All Downloads are FREE. Search and download functionalities are using the official Maven repository.

it.unimi.dsi.fastutil.floats.FloatPredicate Maven / Gradle / Ivy

Go to download

fastutil extends the Java Collections Framework by providing type-specific maps, sets, lists, and queues with a small memory footprint and fast access and insertion; it provides also big (64-bit) arrays, sets and lists, sorting algorithms, fast, practical I/O classes for binary and text files, and facilities for memory mapping large files. Note that if you have both this jar and fastutil-core.jar in your dependencies, fastutil-core.jar should be excluded.

There is a newer version: 8.5.15
Show newest version
/*
	* Copyright (C) 2020-2022 Sebastiano Vigna
	*
	* Licensed under the Apache License, Version 2.0 (the "License");
	* you may not use this file except in compliance with the License.
	* You may obtain a copy of the License at
	*
	*     http://www.apache.org/licenses/LICENSE-2.0
	*
	* Unless required by applicable law or agreed to in writing, software
	* distributed under the License is distributed on an "AS IS" BASIS,
	* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
	* See the License for the specific language governing permissions and
	* limitations under the License.
	*/
package it.unimi.dsi.fastutil.floats;

import java.util.Objects;
import java.util.function.Predicate;

/**
 * A type-specific {@link Predicate}; provides methods to test a primitive type both as object and
 * as primitive.
 *
 * 

* Except for the boolean case, this interface extends both a parameterized * {@link java.util.function.Predicate} and a type-specific JDK predicate (e.g., * {@link java.util.function.IntPredicate}). For types missing a type-specific JDK predicate (e.g., * {@code short} or {@code float}), we extend the predicate associated with the smallest primitive * type that can represent the current type (e.g., {@code int} or {@code double}, respectively). * * @see Predicate * @since 8.5.0 */ @FunctionalInterface public interface FloatPredicate extends Predicate, java.util.function.DoublePredicate { /** * Evaluates this predicate on the given input. * * @param t the input. * @return {@code true} if the input matches the predicate, otherwise {@code false} */ boolean test(float t); /** * {@inheritDoc} * * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override default boolean test(final double t) { return test(it.unimi.dsi.fastutil.SafeMath.safeDoubleToFloat(t)); } /** * {@inheritDoc} * * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override default boolean test(final Float t) { return test(t.floatValue()); } /** * Returns a composed type-specific predicate that represents a short-circuiting logical AND of this * type-specific predicate and another. * * @param other a predicate that will be logically-ANDed with this predicate. * @return a composed predicate that represents the short-circuiting logical AND of this predicate * and the {@code other} predicate. * @see Predicate#and * @apiNote Implementing classes should generally override this method and keep the default * implementation of the other overloads, which will delegate to this method (after proper * conversions). */ default FloatPredicate and(final FloatPredicate other) { Objects.requireNonNull(other); return t -> test(t) && other.test(t); } /** * {@inheritDoc} * * @implNote Composing with a JDK type-specific predicate will be slightly less efficient than using * a type-specific predicate, as the argument will have to be widened at each call. */ @Override default FloatPredicate and(final java.util.function.DoublePredicate other) { return and(other instanceof FloatPredicate ? (FloatPredicate)other : (FloatPredicate)other::test); } /** * {@inheritDoc} * * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override default Predicate and(final Predicate other) { return Predicate.super.and(other); } @Override /** {@inheritDoc} */ default FloatPredicate negate() { return t -> !test(t); } /** * Returns a composed type-specific predicate that represents a short-circuiting logical OR of this * type-specific predicate and another. * * @param other a predicate that will be logically-ORed with this predicate. * @return a composed predicate that represents the short-circuiting logical OR of this predicate * and the {@code other} predicate. * @see Predicate#or * @apiNote Implementing classes should generally override this method and keep the default * implementation of the other overloads, which will delegate to this method (after proper * conversions). */ default FloatPredicate or(final FloatPredicate other) { Objects.requireNonNull(other); return t -> test(t) || other.test(t); } /** * {@inheritDoc} * * @implNote Composing with a JDK type-specific predicate will be slightly less efficient than using * a type-specific predicate, as the argument will have to be widened at each call. */ @Override default FloatPredicate or(final java.util.function.DoublePredicate other) { return or(other instanceof FloatPredicate ? (FloatPredicate)other : (FloatPredicate)other::test); } /** * {@inheritDoc} * * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override default Predicate or(final Predicate other) { return Predicate.super.or(other); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy