All Downloads are FREE. Search and download functionalities are using the official Maven repository.

it.unimi.dsi.fastutil.floats.FloatBigArrayBigList Maven / Gradle / Ivy

Go to download

fastutil extends the Java Collections Framework by providing type-specific maps, sets, lists, and queues with a small memory footprint and fast access and insertion; it provides also big (64-bit) arrays, sets and lists, sorting algorithms, fast, practical I/O classes for binary and text files, and facilities for memory mapping large files. Note that if you have both this jar and fastutil-core.jar in your dependencies, fastutil-core.jar should be excluded.

There is a newer version: 8.5.15
Show newest version
/*
	* Copyright (C) 2002-2022 Sebastiano Vigna
	*
	* Licensed under the Apache License, Version 2.0 (the "License");
	* you may not use this file except in compliance with the License.
	* You may obtain a copy of the License at
	*
	*     http://www.apache.org/licenses/LICENSE-2.0
	*
	* Unless required by applicable law or agreed to in writing, software
	* distributed under the License is distributed on an "AS IS" BASIS,
	* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
	* See the License for the specific language governing permissions and
	* limitations under the License.
	*/
package it.unimi.dsi.fastutil.floats;

import java.util.Collection;
import java.util.Iterator;
import java.util.RandomAccess;
import java.util.NoSuchElementException;
import it.unimi.dsi.fastutil.BigArrays;
import static it.unimi.dsi.fastutil.BigArrays.length;
import it.unimi.dsi.fastutil.BigList;
import it.unimi.dsi.fastutil.Size64;

/**
 * A type-specific big list based on a big array; provides some additional methods that use
 * polymorphism to avoid (un)boxing.
 *
 * 

* This class implements a lightweight, fast, open, optimized, reuse-oriented version of * big-array-based big lists. Instances of this class represent a big list with a big array that is * enlarged as needed when new entries are created (by increasing its current length by 50%), but is * never made smaller (even on a {@link #clear()}). A family of {@linkplain #trim() * trimming methods} lets you control the size of the backing big array; this is particularly useful * if you reuse instances of this class. Range checks are equivalent to those of {@link java.util}'s * classes, but they are delayed as much as possible. The backing big array is exposed by the * {@link #elements()} method. * *

* This class implements the bulk methods {@code removeElements()}, {@code addElements()} and * {@code getElements()} using high-performance system calls (e.g., * {@link System#arraycopy(Object,int,Object,int,int) System.arraycopy()}) instead of expensive * loops. * * @see java.util.ArrayList */ public class FloatBigArrayBigList extends AbstractFloatBigList implements RandomAccess, Cloneable, java.io.Serializable { private static final long serialVersionUID = -7046029254386353130L; /** The initial default capacity of a big-array big list. */ public static final int DEFAULT_INITIAL_CAPACITY = 10; /** The backing big array. */ protected transient float a[][]; /** The current actual size of the big list (never greater than the backing-array length). */ protected long size; /** * Creates a new big-array big list using a given array. * *

* This constructor is only meant to be used by the wrapping methods. * * @param a the big array that will be used to back this big-array big list. */ protected FloatBigArrayBigList(final float a[][], @SuppressWarnings("unused") boolean dummy) { this.a = a; } /** * Creates a new big-array big list with given capacity. * * @param capacity the initial capacity of the array list (may be 0). */ public FloatBigArrayBigList(final long capacity) { if (capacity < 0) throw new IllegalArgumentException("Initial capacity (" + capacity + ") is negative"); if (capacity == 0) a = FloatBigArrays.EMPTY_BIG_ARRAY; else a = FloatBigArrays.newBigArray(capacity); } /** Creates a new big-array big list with {@link #DEFAULT_INITIAL_CAPACITY} capacity. */ public FloatBigArrayBigList() { a = FloatBigArrays.DEFAULT_EMPTY_BIG_ARRAY; // We delay allocation } /** * Creates a new big-array big list and fills it with a given type-specific collection. * * @param c a type-specific collection that will be used to fill the array list. */ public FloatBigArrayBigList(final FloatCollection c) { this(Size64.sizeOf(c)); if (c instanceof FloatBigList) { ((FloatBigList)c).getElements(0, a, 0, size = Size64.sizeOf(c)); } else { for (FloatIterator i = c.iterator(); i.hasNext();) add(i.nextFloat()); } } /** * Creates a new big-array big list and fills it with a given type-specific list. * * @param l a type-specific list that will be used to fill the array list. */ public FloatBigArrayBigList(final FloatBigList l) { this(l.size64()); l.getElements(0, a, 0, size = l.size64()); } /** * Creates a new big-array big list and fills it with the elements of a given big array. * * @param a a big array whose elements will be used to fill the array list. */ public FloatBigArrayBigList(final float a[][]) { this(a, 0, length(a)); } /** * Creates a new big-array big list and fills it with the elements of a given big array. * * @param a a big array whose elements will be used to fill the array list. * @param offset the first element to use. * @param length the number of elements to use. */ public FloatBigArrayBigList(final float a[][], final long offset, final long length) { this(length); BigArrays.copy(a, offset, this.a, 0, length); size = length; } /** * Creates a new big-array big list and fills it with the elements returned by an iterator.. * * @param i an iterator whose returned elements will fill the array list. */ public FloatBigArrayBigList(final Iterator i) { this(); while (i.hasNext()) this.add((i.next()).floatValue()); } /** * Creates a new big-array big list and fills it with the elements returned by a type-specific * iterator.. * * @param i a type-specific iterator whose returned elements will fill the array list. */ public FloatBigArrayBigList(final FloatIterator i) { this(); while (i.hasNext()) this.add(i.nextFloat()); } /** * Returns the backing big array of this big list. * * @return the backing big array. */ public float[][] elements() { return a; } /** * Wraps a given big array into a big-array list of given size. * * @param a a big array to wrap. * @param length the length of the resulting big-array list. * @return a new big-array list of the given size, wrapping the given big array. */ public static FloatBigArrayBigList wrap(final float a[][], final long length) { if (length > length(a)) throw new IllegalArgumentException("The specified length (" + length + ") is greater than the array size (" + length(a) + ")"); final FloatBigArrayBigList l = new FloatBigArrayBigList(a, false); l.size = length; return l; } /** * Wraps a given big array into a big-array big list. * * @param a a big array to wrap. * @return a new big-array big list wrapping the given array. */ public static FloatBigArrayBigList wrap(final float a[][]) { return wrap(a, length(a)); } /** * Creates a new empty big array list. * * @return a new empty big-array big list. */ public static FloatBigArrayBigList of() { return new FloatBigArrayBigList(); } /** * Creates a big array list using a list of elements. * * @param init a list of elements that will be used to initialize the big list. It is possible (but * not assured) that the returned big-array big list will be backed by the given array in * one of its segments. * @return a new big-array big list containing the given elements. * @see BigArrays#wrap */ public static FloatBigArrayBigList of(final float... init) { return wrap(BigArrays.wrap(init)); } /** * Ensures that this big-array big list can contain the given number of entries without resizing. * * @param capacity the new minimum capacity for this big-array big list. */ public void ensureCapacity(final long capacity) { if (capacity <= length(a) || a == FloatBigArrays.DEFAULT_EMPTY_BIG_ARRAY) return; a = BigArrays.forceCapacity(a, capacity, size); assert size <= length(a); } /** * Grows this big-array big list, ensuring that it can contain the given number of entries without * resizing, and in case increasing current capacity at least by a factor of 50%. * * @param capacity the new minimum capacity for this big-array big list. */ private void grow(long capacity) { final long oldLength = length(a); if (capacity <= oldLength) return; if (a != FloatBigArrays.DEFAULT_EMPTY_BIG_ARRAY) capacity = Math.max(oldLength + (oldLength >> 1), capacity); else if (capacity < DEFAULT_INITIAL_CAPACITY) capacity = DEFAULT_INITIAL_CAPACITY; a = BigArrays.forceCapacity(a, capacity, size); assert size <= length(a); } @Override public void add(final long index, final float k) { ensureIndex(index); grow(size + 1); if (index != size) BigArrays.copy(a, index, a, index + 1, size - index); BigArrays.set(a, index, k); size++; assert size <= length(a); } @Override public boolean add(final float k) { grow(size + 1); BigArrays.set(a, size++, k); assert size <= length(a); return true; } @Override public float getFloat(final long index) { if (index >= size) throw new IndexOutOfBoundsException("Index (" + index + ") is greater than or equal to list size (" + size + ")"); return BigArrays.get(a, index); } @Override public long indexOf(final float k) { for (long i = 0; i < size; i++) if ((Float.floatToIntBits(k) == Float.floatToIntBits(BigArrays.get(a, i)))) return i; return -1; } @Override public long lastIndexOf(final float k) { for (long i = size; i-- != 0;) if ((Float.floatToIntBits(k) == Float.floatToIntBits(BigArrays.get(a, i)))) return i; return -1; } @Override public float removeFloat(final long index) { if (index >= size) throw new IndexOutOfBoundsException("Index (" + index + ") is greater than or equal to list size (" + size + ")"); final float old = BigArrays.get(a, index); size--; if (index != size) BigArrays.copy(a, index + 1, a, index, size - index); assert size <= length(a); return old; } @Override public boolean rem(final float k) { final long index = indexOf(k); if (index == -1) return false; removeFloat(index); assert size <= length(a); return true; } @Override public float set(final long index, final float k) { if (index >= size) throw new IndexOutOfBoundsException("Index (" + index + ") is greater than or equal to list size (" + size + ")"); float old = BigArrays.get(a, index); BigArrays.set(a, index, k); return old; } @Override public boolean removeAll(final FloatCollection c) { float[] s = null, d = null; int ss = -1, sd = BigArrays.SEGMENT_SIZE, ds = -1, dd = BigArrays.SEGMENT_SIZE; for (long i = 0; i < size; i++) { if (sd == BigArrays.SEGMENT_SIZE) { sd = 0; s = a[++ss]; } if (!c.contains(s[sd])) { if (dd == BigArrays.SEGMENT_SIZE) { d = a[++ds]; dd = 0; } d[dd++] = s[sd]; } sd++; } final long j = BigArrays.index(ds, dd); final boolean modified = size != j; size = j; return modified; } @Override public boolean removeAll(final Collection c) { float[] s = null, d = null; int ss = -1, sd = BigArrays.SEGMENT_SIZE, ds = -1, dd = BigArrays.SEGMENT_SIZE; for (long i = 0; i < size; i++) { if (sd == BigArrays.SEGMENT_SIZE) { sd = 0; s = a[++ss]; } if (!c.contains(Float.valueOf(s[sd]))) { if (dd == BigArrays.SEGMENT_SIZE) { d = a[++ds]; dd = 0; } d[dd++] = s[sd]; } sd++; } final long j = BigArrays.index(ds, dd); final boolean modified = size != j; size = j; return modified; } @Override public boolean addAll(long index, final FloatCollection c) { if (c instanceof FloatList) { return addAll(index, (FloatList)c); } if (c instanceof FloatBigList) { return addAll(index, (FloatBigList)c); } ensureIndex(index); int n = c.size(); if (n == 0) return false; grow(size + n); BigArrays.copy(a, index, a, index + n, size - index); final FloatIterator i = c.iterator(); size += n; assert size <= length(a); while (n-- != 0) BigArrays.set(a, index++, i.nextFloat()); return true; } @Override public boolean addAll(final long index, final FloatBigList list) { ensureIndex(index); final long n = list.size64(); if (n == 0) return false; grow(size + n); BigArrays.copy(a, index, a, index + n, size - index); list.getElements(0, a, index, n); size += n; assert size <= length(a); return true; } @Override public boolean addAll(final long index, final FloatList list) { ensureIndex(index); int n = list.size(); if (n == 0) return false; grow(size + n); BigArrays.copy(a, index, a, index + n, size - index); size += n; assert size <= length(a); int segment = BigArrays.segment(index); int displ = BigArrays.displacement(index); int pos = 0; while (n > 0) { final int l = Math.min(a[segment].length - displ, n); list.getElements(pos, a[segment], displ, l); if ((displ += l) == BigArrays.SEGMENT_SIZE) { displ = 0; segment++; } pos += l; n -= l; } return true; } @Override public void clear() { size = 0; assert size <= length(a); } @Override public long size64() { return size; } @Override public void size(final long size) { if (size > length(a)) a = BigArrays.forceCapacity(a, size, this.size); if (size > this.size) BigArrays.fill(a, this.size, size, (0)); this.size = size; } @Override public boolean isEmpty() { return size == 0; } /** * Trims this big-array big list so that the capacity is equal to the size. * * @see java.util.ArrayList#trimToSize() */ public void trim() { trim(0); } /** * Trims the backing big array if it is too large. * * If the current big array length is smaller than or equal to {@code n}, this method does nothing. * Otherwise, it trims the big-array length to the maximum between {@code n} and {@link #size64()}. * *

* This method is useful when reusing big lists. {@linkplain #clear() Clearing a big list} leaves * the big-array length untouched. If you are reusing a big list many times, you can call this * method with a typical size to avoid keeping around a very large big array just because of a few * large transient big lists. * * @param n the threshold for the trimming. */ public void trim(final long n) { final long arrayLength = length(a); if (n >= arrayLength || size == arrayLength) return; a = BigArrays.trim(a, Math.max(n, size)); assert size <= length(a); } private class SubList extends AbstractFloatBigList.FloatRandomAccessSubList { private static final long serialVersionUID = -3185226345314976296L; protected SubList(long from, long to) { super(FloatBigArrayBigList.this, from, to); } // Needed because we can't access the parent class' instance variables directly in a different // instance of SubList. private float[][] getParentArray() { return a; } // Most of the inherited methods should be fine, but we can override a few of them for performance. @Override public float getFloat(long i) { ensureRestrictedIndex(i); return BigArrays.get(a, i + from); } private final class SubListIterator extends FloatBigListIterators.AbstractIndexBasedBigListIterator { // We are using pos == 0 to be 0 relative to SubList.from (meaning you need to do a[from + i] when // accessing array). SubListIterator(long index) { super(0, index); } @Override protected final float get(long i) { return BigArrays.get(a, from + i); } @Override protected final void add(long i, float k) { SubList.this.add(i, k); } @Override protected final void set(long i, float k) { SubList.this.set(i, k); } @Override protected final void remove(long i) { SubList.this.removeFloat(i); } @Override protected final long getMaxPos() { return to - from; } @Override public float nextFloat() { if (!hasNext()) throw new NoSuchElementException(); return BigArrays.get(a, from + (lastReturned = pos++)); } @Override public float previousFloat() { if (!hasPrevious()) throw new NoSuchElementException(); return BigArrays.get(a, from + (lastReturned = --pos)); } @Override public void forEachRemaining(final FloatConsumer action) { final long max = to - from; while (pos < max) { action.accept(BigArrays.get(a, from + (lastReturned = pos++))); } } } @Override public FloatBigListIterator listIterator(long index) { return new SubListIterator(index); } private final class SubListSpliterator extends FloatBigSpliterators.LateBindingSizeIndexBasedSpliterator { // We are using pos == 0 to be 0 relative to real array 0 SubListSpliterator() { super(from); } private SubListSpliterator(long pos, long maxPos) { super(pos, maxPos); } @Override protected final long getMaxPosFromBackingStore() { return to; } @Override protected final float get(long i) { return BigArrays.get(a, i); } @Override protected final SubListSpliterator makeForSplit(long pos, long maxPos) { return new SubListSpliterator(pos, maxPos); } @Override protected final long computeSplitPoint() { long defaultSplit = super.computeSplitPoint(); // Align to outer array starting point if possible. // We add/subtract one to the bounds to ensure the new pos will always shrink the range return BigArrays.nearestSegmentStart(defaultSplit, pos + 1, getMaxPos() - 1); } @Override public boolean tryAdvance(final FloatConsumer action) { if (pos >= getMaxPos()) return false; action.accept(BigArrays.get(a, pos++)); return true; } @Override public void forEachRemaining(final FloatConsumer action) { final long max = getMaxPos(); while (pos < max) { action.accept(BigArrays.get(a, pos++)); } } } @Override public FloatSpliterator spliterator() { return new SubListSpliterator(); } boolean contentsEquals(float[][] otherA, long otherAFrom, long otherATo) { if (a == otherA && from == otherAFrom && to == otherATo) return true; if (otherATo - otherAFrom != size64()) { return false; } long pos = to, otherPos = otherATo; // We have already assured that the two ranges are the same size, so we only need to check one // bound. // If BigArrays.equals ever gets an overload that accepts bounds, use that instead // (but make sure to break out the reference equality case). while (--pos >= from) if (BigArrays.get(a, pos) != BigArrays.get(otherA, --otherPos)) return false; return true; } @Override public boolean equals(Object o) { if (o == this) return true; if (o == null) return false; if (!(o instanceof BigList)) return false; if (o instanceof FloatBigArrayBigList) { FloatBigArrayBigList other = (FloatBigArrayBigList)o; return contentsEquals(other.a, 0, other.size64()); } if (o instanceof FloatBigArrayBigList.SubList) { FloatBigArrayBigList.SubList other = (FloatBigArrayBigList.SubList)o; return contentsEquals(other.getParentArray(), other.from, other.to); } return super.equals(o); } int contentsCompareTo(float[][] otherA, long otherAFrom, long otherATo) { if (a == otherA && from == otherAFrom && to == otherATo) return 0; // TODO When minimum version of Java becomes Java 9, use Arrays.compare, which vectorizes. float e1, e2; int r; long i, j; for (i = from, j = otherAFrom; i < to && i < otherATo; i++, j++) { e1 = BigArrays.get(a, i); e2 = BigArrays.get(otherA, j); if ((r = (Float.compare((e1), (e2)))) != 0) return r; } return i < otherATo ? -1 : (i < to ? 1 : 0); } @Override public int compareTo(final BigList l) { if (l instanceof FloatBigArrayBigList) { FloatBigArrayBigList other = (FloatBigArrayBigList)l; return contentsCompareTo(other.a, 0, other.size64()); } if (l instanceof FloatBigArrayBigList.SubList) { FloatBigArrayBigList.SubList other = (FloatBigArrayBigList.SubList)l; return contentsCompareTo(other.getParentArray(), other.from, other.to); } return super.compareTo(l); } // We don't override subList as we want AbstractList's "sub-sublist" nesting handling, // which would be tricky to do here. // TODO Do override it so array access isn't sent through N indirections. // This will likely mean making this class static. } @Override public FloatBigList subList(long from, long to) { if (from == 0 && to == size64()) return this; ensureIndex(from); ensureIndex(to); if (from > to) throw new IndexOutOfBoundsException("Start index (" + from + ") is greater than end index (" + to + ")"); return new SubList(from, to); } /** * Copies element of this type-specific list into the given big array using optimized system calls. * * @param from the start index (inclusive). * @param a the destination big array. * @param offset the offset into the destination array where to store the first element copied. * @param length the number of elements to be copied. */ @Override public void getElements(final long from, final float[][] a, final long offset, final long length) { BigArrays.copy(this.a, from, a, offset, length); } /** * Copies element of this type-specific list into the given array using optimized system calls. * * @param from the start index (inclusive). * @param a the destination array. * @param offset the offset into the destination array where to store the first element copied. * @param length the number of elements to be copied. */ @Override public void getElements(final long from, final float[] a, final int offset, final int length) { BigArrays.copyFromBig(this.a, from, a, offset, length); } /** * Removes elements of this type-specific list using optimized system calls. * * @param from the start index (inclusive). * @param to the end index (exclusive). */ @Override public void removeElements(final long from, final long to) { BigArrays.ensureFromTo(size, from, to); BigArrays.copy(a, to, a, from, size - to); size -= (to - from); } /** * Adds elements to this type-specific list using optimized system calls. * * @param index the index at which to add elements. * @param a the big array containing the elements. * @param offset the offset of the first element to add. * @param length the number of elements to add. */ @Override public void addElements(final long index, final float a[][], final long offset, final long length) { ensureIndex(index); BigArrays.ensureOffsetLength(a, offset, length); grow(size + length); BigArrays.copy(this.a, index, this.a, index + length, size - index); BigArrays.copy(a, offset, this.a, index, length); size += length; } /** * Copies elements in the given big array into this type-specific list using optimized system calls. * * @param index the start index (inclusive). * @param a the destination big array. * @param offset the offset into the destination array where to store the first element copied. * @param length the number of elements to be copied. */ @Override public void setElements(final long index, final float[][] a, final long offset, final long length) { BigArrays.copy(a, offset, this.a, index, length); } @Override public void forEach(final FloatConsumer action) { for (long i = 0; i < size; ++i) { action.accept(BigArrays.get(a, i)); } } @Override public FloatBigListIterator listIterator(final long index) { ensureIndex(index); return new FloatBigListIterator() { long pos = index, last = -1; @Override public boolean hasNext() { return pos < size; } @Override public boolean hasPrevious() { return pos > 0; } @Override public float nextFloat() { if (!hasNext()) throw new NoSuchElementException(); return BigArrays.get(a, last = pos++); } @Override public float previousFloat() { if (!hasPrevious()) throw new NoSuchElementException(); return BigArrays.get(a, last = --pos); } @Override public long nextIndex() { return pos; } @Override public long previousIndex() { return pos - 1; } @Override public void add(float k) { FloatBigArrayBigList.this.add(pos++, k); last = -1; } @Override public void set(float k) { if (last == -1) throw new IllegalStateException(); FloatBigArrayBigList.this.set(last, k); } @Override public void remove() { if (last == -1) throw new IllegalStateException(); FloatBigArrayBigList.this.removeFloat(last); /* If the last operation was a next(), we are removing an element *before* us, and we must decrease pos correspondingly. */ if (last < pos) pos--; last = -1; } @Override public void forEachRemaining(final FloatConsumer action) { while (pos < size) { action.accept(BigArrays.get(a, last = pos++)); } } @Override public long back(long n) { if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n); final long remaining = size - pos; if (n < remaining) { pos -= n; } else { n = remaining; pos = 0; } last = pos; return n; } @Override public long skip(long n) { if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n); final long remaining = size - pos; if (n < remaining) { pos += n; } else { n = remaining; pos = size; } last = pos - 1; return n; } }; } private final class Spliterator implements FloatSpliterator { // Until we split, we will track the size of the list. // Once we split, then we stop updating on structural modifications. // Aka, size is late-binding. boolean hasSplit = false; long pos, max; public Spliterator() { this(0, FloatBigArrayBigList.this.size, false); } private Spliterator(long pos, long max, boolean hasSplit) { assert pos <= max : "pos " + pos + " must be <= max " + max; this.pos = pos; this.max = max; this.hasSplit = hasSplit; } private long getWorkingMax() { return hasSplit ? max : FloatBigArrayBigList.this.size; } @Override public int characteristics() { return FloatSpliterators.LIST_SPLITERATOR_CHARACTERISTICS; } @Override public long estimateSize() { return getWorkingMax() - pos; } @Override public boolean tryAdvance(final FloatConsumer action) { if (pos >= getWorkingMax()) return false; action.accept(BigArrays.get(a, pos++)); return true; } @Override public void forEachRemaining(final FloatConsumer action) { for (final long max = getWorkingMax(); pos < max; ++pos) { action.accept(BigArrays.get(a, pos)); } } @Override public long skip(long n) { if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n); final long max = getWorkingMax(); if (pos >= max) return 0; final long remaining = max - pos; if (n < remaining) { pos += n; return n; } n = remaining; pos = max; return n; } @Override public FloatSpliterator trySplit() { final long max = getWorkingMax(); long retLen = (max - pos) >> 1; if (retLen <= 1) return null; // Update instance max with the last seen list size (if needed) before continuing this.max = max; long myNewPos = pos + retLen; // Align to an outer array boundary if possible // We add/subtract one to the bounds to ensure the new pos will always shrink the range myNewPos = BigArrays.nearestSegmentStart(myNewPos, pos + 1, max - 1); long retMax = myNewPos; long oldPos = pos; this.pos = myNewPos; this.hasSplit = true; return new Spliterator(oldPos, retMax, true); } } @Override public FloatSpliterator spliterator() { return new Spliterator(); } @Override public FloatBigArrayBigList clone() { FloatBigArrayBigList c; // Test for fastpath we can do if exactly an BigArrayBigList if (getClass() == FloatBigArrayBigList.class) { c = new FloatBigArrayBigList(size); c.size = size; } else { try { c = (FloatBigArrayBigList)super.clone(); } catch (CloneNotSupportedException e) { // Can't happen throw new InternalError(e); } c.a = FloatBigArrays.newBigArray(size); } BigArrays.copy(a, 0, c.a, 0, size); return c; } /** * Compares this type-specific big-array list to another one. * *

* This method exists only for sake of efficiency. The implementation inherited from the abstract * implementation would already work. * * @param l a type-specific big-array list. * @return true if the argument contains the same elements of this type-specific big-array list. */ public boolean equals(final FloatBigArrayBigList l) { if (l == this) return true; long s = size64(); if (s != l.size64()) return false; final float[][] a1 = a; final float[][] a2 = l.a; // Already checked s == l.size64 above if (a1 == a2) return true; // Backwards loop is faster then forwards loop, at least in Java 8 and below. while (s-- != 0) if (BigArrays.get(a1, s) != BigArrays.get(a2, s)) return false; return true; } @SuppressWarnings("unlikely-arg-type") @Override public boolean equals(final Object o) { if (o == this) return true; if (o == null) return false; if (!(o instanceof BigList)) return false; if (o instanceof FloatBigArrayBigList) { // Safe cast because we are only going to take elements from other list, never give them return equals((FloatBigArrayBigList)o); } if (o instanceof FloatBigArrayBigList.SubList) { // Safe cast because we are only going to take elements from other list, never give them // Sublist has an optimized sub-array based comparison, reuse that. return ((FloatBigArrayBigList.SubList)o).equals(this); } return super.equals(o); } /** * Compares this big list to another big list. * *

* This method exists only for sake of efficiency. The implementation inherited from the abstract * implementation would already work. * * @param l a big list. * @return a negative integer, zero, or a positive integer as this big list is lexicographically * less than, equal to, or greater than the argument. */ public int compareTo(final FloatBigArrayBigList l) { final long s1 = size64(), s2 = l.size64(); final float a1[][] = a, a2[][] = l.a; if (a1 == a2 && s1 == s2) return 0; float e1, e2; int r, i; for (i = 0; i < s1 && i < s2; i++) { e1 = BigArrays.get(a1, i); e2 = BigArrays.get(a2, i); if ((r = (Float.compare((e1), (e2)))) != 0) return r; } return i < s2 ? -1 : (i < s1 ? 1 : 0); } @Override public int compareTo(final BigList l) { if (l instanceof FloatBigArrayBigList) { return compareTo((FloatBigArrayBigList)l); } if (l instanceof FloatBigArrayBigList.SubList) { // Must negate because we are inverting the order of the comparison. return -((FloatBigArrayBigList.SubList)l).compareTo(this); } return super.compareTo(l); } private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { s.defaultWriteObject(); for (int i = 0; i < size; i++) s.writeFloat(BigArrays.get(a, i)); } private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); a = FloatBigArrays.newBigArray(size); for (int i = 0; i < size; i++) BigArrays.set(a, i, s.readFloat()); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy