntBits(curr = key[pos = it.unimi.dsi.fastutil.HashCommon.mix( it.unimi.dsi.fastutil.HashCommon.float2int(k) ) & mask]) == 0 )) { if (( Float.floatToIntBits(curr) == Float.floatToIntBits(k) )) { moveIndexToFirst(pos); return setValue(pos, v); } while(! ( Float.floatToIntBits(curr = key[pos = (pos + 1) & mask]) == 0 )) if (( Float.floatToIntBits(curr) == Float.floatToIntBits(k) )) { moveIndexToFirst(pos); return setValue(pos, v); } } } key[pos] = k; value[pos] = v; if (size == 0) { first = last = pos; // Special case of SET_UPPER_LOWER(link[pos], -1, -1); link[pos] = -1L; } else { link[first] ^= ( ( link[first] ^ ( ( pos & 0xFFFFFFFFL ) << 32 ) ) & 0xFFFFFFFF00000000L ); link[pos] = ( ( -1 & 0xFFFFFFFFL ) << 32 ) | ( first & 0xFFFFFFFFL ); first = pos; } if (size++ >= maxFill) rehash(arraySize(size, f)); if (ASSERTS) checkTable(); return defRetValue; } /** Adds a pair to the map; if the key is already present, it is moved to the last position of the iteration order. * * @param k the key. * @param v the value. * @return the old value, or the {@linkplain #defaultReturnValue() default return value} if no value was present for the given key. */ public float putAndMoveToLast(final float k, final float v) { int pos; if (( Float.floatToIntBits(k) == 0 )) { if (containsNullKey) { moveIndexToLast(n); return setValue(n, v); } containsNullKey = true; pos = n; } else { float curr; final float[] key = this.key; // The starting point. if (! ( Float.floatToIntBits(curr = key[pos = it.unimi.dsi.fastutil.HashCommon.mix( it.unimi.dsi.fastutil.HashCommon.float2int(k) ) & mask]) == 0 )) { if (( Float.floatToIntBits(curr) == Float.floatToIntBits(k) )) { moveIndexToLast(pos); return setValue(pos, v); } while(! ( Float.floatToIntBits(curr = key[pos = (pos + 1) & mask]) == 0 )) if (( Float.floatToIntBits(curr) == Float.floatToIntBits(k) )) { moveIndexToLast(pos); return setValue(pos, v); } } } key[pos] = k; value[pos] = v; if (size == 0) { first = last = pos; // Special case of SET_UPPER_LOWER(link[pos], -1, -1); link[pos] = -1L; } else { link[last] ^= ( ( link[last] ^ ( pos & 0xFFFFFFFFL ) ) & 0xFFFFFFFFL ); link[pos] = ( ( last & 0xFFFFFFFFL ) << 32 ) | ( -1 & 0xFFFFFFFFL ); last = pos; } if (size++ >= maxFill) rehash(arraySize(size, f)); if (ASSERTS) checkTable(); return defRetValue; } @Override public float get(final float k) { if (( Float.floatToIntBits(k) == 0 )) return containsNullKey ? value[n] : defRetValue; float curr; final float[] key = this.key; int pos; // The starting point. if (( Float.floatToIntBits(curr = key[pos = it.unimi.dsi.fastutil.HashCommon.mix( it.unimi.dsi.fastutil.HashCommon.float2int(k) ) & mask]) == 0 )) return defRetValue; if (( Float.floatToIntBits(k) == Float.floatToIntBits(curr) )) return value[pos]; // There's always an unused entry. while(true) { if (( Float.floatToIntBits(curr = key[pos = (pos + 1) & mask]) == 0 )) return defRetValue; if (( Float.floatToIntBits(k) == Float.floatToIntBits(curr) )) return value[pos]; } } @Override public boolean containsKey(final float k) { if (( Float.floatToIntBits(k) == 0 )) return containsNullKey; float curr; final float[] key = this.key; int pos; // The starting point. if (( Float.floatToIntBits(curr = key[pos = it.unimi.dsi.fastutil.HashCommon.mix( it.unimi.dsi.fastutil.HashCommon.float2int(k) ) & mask]) == 0 )) return false; if (( Float.floatToIntBits(k) == Float.floatToIntBits(curr) )) return true; // There's always an unused entry. while(true) { if (( Float.floatToIntBits(curr = key[pos = (pos + 1) & mask]) == 0 )) return false; if (( Float.floatToIntBits(k) == Float.floatToIntBits(curr) )) return true; } } @Override public boolean containsValue(final float v) { final float value[] = this.value; final float key[] = this.key; if (containsNullKey && ( Float.floatToIntBits(value[n]) == Float.floatToIntBits(v) )) return true; for(int i = n; i-- != 0;) if (! ( Float.floatToIntBits(key[i]) == 0 ) && ( Float.floatToIntBits(value[i]) == Float.floatToIntBits(v) )) return true; return false; } /** {@inheritDoc} */ @Override public float getOrDefault(final float k, final float defaultValue) { if (( Float.floatToIntBits(k) == 0 )) return containsNullKey ? value[n] : defaultValue; float curr; final float[] key = this.key; int pos; // The starting point. if (( Float.floatToIntBits(curr = key[pos = it.unimi.dsi.fastutil.HashCommon.mix( it.unimi.dsi.fastutil.HashCommon.float2int(k) ) & mask]) == 0 )) return defaultValue; if (( Float.floatToIntBits(k) == Float.floatToIntBits(curr) )) return value[pos]; // There's always an unused entry. while(true) { if (( Float.floatToIntBits(curr = key[pos = (pos + 1) & mask]) == 0 )) return defaultValue; if (( Float.floatToIntBits(k) == Float.floatToIntBits(curr) )) return value[pos]; } } /** {@inheritDoc} */ @Override public float putIfAbsent(final float k, final float v) { final int pos = find(k); if (pos >= 0) return value[pos]; insert(-pos - 1, k, v); return defRetValue; } /** {@inheritDoc} */ @Override public boolean remove(final float k, final float v) { if (( Float.floatToIntBits(k) == 0 )) { if (containsNullKey && ( Float.floatToIntBits(v) == Float.floatToIntBits(value[n]) )) { removeNullEntry(); return true; } return false; } float curr; final float[] key = this.key; int pos; // The starting point. if (( Float.floatToIntBits(curr = key[pos = it.unimi.dsi.fastutil.HashCommon.mix( it.unimi.dsi.fastutil.HashCommon.float2int(k) ) & mask]) == 0 )) return false; if (( Float.floatToIntBits(k) == Float.floatToIntBits(curr) ) && ( Float.floatToIntBits(v) == Float.floatToIntBits(value[pos]) )) { removeEntry(pos); return true; } while(true) { if (( Float.floatToIntBits(curr = key[pos = (pos + 1) & mask]) == 0 )) return false; if (( Float.floatToIntBits(k) == Float.floatToIntBits(curr) ) && ( Float.floatToIntBits(v) == Float.floatToIntBits(value[pos]) )) { removeEntry(pos); return true; } } } /** {@inheritDoc} */ @Override public boolean replace(final float k, final float oldValue, final float v) { final int pos = find(k); if (pos < 0 || ! ( Float.floatToIntBits(oldValue) == Float.floatToIntBits(value[pos]) )) return false; value[pos] = v; return true; } /** {@inheritDoc} */ @Override public float replace(final float k, final float v) { final int pos = find(k); if (pos < 0) return defRetValue; final float oldValue = value[pos]; value[pos] = v; return oldValue; } /** {@inheritDoc} */ @Override public float computeIfAbsent(final float k, final java.util.function.DoubleUnaryOperator mappingFunction) { java.util.Objects.requireNonNull(mappingFunction); final int pos = find(k); if (pos >= 0) return value[pos]; final float newValue = it.unimi.dsi.fastutil.SafeMath.safeDoubleToFloat(mappingFunction.applyAsDouble(k)); insert(-pos -1, k, newValue); return newValue; } /** {@inheritDoc} */ @Override public float computeIfAbsentNullable(final float k, final java.util.function.DoubleFunction mappingFunction) { java.util.Objects.requireNonNull(mappingFunction); final int pos = find(k); if (pos >= 0) return value[pos]; final Float newValue = mappingFunction.apply(k); if (newValue == null) return defRetValue; final float v = (newValue).floatValue(); insert(-pos - 1, k, v); return v; } /** {@inheritDoc} */ @Override public float computeIfAbsent(final float key, final Float2FloatFunction mappingFunction) { java.util.Objects.requireNonNull(mappingFunction); final int pos = find(key); if (pos >= 0) return value[pos]; if (!mappingFunction.containsKey(key)) return defRetValue; float newValue = mappingFunction.get(key); insert(-pos -1, key, newValue); return newValue; } /** {@inheritDoc} */ @Override public float computeIfPresent(final float k, final java.util.function.BiFunction remappingFunction) { java.util.Objects.requireNonNull(remappingFunction); final int pos = find(k); if (pos < 0) return defRetValue; final Float newValue = remappingFunction.apply(Float.valueOf(k), Float.valueOf(value[pos])); if (newValue == null) { if (( Float.floatToIntBits(k) == 0 )) removeNullEntry(); else removeEntry(pos); return defRetValue; } return value[pos] = (newValue).floatValue(); } /** {@inheritDoc} */ @Override public float compute(final float k, final java.util.function.BiFunction remappingFunction) { java.util.Objects.requireNonNull(remappingFunction); final int pos = find(k); final Float newValue = remappingFunction.apply(Float.valueOf(k), pos >= 0 ? Float.valueOf(value[pos]) : null); if (newValue == null) { if (pos >= 0) { if (( Float.floatToIntBits(k) == 0 )) removeNullEntry(); else removeEntry(pos); } return defRetValue; } float newVal = (newValue).floatValue(); if (pos < 0) { insert(-pos - 1, k, newVal); return newVal; } return value[pos] = newVal; } /** {@inheritDoc} */ @Override public float merge(final float k, final float v, final java.util.function.BiFunction remappingFunction) { java.util.Objects.requireNonNull(remappingFunction); final int pos = find(k); if (pos < 0) { insert(-pos - 1, k, v); return v; } final Float newValue = remappingFunction.apply(Float.valueOf(value[pos]), Float.valueOf(v)); if (newValue == null) { if (( Float.floatToIntBits(k) == 0 )) removeNullEntry(); else removeEntry(pos); return defRetValue; } return value[pos] = (newValue).floatValue(); } /* Removes all elements from this map. * *

To increase object reuse, this method does not change the table size. * If you want to reduce the table size, you must use {@link #trim()}. * */ @Override public void clear() { if (size == 0) return; size = 0; containsNullKey = false; Arrays.fill(key, (0)); first = last = -1; } @Override public int size() { return size; } @Override public boolean isEmpty() { return size == 0; } /** The entry class for a hash map does not record key and value, but * rather the position in the hash table of the corresponding entry. This * is necessary so that calls to {@link java.util.Map.Entry#setValue(Object)} are reflected in * the map */ final class MapEntry implements Float2FloatMap.Entry , Map.Entry, FloatFloatPair { // The table index this entry refers to, or -1 if this entry has been deleted. int index; MapEntry(final int index) { this.index = index; } MapEntry() {} @Override public float getFloatKey() { return key[index]; } @Override public float leftFloat() { return key[index]; } @Override public float getFloatValue() { return value[index]; } @Override public float rightFloat() { return value[index]; } @Override public float setValue(final float v) { final float oldValue = value[index]; value[index] = v; return oldValue; } @Override public FloatFloatPair right(final float v) { value[index] = v; return this; } /** {@inheritDoc} * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override public Float getKey() { return Float.valueOf(key[index]); } /** {@inheritDoc} * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override public Float getValue() { return Float.valueOf(value[index]); } /** {@inheritDoc} * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override public Float setValue(final Float v) { return Float.valueOf(setValue((v).floatValue())); } @SuppressWarnings("unchecked") @Override public boolean equals(final Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry)o; return ( Float.floatToIntBits(key[index]) == Float.floatToIntBits((e.getKey()).floatValue()) ) && ( Float.floatToIntBits(value[index]) == Float.floatToIntBits((e.getValue()).floatValue()) ); } @Override public int hashCode() { return it.unimi.dsi.fastutil.HashCommon.float2int(key[index]) ^ it.unimi.dsi.fastutil.HashCommon.float2int(value[index]); } @Override public String toString() { return key[index] + "=>" + value[index]; } } /** Modifies the {@link #link} vector so that the given entry is removed. * This method will complete in constant time. * * @param i the index of an entry. */ protected void fixPointers(final int i) { if (size == 0) { first = last = -1; return; } if (first == i) { first = (int) link[i]; if (0 <= first) { // Special case of SET_PREV(link[first], -1) link[first] |= (-1 & 0xFFFFFFFFL) << 32; } return; } if (last == i) { last = (int) ( link[i] >>> 32 ); if (0 <= last) { // Special case of SET_NEXT(link[last], -1) link[last] |= -1 & 0xFFFFFFFFL; } return; } final long linki = link[i]; final int prev = (int) ( linki >>> 32 ); final int next = (int) linki; link[prev] ^= ( ( link[prev] ^ ( linki & 0xFFFFFFFFL ) ) & 0xFFFFFFFFL ); link[next] ^= ( ( link[next] ^ ( linki & 0xFFFFFFFF00000000L ) ) & 0xFFFFFFFF00000000L ); } /** Modifies the {@link #link} vector for a shift from s to d. *

This method will complete in constant time. * * @param s the source position. * @param d the destination position. */ protected void fixPointers(int s, int d) { if (size == 1) { first = last = d; // Special case of SET_UPPER_LOWER(link[d], -1, -1) link[d] = -1L; return; } if (first == s) { first = d; link[(int) link[s]] ^= ( ( link[(int) link[s]] ^ ( ( d & 0xFFFFFFFFL ) << 32 ) ) & 0xFFFFFFFF00000000L ); link[d] = link[s]; return; } if (last == s) { last = d; link[(int) ( link[s] >>> 32 )] ^= ( ( link[(int) ( link[s] >>> 32 )] ^ ( d & 0xFFFFFFFFL ) ) & 0xFFFFFFFFL ); link[d] = link[s]; return; } final long links = link[s]; final int prev = (int) ( links >>> 32 ); final int next = (int) links; link[prev] ^= ( ( link[prev] ^ ( d & 0xFFFFFFFFL ) ) & 0xFFFFFFFFL ); link[next] ^= ( ( link[next] ^ ( ( d & 0xFFFFFFFFL ) << 32 ) ) & 0xFFFFFFFF00000000L ); link[d] = links; } /** Returns the first key of this map in iteration order. * * @return the first key in iteration order. */ @Override public float firstFloatKey() { if (size == 0) throw new NoSuchElementException(); return key[first]; } /** Returns the last key of this map in iteration order. * * @return the last key in iteration order. */ @Override public float lastFloatKey() { if (size == 0) throw new NoSuchElementException(); return key[last]; } /** {@inheritDoc} * @implSpec This implementation just throws an {@link UnsupportedOperationException}.*/ @Override public Float2FloatSortedMap tailMap(float from) { throw new UnsupportedOperationException(); } /** {@inheritDoc} * @implSpec This implementation just throws an {@link UnsupportedOperationException}.*/ @Override public Float2FloatSortedMap headMap(float to) { throw new UnsupportedOperationException(); } /** {@inheritDoc} * @implSpec This implementation just throws an {@link UnsupportedOperationException}.*/ @Override public Float2FloatSortedMap subMap(float from, float to) { throw new UnsupportedOperationException(); } /** {@inheritDoc} * @implSpec This implementation just returns {@code null}.*/ @Override public FloatComparator comparator() { return null; } /** A list iterator over a linked map. * *

This class provides a list iterator over a linked hash map. The constructor runs in constant time. */ private abstract class MapIterator { /** The entry that will be returned by the next call to {@link java.util.ListIterator#previous()} (or {@code null} if no previous entry exists). */ int prev = -1; /** The entry that will be returned by the next call to {@link java.util.ListIterator#next()} (or {@code null} if no next entry exists). */ int next = -1; /** The last entry that was returned (or -1 if we did not iterate or used {@link java.util.Iterator#remove()}). */ int curr = -1; /** The current index (in the sense of a {@link java.util.ListIterator}). Note that this value is not meaningful when this iterator has been created using the nonempty constructor.*/ int index = -1; @SuppressWarnings("unused") abstract void acceptOnIndex(final ConsumerType action, final int index); protected MapIterator() { next = first; index = 0; } private MapIterator(final float from) { if (( Float.floatToIntBits(from) == 0 )) { if (Float2FloatLinkedOpenHashMap.this.containsNullKey) { next = (int) link[n]; prev = n; return; } else throw new NoSuchElementException("The key " + from + " does not belong to this map."); } if (( Float.floatToIntBits(key[last]) == Float.floatToIntBits(from) )) { prev = last; index = size; return; } // The starting point. int pos = it.unimi.dsi.fastutil.HashCommon.mix( it.unimi.dsi.fastutil.HashCommon.float2int(from) ) & mask; // There's always an unused entry. while(! ( Float.floatToIntBits(key[pos]) == 0 )) { if (( Float.floatToIntBits(key[pos]) == Float.floatToIntBits(from) )) { // Note: no valid index known. next = (int) link[pos]; prev = pos; return; } pos = (pos + 1) & mask; } throw new NoSuchElementException("The key " + from + " does not belong to this map."); } public boolean hasNext() { return next != -1; } public boolean hasPrevious() { return prev != -1; } private final void ensureIndexKnown() { if (index >= 0) return; if (prev == -1) { index = 0; return; } if (next == -1) { index = size; return; } int pos = first; index = 1; while(pos != prev) { pos = (int) link[pos]; index++; } } public int nextIndex() { ensureIndexKnown(); return index; } public int previousIndex() { ensureIndexKnown(); return index - 1; } public int nextEntry() { if (! hasNext()) throw new NoSuchElementException(); curr = next; next = (int) link[curr]; prev = curr; if (index >= 0) index++; return curr; } public int previousEntry() { if (! hasPrevious()) throw new NoSuchElementException(); curr = prev; prev = (int) ( link[curr] >>> 32 ); next = curr; if (index >= 0) index--; return curr; } public void forEachRemaining(final ConsumerType action) { while (hasNext()) { curr = next; next = (int) link[curr]; prev = curr; if (index >= 0) index++; acceptOnIndex(action, curr); } } public void remove() { ensureIndexKnown(); if (curr == -1) throw new IllegalStateException(); if (curr == prev) { /* If the last operation was a next(), we are removing an entry that preceeds the current index, and thus we must decrement it. */ index--; prev = (int) ( link[curr] >>> 32 ); } else next = (int) link[curr]; size--; /* Now we manually fix the pointers. Because of our knowledge of next and prev, this is going to be faster than calling fixPointers(). */ if (prev == -1) first = next; else link[prev] ^= ( ( link[prev] ^ ( next & 0xFFFFFFFFL ) ) & 0xFFFFFFFFL ); if (next == -1) last = prev; else link[next] ^= ( ( link[next] ^ ( ( prev & 0xFFFFFFFFL ) << 32 ) ) & 0xFFFFFFFF00000000L ); int last, slot, pos = curr; curr = -1; if (pos == n) { Float2FloatLinkedOpenHashMap.this.containsNullKey = false; } else { float curr; final float[] key = Float2FloatLinkedOpenHashMap.this.key; // We have to horribly duplicate the shiftKeys() code because we need to update next/prev. for(;;) { pos = ((last = pos) + 1) & mask; for(;;) { if (( Float.floatToIntBits(curr = key[pos]) == 0 )) { key[last] = (0); return; } slot = it.unimi.dsi.fastutil.HashCommon.mix( it.unimi.dsi.fastutil.HashCommon.float2int(curr) ) & mask; if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break; pos = (pos + 1) & mask; } key[last] = curr; value[last] = value[pos]; if (next == pos) next = last; if (prev == pos) prev = last; fixPointers(pos, last); } } } public int skip(final int n) { int i = n; while(i-- != 0 && hasNext()) nextEntry(); return n - i - 1; } public int back(final int n) { int i = n; while(i-- != 0 && hasPrevious()) previousEntry(); return n - i - 1; } public void set(@SuppressWarnings("unused") Float2FloatMap.Entry ok) { throw new UnsupportedOperationException(); } public void add(@SuppressWarnings("unused") Float2FloatMap.Entry ok) { throw new UnsupportedOperationException(); } } private final class EntryIterator extends MapIterator> implements ObjectListIterator { private MapEntry entry; public EntryIterator() {} public EntryIterator(float from) { super(from); } // forEachRemaining inherited from MapIterator superclass. @Override final void acceptOnIndex(final Consumer action, final int index) { action.accept(new MapEntry(index)); } @Override public MapEntry next() { return entry = new MapEntry(nextEntry()); } @Override public MapEntry previous() { return entry = new MapEntry(previousEntry()); } @Override public void remove() { super.remove(); entry.index = -1; // You cannot use a deleted entry. } } private final class FastEntryIterator extends MapIterator> implements ObjectListIterator { final MapEntry entry = new MapEntry(); public FastEntryIterator() {} public FastEntryIterator(float from) { super(from); } // forEachRemaining inherited from MapIterator superclass. @Override final void acceptOnIndex(final Consumer action, final int index) { entry.index = index; action.accept(entry); } @Override public MapEntry next() { entry.index = nextEntry(); return entry; } @Override public MapEntry previous() { entry.index = previousEntry(); return entry; } } private final class MapEntrySet extends AbstractObjectSortedSet implements FastSortedEntrySet { private static final int SPLITERATOR_CHARACTERISTICS = ObjectSpliterators.SET_SPLITERATOR_CHARACTERISTICS | java.util.Spliterator.ORDERED; @Override public ObjectBidirectionalIterator iterator() { return new EntryIterator(); } /** {@inheritDoc} * *

There isn't a way to split efficiently while still preserving order for a linked data structure, * so this implementation is just backed by the iterator. Thus, this spliterator is not well optimized * for parallel streams. * *

Note, contrary to the specification of {@link java.util.SortedSet}, this spliterator does not, * report {@link java.util.Spliterators.SORTED}. This is because iteration order is based on insertion * order, not natural ordering. */ @Override public ObjectSpliterator spliterator() { return ObjectSpliterators.asSpliterator( iterator(), it.unimi.dsi.fastutil.Size64.sizeOf(Float2FloatLinkedOpenHashMap.this), SPLITERATOR_CHARACTERISTICS); } @Override public Comparator comparator() { return null; } @Override public ObjectSortedSet subSet(Float2FloatMap.Entry fromElement, Float2FloatMap.Entry toElement) { throw new UnsupportedOperationException(); } @Override public ObjectSortedSet headSet(Float2FloatMap.Entry toElement) { throw new UnsupportedOperationException(); } @Override public ObjectSortedSet tailSet(Float2FloatMap.Entry fromElement) { throw new UnsupportedOperationException(); } @Override public Float2FloatMap.Entry first() { if (size == 0) throw new NoSuchElementException(); return new MapEntry(Float2FloatLinkedOpenHashMap.this.first); } @Override public Float2FloatMap.Entry last() { if (size == 0) throw new NoSuchElementException(); return new MapEntry(Float2FloatLinkedOpenHashMap.this.last); } @Override public boolean contains(final Object o) { if (!(o instanceof Map.Entry)) return false; final Map.Entry e = (Map.Entry)o; if (e.getKey() == null || ! (e.getKey() instanceof Float)) return false; if (e.getValue() == null || ! (e.getValue() instanceof Float)) return false; final float k = ((Float)( e.getKey())).floatValue(); final float v = ((Float)( e.getValue())).floatValue(); if (( Float.floatToIntBits(k) == 0 )) return Float2FloatLinkedOpenHashMap.this.containsNullKey && ( Float.floatToIntBits(value[n]) == Float.floatToIntBits(v) ); float curr; final float[] key = Float2FloatLinkedOpenHashMap.this.key; int pos; // The starting point. if (( Float.floatToIntBits(curr = key[pos = it.unimi.dsi.fastutil.HashCommon.mix( it.unimi.dsi.fastutil.HashCommon.float2int(k) ) & mask]) == 0 )) return false; if (( Float.floatToIntBits(k) == Float.floatToIntBits(curr) )) return ( Float.floatToIntBits(value[pos]) == Float.floatToIntBits(v) ); // There's always an unused entry. while(true) { if (( Float.floatToIntBits(curr = key[pos = (pos + 1) & mask]) == 0 )) return false; if (( Float.floatToIntBits(k) == Float.floatToIntBits(curr) )) return ( Float.floatToIntBits(value[pos]) == Float.floatToIntBits(v) ); } } @Override public boolean remove(final Object o) { if (!(o instanceof Map.Entry)) return false; final Map.Entry e = (Map.Entry)o; if (e.getKey() == null || ! (e.getKey() instanceof Float)) return false; if (e.getValue() == null || ! (e.getValue() instanceof Float)) return false; final float k = ((Float)( e.getKey())).floatValue(); final float v = ((Float)( e.getValue())).floatValue(); if (( Float.floatToIntBits(k) == 0 )) { if (containsNullKey && ( Float.floatToIntBits(value[n]) == Float.floatToIntBits(v) )) { removeNullEntry(); return true; } return false; } float curr; final float[] key = Float2FloatLinkedOpenHashMap.this.key; int pos; // The starting point. if (( Float.floatToIntBits(curr = key[pos = it.unimi.dsi.fastutil.HashCommon.mix( it.unimi.dsi.fastutil.HashCommon.float2int(k) ) & mask]) == 0 )) return false; if (( Float.floatToIntBits(curr) == Float.floatToIntBits(k) )) { if (( Float.floatToIntBits(value[pos]) == Float.floatToIntBits(v) )) { removeEntry(pos); return true; } return false; } while(true) { if (( Float.floatToIntBits(curr = key[pos = (pos + 1) & mask]) == 0 )) return false; if (( Float.floatToIntBits(curr) == Float.floatToIntBits(k) )) { if (( Float.floatToIntBits(value[pos]) == Float.floatToIntBits(v) )) { removeEntry(pos); return true; } } } } @Override public int size() { return size; } @Override public void clear() { Float2FloatLinkedOpenHashMap.this.clear(); } /** Returns a type-specific list iterator on the elements in this set, starting from a given element of the set. * Please see the class documentation for implementation details. * * @param from an element to start from. * @return a type-specific list iterator starting at the given element. * @throws IllegalArgumentException if {@code from} does not belong to the set. */ @Override public ObjectListIterator iterator(final Float2FloatMap.Entry from) { return new EntryIterator(from.getFloatKey()); } /** Returns a type-specific fast list iterator on the elements in this set, starting from the first element. * Please see the class documentation for implementation details. * * @return a type-specific list iterator starting at the first element. */ @Override public ObjectListIterator fastIterator() { return new FastEntryIterator(); } /** Returns a type-specific fast list iterator on the elements in this set, starting from a given element of the set. * Please see the class documentation for implementation details. * * @param from an element to start from. * @return a type-specific list iterator starting at the given element. * @throws IllegalArgumentException if {@code from} does not belong to the set. */ @Override public ObjectListIterator fastIterator(final Float2FloatMap.Entry from) { return new FastEntryIterator(from.getFloatKey()); } /** {@inheritDoc} */ @Override public void forEach(final Consumer consumer) { for(int i = size, curr, next = first; i-- != 0;) { curr = next; next = (int) link[curr]; consumer.accept(new AbstractFloat2FloatMap.BasicEntry (key[curr], value[curr])); } } /** {@inheritDoc} */ @Override public void fastForEach(final Consumer consumer) { final AbstractFloat2FloatMap.BasicEntry entry = new AbstractFloat2FloatMap.BasicEntry (); for(int i = size, curr, next = first; i-- != 0;) { curr = next; next = (int) link[curr]; entry.key = key[curr]; entry.value = value[curr]; consumer.accept(entry); } } } @Override public FastSortedEntrySet float2FloatEntrySet() { if (entries == null) entries = new MapEntrySet(); return entries; } /** An iterator on keys. * *

We simply override the {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods * (and possibly their type-specific counterparts) so that they return keys * instead of entries. */ private final class KeyIterator extends MapIterator implements FloatListIterator { public KeyIterator(final float k) { super(k); } @Override public float previousFloat() { return key[previousEntry()]; } public KeyIterator() { super(); } // forEachRemaining inherited from MapIterator superclass. // Despite the superclass declared with generics, the way Java inherits and generates bridge methods avoids the boxing/unboxing @Override final void acceptOnIndex(final FloatConsumer action, final int index) { action.accept(key[index]); } @Override public float nextFloat() { return key[nextEntry()]; } } private final class KeySet extends AbstractFloatSortedSet { private static final int SPLITERATOR_CHARACTERISTICS = FloatSpliterators.SET_SPLITERATOR_CHARACTERISTICS | java.util.Spliterator.ORDERED; @Override public FloatListIterator iterator(final float from) { return new KeyIterator(from); } @Override public FloatListIterator iterator() { return new KeyIterator(); } /** {@inheritDoc} * @see EntrySet#spliterator() */ @Override public FloatSpliterator spliterator() { return FloatSpliterators.asSpliterator( iterator(), it.unimi.dsi.fastutil.Size64.sizeOf(Float2FloatLinkedOpenHashMap.this), SPLITERATOR_CHARACTERISTICS); } /** {@inheritDoc} */ @Override public void forEach(final FloatConsumer consumer) { for(int i = size, curr, next = first; i-- != 0;) { curr = next; next = (int) link[curr]; consumer.accept(key[curr]); } } @Override public int size() { return size; } @Override public boolean contains(float k) { return containsKey(k); } @Override public boolean remove(float k) { final int oldSize = size; Float2FloatLinkedOpenHashMap.this.remove(k); return size != oldSize; } @Override public void clear() { Float2FloatLinkedOpenHashMap.this.clear();} @Override public float firstFloat() { if (size == 0) throw new NoSuchElementException(); return key[first]; } @Override public float lastFloat() { if (size == 0) throw new NoSuchElementException(); return key[last]; } @Override public FloatComparator comparator() { return null; } @Override public FloatSortedSet tailSet(float from) { throw new UnsupportedOperationException(); } @Override public FloatSortedSet headSet(float to) { throw new UnsupportedOperationException(); } @Override public FloatSortedSet subSet(float from, float to) { throw new UnsupportedOperationException(); } } @Override public FloatSortedSet keySet() { if (keys == null) keys = new KeySet(); return keys; } /** An iterator on values. * *

We simply override the {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods * (and possibly their type-specific counterparts) so that they return values * instead of entries. */ private final class ValueIterator extends MapIterator implements FloatListIterator { @Override public float previousFloat() { return value[previousEntry()]; } public ValueIterator() { super(); } // forEachRemaining inherited from MapIterator superclass. // Despite the superclass declared with generics, the way Java inherits and generates bridge methods avoids the boxing/unboxing @Override final void acceptOnIndex(final FloatConsumer action, final int index) { action.accept(value[index]); } @Override public float nextFloat() { return value[nextEntry()]; } } @Override public FloatCollection values() { if (values == null) values = new AbstractFloatCollection () { private static final int SPLITERATOR_CHARACTERISTICS = FloatSpliterators.COLLECTION_SPLITERATOR_CHARACTERISTICS | java.util.Spliterator.ORDERED; @Override public FloatIterator iterator() { return new ValueIterator(); } /** {@inheritDoc} * @see EntrySet#spliterator() */ @Override public FloatSpliterator spliterator() { return FloatSpliterators.asSpliterator( iterator(), it.unimi.dsi.fastutil.Size64.sizeOf(Float2FloatLinkedOpenHashMap.this), SPLITERATOR_CHARACTERISTICS); } /** {@inheritDoc} */ @Override public void forEach(final FloatConsumer consumer) { for(int i = size, curr, next = first; i-- != 0;) { curr = next; next = (int) link[curr]; consumer.accept(value[curr]); } } @Override public int size() { return size; } @Override public boolean contains(float v) { return containsValue(v); } @Override public void clear() { Float2FloatLinkedOpenHashMap.this.clear(); } }; return values; } /** Rehashes the map, making the table as small as possible. * *

This method rehashes the table to the smallest size satisfying the * load factor. It can be used when the set will not be changed anymore, so * to optimize access speed and size. * *

If the table size is already the minimum possible, this method * does nothing. * * @return true if there was enough memory to trim the map. * @see #trim(int) */ public boolean trim() { return trim(size); } /** Rehashes this map if the table is too large. * *

Let N be the smallest table size that can hold * max(n,{@link #size()}) entries, still satisfying the load factor. If the current * table size is smaller than or equal to N, this method does * nothing. Otherwise, it rehashes this map in a table of size * N. * *

This method is useful when reusing maps. {@linkplain #clear() Clearing a * map} leaves the table size untouched. If you are reusing a map * many times, you can call this method with a typical * size to avoid keeping around a very large table just * because of a few large transient maps. * * @param n the threshold for the trimming. * @return true if there was enough memory to trim the map. * @see #trim() */ public boolean trim(final int n) { final int l = HashCommon.nextPowerOfTwo((int)Math.ceil(n / f)); if (l >= this.n || size > maxFill(l, f)) return true; try { rehash(l); } catch(OutOfMemoryError cantDoIt) { return false; } return true; } /** Rehashes the map. * *

This method implements the basic rehashing strategy, and may be * overridden by subclasses implementing different rehashing strategies (e.g., * disk-based rehashing). However, you should not override this method * unless you understand the internal workings of this class. * * @param newN the new size */ protected void rehash(final int newN) { final float key[] = this.key; final float value[] = this.value; final int mask = newN - 1; // Note that this is used by the hashing macro final float newKey[] = new float[newN + 1]; final float newValue[] = new float[newN + 1]; int i = first, prev = -1, newPrev = -1, t, pos; final long link[] = this.link; final long newLink[] = new long[newN + 1]; first = -1; for(int j = size; j-- != 0;) { if (( Float.floatToIntBits(key[i]) == 0 )) pos = newN; else { pos = it.unimi.dsi.fastutil.HashCommon.mix( it.unimi.dsi.fastutil.HashCommon.float2int(key[i]) ) & mask; while (! ( Float.floatToIntBits(newKey[pos]) == 0 )) pos = (pos + 1) & mask; } newKey[pos] = key[i]; newValue[pos] = value[i]; if (prev != -1) { newLink[newPrev] ^= ( ( newLink[newPrev] ^ ( pos & 0xFFFFFFFFL ) ) & 0xFFFFFFFFL ); newLink[pos] ^= ( ( newLink[pos] ^ ( ( newPrev & 0xFFFFFFFFL ) << 32 ) ) & 0xFFFFFFFF00000000L ); newPrev = pos; } else { newPrev = first = pos; // Special case of SET(newLink[pos], -1, -1); newLink[pos] = -1L; } t = i; i = (int) link[i]; prev = t; } this.link = newLink; this.last = newPrev; if (newPrev != -1) // Special case of SET_NEXT(newLink[newPrev], -1); newLink[newPrev] |= -1 & 0xFFFFFFFFL; n = newN; this.mask = mask; maxFill = maxFill(n, f); this.key = newKey; this.value = newValue; } /** Returns a deep copy of this map. * *

This method performs a deep copy of this hash map; the data stored in the * map, however, is not cloned. Note that this makes a difference only for object keys. * * @return a deep copy of this map. */ @Override public Float2FloatLinkedOpenHashMap clone() { Float2FloatLinkedOpenHashMap c; try { c = (Float2FloatLinkedOpenHashMap )super.clone(); } catch(CloneNotSupportedException cantHappen) { throw new InternalError(); } c.keys = null; c.values = null; c.entries = null; c.containsNullKey = containsNullKey; c.key = key.clone(); c.value = value.clone(); c.link = link.clone(); return c; } /** Returns a hash code for this map. * * This method overrides the generic method provided by the superclass. * Since {@code equals()} is not overriden, it is important * that the value returned by this method is the same value as * the one returned by the overriden method. * * @return a hash code for this map. */ @Override public int hashCode() { int h = 0; for(int j = realSize(), i = 0, t = 0; j-- != 0;) { while(( Float.floatToIntBits(key[i]) == 0 )) i++; t = it.unimi.dsi.fastutil.HashCommon.float2int(key[i]); t ^= it.unimi.dsi.fastutil.HashCommon.float2int(value[i]); h += t; i++; } // Zero / null keys have hash zero. if (containsNullKey) h += it.unimi.dsi.fastutil.HashCommon.float2int(value[n]); return h; } private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { final float key[] = this.key; final float value[] = this.value; final EntryIterator i = new EntryIterator(); s.defaultWriteObject(); for(int j = size, e; j-- != 0;) { e = i.nextEntry(); s.writeFloat(key[e]); s.writeFloat(value[e]); } } private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); n = arraySize(size, f); maxFill = maxFill(n, f); mask = n - 1; final float key[] = this.key = new float[n + 1]; final float value[] = this.value = new float[n + 1]; final long link[] = this.link = new long[n + 1]; int prev = -1; first = last = -1; float k; float v; for(int i = size, pos; i-- != 0;) { k = s.readFloat(); v = s.readFloat(); if (( Float.floatToIntBits(k) == 0 )) { pos = n; containsNullKey = true; } else { pos = it.unimi.dsi.fastutil.HashCommon.mix( it.unimi.dsi.fastutil.HashCommon.float2int(k) ) & mask; while (! ( Float.floatToIntBits(key[pos]) == 0 )) pos = (pos + 1) & mask; } key[pos] = k; value[pos] = v; if (first != -1) { link[prev] ^= ( ( link[prev] ^ ( pos & 0xFFFFFFFFL ) ) & 0xFFFFFFFFL ); link[pos] ^= ( ( link[pos] ^ ( ( prev & 0xFFFFFFFFL ) << 32 ) ) & 0xFFFFFFFF00000000L ); prev = pos; } else { prev = first = pos; // Special case of SET_PREV(newLink[pos], -1); link[pos] |= (-1L & 0xFFFFFFFFL) << 32; } } last = prev; if (prev != -1) // Special case of SET_NEXT(link[prev], -1); link[prev] |= -1 & 0xFFFFFFFFL; if (ASSERTS) checkTable(); } private void checkTable() {} }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy