it.unimi.dsi.fastutil.objects.ObjectArrays Maven / Gradle / Ivy
Show all versions of fastutil Show documentation
/*
* Copyright (C) 2002-2022 Sebastiano Vigna
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
*
* For the sorting and binary search code:
*
* Copyright (C) 1999 CERN - European Organization for Nuclear Research.
*
* Permission to use, copy, modify, distribute and sell this software and
* its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and that
* both that copyright notice and this permission notice appear in
* supporting documentation. CERN makes no representations about the
* suitability of this software for any purpose. It is provided "as is"
* without expressed or implied warranty.
*/
package it.unimi.dsi.fastutil.objects;
import it.unimi.dsi.fastutil.Arrays;
import it.unimi.dsi.fastutil.Hash;
import java.util.Random;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.ForkJoinTask;
import java.util.concurrent.RecursiveAction;
import it.unimi.dsi.fastutil.ints.IntArrays;
import java.util.Comparator;
/**
* A class providing static methods and objects that do useful things with type-specific arrays.
*
* In particular, the {@code ensureCapacity()}, {@code grow()}, {@code trim()} and
* {@code setLength()} methods allow to handle arrays much like array lists. This can be very useful
* when efficiency (or syntactic simplicity) reasons make array lists unsuitable.
*
*
* Warning: if your array is not of type {@code Object[]},
* {@link #ensureCapacity(Object[],int,int)} and {@link #grow(Object[],int,int)} will use
* {@linkplain java.lang.reflect.Array#newInstance(Class,int) reflection} to preserve your array
* type. Reflection is significantly slower than using {@code new}. This phenomenon is
* particularly evident in the first growth phases of an array reallocated with doubling (or
* similar) logic.
*
*
Sorting
*
*
* There are several sorting methods available. The main theme is that of letting you choose the
* sorting algorithm you prefer (i.e., trading stability of mergesort for no memory allocation in
* quicksort).
*
*
Parallel operations
Some algorithms provide a parallel version that will by default use
* the {@linkplain ForkJoinPool#commonPool() common pool}, but this can be overridden by calling the
* function in a task already in the {@link ForkJoinPool} that the operation should run in. For
* example, something along the lines of
* "{@code poolToParallelSortIn.invoke(() -> parallelQuickSort(arrayToSort))}" will run the parallel
* sort in {@code poolToParallelSortIn} instead of the default pool.
*
*
* All comparison-based algorithm have an implementation based on a type-specific comparator.
*
*
* If you are fine with not knowing exactly which algorithm will be run (in particular, not knowing
* exactly whether a support array will be allocated), the dual-pivot parallel sorts in
* {@link java.util.Arrays} are about 50% faster than the classical single-pivot implementation used
* here.
*
*
* In any case, if sorting time is important I suggest that you benchmark your sorting load with
* your data distribution and on your architecture.
*
* @see java.util.Arrays
*/
public final class ObjectArrays {
private ObjectArrays() {
}
/** A static, final, empty array. */
public static final Object[] EMPTY_ARRAY = {};
/**
* A static, final, empty array to be used as default array in allocations. An object distinct from
* {@link #EMPTY_ARRAY} makes it possible to have different behaviors depending on whether the user
* required an empty allocation, or we are just lazily delaying allocation.
*
* @see java.util.ArrayList
*/
public static final Object[] DEFAULT_EMPTY_ARRAY = {};
/**
* Creates a new array using a the given one as prototype.
*
*
* This method returns a new array of the given length whose element are of the same class as of
* those of {@code prototype}. In case of an empty array, it tries to return {@link #EMPTY_ARRAY},
* if possible.
*
* @param prototype an array that will be used to type the new one.
* @param length the length of the new array.
* @return a new array of given type and length.
*/
@SuppressWarnings("unchecked")
private static K[] newArray(final K[] prototype, final int length) {
final Class> klass = prototype.getClass();
if (klass == Object[].class) return (K[])(length == 0 ? EMPTY_ARRAY : new Object[length]);
return (K[])java.lang.reflect.Array.newInstance(klass.getComponentType(), length);
}
/**
* Forces an array to contain the given number of entries, preserving just a part of the array.
*
* @param array an array.
* @param length the new minimum length for this array.
* @param preserve the number of elements of the array that must be preserved in case a new
* allocation is necessary.
* @return an array with {@code length} entries whose first {@code preserve} entries are the same as
* those of {@code array}.
*/
public static K[] forceCapacity(final K[] array, final int length, final int preserve) {
final K t[] = newArray(array, length);
System.arraycopy(array, 0, t, 0, preserve);
return t;
}
/**
* Ensures that an array can contain the given number of entries.
*
*
* If you cannot foresee whether this array will need again to be enlarged, you should probably use
* {@code grow()} instead.
*
* @param array an array.
* @param length the new minimum length for this array.
* @return {@code array}, if it contains {@code length} entries or more; otherwise, an array with
* {@code length} entries whose first {@code array.length} entries are the same as those of
* {@code array}.
*/
public static K[] ensureCapacity(final K[] array, final int length) {
return ensureCapacity(array, length, array.length);
}
/**
* Ensures that an array can contain the given number of entries, preserving just a part of the
* array.
*
* @param array an array.
* @param length the new minimum length for this array.
* @param preserve the number of elements of the array that must be preserved in case a new
* allocation is necessary.
* @return {@code array}, if it can contain {@code length} entries or more; otherwise, an array with
* {@code length} entries whose first {@code preserve} entries are the same as those of
* {@code array}.
*/
public static K[] ensureCapacity(final K[] array, final int length, final int preserve) {
return length > array.length ? forceCapacity(array, length, preserve) : array;
}
/**
* Grows the given array to the maximum between the given length and the current length increased by
* 50%, provided that the given length is larger than the current length.
*
*
* If you want complete control on the array growth, you should probably use
* {@code ensureCapacity()} instead.
*
* @param array an array.
* @param length the new minimum length for this array.
* @return {@code array}, if it can contain {@code length} entries; otherwise, an array with
* max({@code length},{@code array.length}/φ) entries whose first {@code array.length}
* entries are the same as those of {@code array}.
*/
public static K[] grow(final K[] array, final int length) {
return grow(array, length, array.length);
}
/**
* Grows the given array to the maximum between the given length and the current length increased by
* 50%, provided that the given length is larger than the current length, preserving just a part of
* the array.
*
*
* If you want complete control on the array growth, you should probably use
* {@code ensureCapacity()} instead.
*
* @param array an array.
* @param length the new minimum length for this array.
* @param preserve the number of elements of the array that must be preserved in case a new
* allocation is necessary.
* @return {@code array}, if it can contain {@code length} entries; otherwise, an array with
* max({@code length},{@code array.length}/φ) entries whose first {@code preserve}
* entries are the same as those of {@code array}.
*/
public static K[] grow(final K[] array, final int length, final int preserve) {
if (length > array.length) {
final int newLength = (int)Math.max(Math.min((long)array.length + (array.length >> 1), Arrays.MAX_ARRAY_SIZE), length);
final K t[] = newArray(array, newLength);
System.arraycopy(array, 0, t, 0, preserve);
return t;
}
return array;
}
/**
* Trims the given array to the given length.
*
* @param array an array.
* @param length the new maximum length for the array.
* @return {@code array}, if it contains {@code length} entries or less; otherwise, an array with
* {@code length} entries whose entries are the same as the first {@code length} entries of
* {@code array}.
*
*/
public static K[] trim(final K[] array, final int length) {
if (length >= array.length) return array;
final K t[] = newArray(array, length);
System.arraycopy(array, 0, t, 0, length);
return t;
}
/**
* Sets the length of the given array.
*
* @param array an array.
* @param length the new length for the array.
* @return {@code array}, if it contains exactly {@code length} entries; otherwise, if it contains
* more than {@code length} entries, an array with {@code length} entries whose
* entries are the same as the first {@code length} entries of {@code array}; otherwise, an
* array with {@code length} entries whose first {@code array.length} entries are the same
* as those of {@code array}.
*
*/
public static K[] setLength(final K[] array, final int length) {
if (length == array.length) return array;
if (length < array.length) return trim(array, length);
return ensureCapacity(array, length);
}
/**
* Returns a copy of a portion of an array.
*
* @param array an array.
* @param offset the first element to copy.
* @param length the number of elements to copy.
* @return a new array containing {@code length} elements of {@code array} starting at
* {@code offset}.
*/
public static K[] copy(final K[] array, final int offset, final int length) {
ensureOffsetLength(array, offset, length);
final K[] a = newArray(array, length);
System.arraycopy(array, offset, a, 0, length);
return a;
}
/**
* Returns a copy of an array.
*
* @param array an array.
* @return a copy of {@code array}.
*/
public static K[] copy(final K[] array) {
return array.clone();
}
/**
* Fills the given array with the given value.
*
* @param array an array.
* @param value the new value for all elements of the array.
* @deprecated Please use the corresponding {@link java.util.Arrays} method.
*/
@Deprecated
public static void fill(final K[] array, final K value) {
int i = array.length;
while (i-- != 0) array[i] = value;
}
/**
* Fills a portion of the given array with the given value.
*
* @param array an array.
* @param from the starting index of the portion to fill (inclusive).
* @param to the end index of the portion to fill (exclusive).
* @param value the new value for all elements of the specified portion of the array.
* @deprecated Please use the corresponding {@link java.util.Arrays} method.
*/
@Deprecated
public static void fill(final K[] array, final int from, int to, final K value) {
ensureFromTo(array, from, to);
if (from == 0) while (to-- != 0) array[to] = value;
else for (int i = from; i < to; i++) array[i] = value;
}
/**
* Returns true if the two arrays are elementwise equal.
*
* @param a1 an array.
* @param a2 another array.
* @return true if the two arrays are of the same length, and their elements are equal.
* @deprecated Please use the corresponding {@link java.util.Arrays} method, which is intrinsified
* in recent JVMs.
*/
@Deprecated
public static boolean equals(final K[] a1, final K a2[]) {
int i = a1.length;
if (i != a2.length) return false;
while (i-- != 0) if (!java.util.Objects.equals(a1[i], a2[i])) return false;
return true;
}
/**
* Ensures that a range given by its first (inclusive) and last (exclusive) elements fits an array.
*
*
* This method may be used whenever an array range check is needed.
*
*
* In Java 9 and up, this method should be considered deprecated in favor of the
* {@link java.util.Objects#checkFromToIndex(int, int, int)} method, which may be intrinsified in
* recent JVMs.
*
* @param a an array.
* @param from a start index (inclusive).
* @param to an end index (exclusive).
* @throws IllegalArgumentException if {@code from} is greater than {@code to}.
* @throws ArrayIndexOutOfBoundsException if {@code from} or {@code to} are greater than the array
* length or negative.
*/
public static void ensureFromTo(final K[] a, final int from, final int to) {
Arrays.ensureFromTo(a.length, from, to);
}
/**
* Ensures that a range given by an offset and a length fits an array.
*
*
* This method may be used whenever an array range check is needed.
*
*
* In Java 9 and up, this method should be considered deprecated in favor of the
* {@link java.util.Objects#checkFromIndexSize(int, int, int)} method, which may be intrinsified in
* recent JVMs.
*
* @param a an array.
* @param offset a start index.
* @param length a length (the number of elements in the range).
* @throws IllegalArgumentException if {@code length} is negative.
* @throws ArrayIndexOutOfBoundsException if {@code offset} is negative or
* {@code offset}+{@code length} is greater than the array length.
*/
public static void ensureOffsetLength(final K[] a, final int offset, final int length) {
Arrays.ensureOffsetLength(a.length, offset, length);
}
/**
* Ensures that two arrays are of the same length.
*
* @param a an array.
* @param b another array.
* @throws IllegalArgumentException if the two argument arrays are not of the same length.
*/
public static void ensureSameLength(final K[] a, final K[] b) {
if (a.length != b.length) throw new IllegalArgumentException("Array size mismatch: " + a.length + " != " + b.length);
}
private static final int QUICKSORT_NO_REC = 16;
private static final int PARALLEL_QUICKSORT_NO_FORK = 8192;
private static final int QUICKSORT_MEDIAN_OF_9 = 128;
private static final int MERGESORT_NO_REC = 16;
private static ForkJoinPool getPool() {
// Make sure to update Arrays.drv, BigArrays.drv, and src/it/unimi/dsi/fastutil/Arrays.java as well
ForkJoinPool current = ForkJoinTask.getPool();
return current == null ? ForkJoinPool.commonPool() : current;
}
/**
* Swaps two elements of an anrray.
*
* @param x an array.
* @param a a position in {@code x}.
* @param b another position in {@code x}.
*/
public static void swap(final K x[], final int a, final int b) {
final K t = x[a];
x[a] = x[b];
x[b] = t;
}
/**
* Swaps two sequences of elements of an array.
*
* @param x an array.
* @param a a position in {@code x}.
* @param b another position in {@code x}.
* @param n the number of elements to exchange starting at {@code a} and {@code b}.
*/
public static void swap(final K[] x, int a, int b, final int n) {
for (int i = 0; i < n; i++, a++, b++) swap(x, a, b);
}
private static int med3(final K x[], final int a, final int b, final int c, Comparator comp) {
final int ab = comp.compare(x[a], x[b]);
final int ac = comp.compare(x[a], x[c]);
final int bc = comp.compare(x[b], x[c]);
return (ab < 0 ? (bc < 0 ? b : ac < 0 ? c : a) : (bc > 0 ? b : ac > 0 ? c : a));
}
private static void selectionSort(final K[] a, final int from, final int to, final Comparator comp) {
for (int i = from; i < to - 1; i++) {
int m = i;
for (int j = i + 1; j < to; j++) if (comp.compare(a[j], a[m]) < 0) m = j;
if (m != i) {
final K u = a[i];
a[i] = a[m];
a[m] = u;
}
}
}
private static void insertionSort(final K[] a, final int from, final int to, final Comparator comp) {
for (int i = from; ++i < to;) {
K t = a[i];
int j = i;
for (K u = a[j - 1]; comp.compare(t, u) < 0; u = a[--j - 1]) {
a[j] = u;
if (from == j - 1) {
--j;
break;
}
}
a[j] = t;
}
}
/**
* Sorts the specified range of elements according to the order induced by the specified comparator
* using quicksort.
*
*
* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas McIlroy,
* “Engineering a Sort Function”, Software: Practice and Experience, 23(11),
* pages 1249−1265, 1993.
*
*
* Note that this implementation does not allocate any object, contrarily to the implementation used
* to sort primitive types in {@link java.util.Arrays}, which switches to mergesort on large inputs.
*
* @param x the array to be sorted.
* @param from the index of the first element (inclusive) to be sorted.
* @param to the index of the last element (exclusive) to be sorted.
* @param comp the comparator to determine the sorting order.
*
*/
public static void quickSort(final K[] x, final int from, final int to, final Comparator comp) {
final int len = to - from;
// Selection sort on smallest arrays
if (len < QUICKSORT_NO_REC) {
selectionSort(x, from, to, comp);
return;
}
// Choose a partition element, v
int m = from + len / 2;
int l = from;
int n = to - 1;
if (len > QUICKSORT_MEDIAN_OF_9) { // Big arrays, pseudomedian of 9
int s = len / 8;
l = med3(x, l, l + s, l + 2 * s, comp);
m = med3(x, m - s, m, m + s, comp);
n = med3(x, n - 2 * s, n - s, n, comp);
}
m = med3(x, l, m, n, comp); // Mid-size, med of 3
final K v = x[m];
// Establish Invariant: v* (v)* v*
int a = from, b = a, c = to - 1, d = c;
while (true) {
int comparison;
while (b <= c && (comparison = comp.compare(x[b], v)) <= 0) {
if (comparison == 0) swap(x, a++, b);
b++;
}
while (c >= b && (comparison = comp.compare(x[c], v)) >= 0) {
if (comparison == 0) swap(x, c, d--);
c--;
}
if (b > c) break;
swap(x, b++, c--);
}
// Swap partition elements back to middle
int s;
s = Math.min(a - from, b - a);
swap(x, from, b - s, s);
s = Math.min(d - c, to - d - 1);
swap(x, b, to - s, s);
// Recursively sort non-partition-elements
if ((s = b - a) > 1) quickSort(x, from, from + s, comp);
if ((s = d - c) > 1) quickSort(x, to - s, to, comp);
}
/**
* Sorts an array according to the order induced by the specified comparator using quicksort.
*
*
* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas McIlroy,
* “Engineering a Sort Function”, Software: Practice and Experience, 23(11),
* pages 1249−1265, 1993.
*
*
* Note that this implementation does not allocate any object, contrarily to the implementation used
* to sort primitive types in {@link java.util.Arrays}, which switches to mergesort on large inputs.
*
* @param x the array to be sorted.
* @param comp the comparator to determine the sorting order.
*
*/
public static void quickSort(final K[] x, final Comparator comp) {
quickSort(x, 0, x.length, comp);
}
protected static class ForkJoinQuickSortComp extends RecursiveAction {
private static final long serialVersionUID = 1L;
private final int from;
private final int to;
private final K[] x;
private final Comparator comp;
public ForkJoinQuickSortComp(final K[] x, final int from, final int to, final Comparator comp) {
this.from = from;
this.to = to;
this.x = x;
this.comp = comp;
}
@Override
protected void compute() {
final K[] x = this.x;
final int len = to - from;
if (len < PARALLEL_QUICKSORT_NO_FORK) {
quickSort(x, from, to, comp);
return;
}
// Choose a partition element, v
int m = from + len / 2;
int l = from;
int n = to - 1;
int s = len / 8;
l = med3(x, l, l + s, l + 2 * s, comp);
m = med3(x, m - s, m, m + s, comp);
n = med3(x, n - 2 * s, n - s, n, comp);
m = med3(x, l, m, n, comp);
final K v = x[m];
// Establish Invariant: v* (v)* v*
int a = from, b = a, c = to - 1, d = c;
while (true) {
int comparison;
while (b <= c && (comparison = comp.compare(x[b], v)) <= 0) {
if (comparison == 0) swap(x, a++, b);
b++;
}
while (c >= b && (comparison = comp.compare(x[c], v)) >= 0) {
if (comparison == 0) swap(x, c, d--);
c--;
}
if (b > c) break;
swap(x, b++, c--);
}
// Swap partition elements back to middle
int t;
s = Math.min(a - from, b - a);
swap(x, from, b - s, s);
s = Math.min(d - c, to - d - 1);
swap(x, b, to - s, s);
// Recursively sort non-partition-elements
s = b - a;
t = d - c;
if (s > 1 && t > 1) invokeAll(new ForkJoinQuickSortComp<>(x, from, from + s, comp), new ForkJoinQuickSortComp<>(x, to - t, to, comp));
else if (s > 1) invokeAll(new ForkJoinQuickSortComp<>(x, from, from + s, comp));
else invokeAll(new ForkJoinQuickSortComp<>(x, to - t, to, comp));
}
}
/**
* Sorts the specified range of elements according to the order induced by the specified comparator
* using a parallel quicksort.
*
*
* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas McIlroy,
* “Engineering a Sort Function”, Software: Practice and Experience, 23(11),
* pages 1249−1265, 1993.
*
* @param x the array to be sorted.
* @param from the index of the first element (inclusive) to be sorted.
* @param to the index of the last element (exclusive) to be sorted.
* @param comp the comparator to determine the sorting order.
*/
public static void parallelQuickSort(final K[] x, final int from, final int to, final Comparator comp) {
ForkJoinPool pool = getPool();
if (to - from < PARALLEL_QUICKSORT_NO_FORK || pool.getParallelism() == 1) quickSort(x, from, to, comp);
else {
pool.invoke(new ForkJoinQuickSortComp<>(x, from, to, comp));
}
}
/**
* Sorts an array according to the order induced by the specified comparator using a parallel
* quicksort.
*
*
* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas McIlroy,
* “Engineering a Sort Function”, Software: Practice and Experience, 23(11),
* pages 1249−1265, 1993.
*
* @param x the array to be sorted.
* @param comp the comparator to determine the sorting order.
*/
public static void parallelQuickSort(final K[] x, final Comparator comp) {
parallelQuickSort(x, 0, x.length, comp);
}
@SuppressWarnings("unchecked")
private static int med3(final K x[], final int a, final int b, final int c) {
final int ab = (((Comparable)(x[a])).compareTo(x[b]));
final int ac = (((Comparable)(x[a])).compareTo(x[c]));
final int bc = (((Comparable)(x[b])).compareTo(x[c]));
return (ab < 0 ? (bc < 0 ? b : ac < 0 ? c : a) : (bc > 0 ? b : ac > 0 ? c : a));
}
@SuppressWarnings("unchecked")
private static void selectionSort(final K[] a, final int from, final int to) {
for (int i = from; i < to - 1; i++) {
int m = i;
for (int j = i + 1; j < to; j++) if ((((Comparable)(a[j])).compareTo(a[m]) < 0)) m = j;
if (m != i) {
final K u = a[i];
a[i] = a[m];
a[m] = u;
}
}
}
@SuppressWarnings("unchecked")
private static void insertionSort(final K[] a, final int from, final int to) {
for (int i = from; ++i < to;) {
K t = a[i];
int j = i;
for (K u = a[j - 1]; (((Comparable)(t)).compareTo(u) < 0); u = a[--j - 1]) {
a[j] = u;
if (from == j - 1) {
--j;
break;
}
}
a[j] = t;
}
}
/**
* Sorts the specified range of elements according to the natural ascending order using quicksort.
*
*
* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas McIlroy,
* “Engineering a Sort Function”, Software: Practice and Experience, 23(11),
* pages 1249−1265, 1993.
*
*
* Note that this implementation does not allocate any object, contrarily to the implementation used
* to sort primitive types in {@link java.util.Arrays}, which switches to mergesort on large inputs.
*
* @param x the array to be sorted.
* @param from the index of the first element (inclusive) to be sorted.
* @param to the index of the last element (exclusive) to be sorted.
*/
@SuppressWarnings("unchecked")
public static void quickSort(final K[] x, final int from, final int to) {
final int len = to - from;
// Selection sort on smallest arrays
if (len < QUICKSORT_NO_REC) {
selectionSort(x, from, to);
return;
}
// Choose a partition element, v
int m = from + len / 2;
int l = from;
int n = to - 1;
if (len > QUICKSORT_MEDIAN_OF_9) { // Big arrays, pseudomedian of 9
int s = len / 8;
l = med3(x, l, l + s, l + 2 * s);
m = med3(x, m - s, m, m + s);
n = med3(x, n - 2 * s, n - s, n);
}
m = med3(x, l, m, n); // Mid-size, med of 3
final K v = x[m];
// Establish Invariant: v* (v)* v*
int a = from, b = a, c = to - 1, d = c;
while (true) {
int comparison;
while (b <= c && (comparison = (((Comparable)(x[b])).compareTo(v))) <= 0) {
if (comparison == 0) swap(x, a++, b);
b++;
}
while (c >= b && (comparison = (((Comparable)(x[c])).compareTo(v))) >= 0) {
if (comparison == 0) swap(x, c, d--);
c--;
}
if (b > c) break;
swap(x, b++, c--);
}
// Swap partition elements back to middle
int s;
s = Math.min(a - from, b - a);
swap(x, from, b - s, s);
s = Math.min(d - c, to - d - 1);
swap(x, b, to - s, s);
// Recursively sort non-partition-elements
if ((s = b - a) > 1) quickSort(x, from, from + s);
if ((s = d - c) > 1) quickSort(x, to - s, to);
}
/**
* Sorts an array according to the natural ascending order using quicksort.
*
*
* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas McIlroy,
* “Engineering a Sort Function”, Software: Practice and Experience, 23(11),
* pages 1249−1265, 1993.
*
*
* Note that this implementation does not allocate any object, contrarily to the implementation used
* to sort primitive types in {@link java.util.Arrays}, which switches to mergesort on large inputs.
*
* @param x the array to be sorted.
*
*/
public static void quickSort(final K[] x) {
quickSort(x, 0, x.length);
}
protected static class ForkJoinQuickSort extends RecursiveAction {
private static final long serialVersionUID = 1L;
private final int from;
private final int to;
private final K[] x;
public ForkJoinQuickSort(final K[] x, final int from, final int to) {
this.from = from;
this.to = to;
this.x = x;
}
@Override
@SuppressWarnings("unchecked")
protected void compute() {
final K[] x = this.x;
final int len = to - from;
if (len < PARALLEL_QUICKSORT_NO_FORK) {
quickSort(x, from, to);
return;
}
// Choose a partition element, v
int m = from + len / 2;
int l = from;
int n = to - 1;
int s = len / 8;
l = med3(x, l, l + s, l + 2 * s);
m = med3(x, m - s, m, m + s);
n = med3(x, n - 2 * s, n - s, n);
m = med3(x, l, m, n);
final K v = x[m];
// Establish Invariant: v* (v)* v*
int a = from, b = a, c = to - 1, d = c;
while (true) {
int comparison;
while (b <= c && (comparison = (((Comparable)(x[b])).compareTo(v))) <= 0) {
if (comparison == 0) swap(x, a++, b);
b++;
}
while (c >= b && (comparison = (((Comparable)(x[c])).compareTo(v))) >= 0) {
if (comparison == 0) swap(x, c, d--);
c--;
}
if (b > c) break;
swap(x, b++, c--);
}
// Swap partition elements back to middle
int t;
s = Math.min(a - from, b - a);
swap(x, from, b - s, s);
s = Math.min(d - c, to - d - 1);
swap(x, b, to - s, s);
// Recursively sort non-partition-elements
s = b - a;
t = d - c;
if (s > 1 && t > 1) invokeAll(new ForkJoinQuickSort<>(x, from, from + s), new ForkJoinQuickSort<>(x, to - t, to));
else if (s > 1) invokeAll(new ForkJoinQuickSort<>(x, from, from + s));
else invokeAll(new ForkJoinQuickSort<>(x, to - t, to));
}
}
/**
* Sorts the specified range of elements according to the natural ascending order using a parallel
* quicksort.
*
*
* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas McIlroy,
* “Engineering a Sort Function”, Software: Practice and Experience, 23(11),
* pages 1249−1265, 1993.
*
* @param x the array to be sorted.
* @param from the index of the first element (inclusive) to be sorted.
* @param to the index of the last element (exclusive) to be sorted.
*/
public static void parallelQuickSort(final K[] x, final int from, final int to) {
ForkJoinPool pool = getPool();
if (to - from < PARALLEL_QUICKSORT_NO_FORK || pool.getParallelism() == 1) quickSort(x, from, to);
else {
pool.invoke(new ForkJoinQuickSort<>(x, from, to));
}
}
/**
* Sorts an array according to the natural ascending order using a parallel quicksort.
*
*
* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas McIlroy,
* “Engineering a Sort Function”, Software: Practice and Experience, 23(11),
* pages 1249−1265, 1993.
*
* @param x the array to be sorted.
*
*/
public static void parallelQuickSort(final K[] x) {
parallelQuickSort(x, 0, x.length);
}
@SuppressWarnings("unchecked")
private static int med3Indirect(final int perm[], final K x[], final int a, final int b, final int c) {
final K aa = x[perm[a]];
final K bb = x[perm[b]];
final K cc = x[perm[c]];
final int ab = (((Comparable)(aa)).compareTo(bb));
final int ac = (((Comparable)(aa)).compareTo(cc));
final int bc = (((Comparable)(bb)).compareTo(cc));
return (ab < 0 ? (bc < 0 ? b : ac < 0 ? c : a) : (bc > 0 ? b : ac > 0 ? c : a));
}
@SuppressWarnings("unchecked")
private static void insertionSortIndirect(final int[] perm, final K[] a, final int from, final int to) {
for (int i = from; ++i < to;) {
int t = perm[i];
int j = i;
for (int u = perm[j - 1]; (((Comparable)(a[t])).compareTo(a[u]) < 0); u = perm[--j - 1]) {
perm[j] = u;
if (from == j - 1) {
--j;
break;
}
}
perm[j] = t;
}
}
/**
* Sorts the specified range of elements according to the natural ascending order using indirect
* quicksort.
*
*
* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas McIlroy,
* “Engineering a Sort Function”, Software: Practice and Experience, 23(11),
* pages 1249−1265, 1993.
*
*
* This method implement an indirect sort. The elements of {@code perm} (which must be
* exactly the numbers in the interval {@code [0..perm.length)}) will be permuted so that
* {@code x[perm[i]] ≤ x[perm[i + 1]]}.
*
*
* Note that this implementation does not allocate any object, contrarily to the implementation used
* to sort primitive types in {@link java.util.Arrays}, which switches to mergesort on large inputs.
*
* @param perm a permutation array indexing {@code x}.
* @param x the array to be sorted.
* @param from the index of the first element (inclusive) to be sorted.
* @param to the index of the last element (exclusive) to be sorted.
*/
@SuppressWarnings("unchecked")
public static void quickSortIndirect(final int[] perm, final K[] x, final int from, final int to) {
final int len = to - from;
// Selection sort on smallest arrays
if (len < QUICKSORT_NO_REC) {
insertionSortIndirect(perm, x, from, to);
return;
}
// Choose a partition element, v
int m = from + len / 2;
int l = from;
int n = to - 1;
if (len > QUICKSORT_MEDIAN_OF_9) { // Big arrays, pseudomedian of 9
int s = len / 8;
l = med3Indirect(perm, x, l, l + s, l + 2 * s);
m = med3Indirect(perm, x, m - s, m, m + s);
n = med3Indirect(perm, x, n - 2 * s, n - s, n);
}
m = med3Indirect(perm, x, l, m, n); // Mid-size, med of 3
final K v = x[perm[m]];
// Establish Invariant: v* (v)* v*
int a = from, b = a, c = to - 1, d = c;
while (true) {
int comparison;
while (b <= c && (comparison = (((Comparable)(x[perm[b]])).compareTo(v))) <= 0) {
if (comparison == 0) IntArrays.swap(perm, a++, b);
b++;
}
while (c >= b && (comparison = (((Comparable)(x[perm[c]])).compareTo(v))) >= 0) {
if (comparison == 0) IntArrays.swap(perm, c, d--);
c--;
}
if (b > c) break;
IntArrays.swap(perm, b++, c--);
}
// Swap partition elements back to middle
int s;
s = Math.min(a - from, b - a);
IntArrays.swap(perm, from, b - s, s);
s = Math.min(d - c, to - d - 1);
IntArrays.swap(perm, b, to - s, s);
// Recursively sort non-partition-elements
if ((s = b - a) > 1) quickSortIndirect(perm, x, from, from + s);
if ((s = d - c) > 1) quickSortIndirect(perm, x, to - s, to);
}
/**
* Sorts an array according to the natural ascending order using indirect quicksort.
*
*
* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas McIlroy,
* “Engineering a Sort Function”, Software: Practice and Experience, 23(11),
* pages 1249−1265, 1993.
*
*
* This method implement an indirect sort. The elements of {@code perm} (which must be
* exactly the numbers in the interval {@code [0..perm.length)}) will be permuted so that
* {@code x[perm[i]] ≤ x[perm[i + 1]]}.
*
*
* Note that this implementation does not allocate any object, contrarily to the implementation used
* to sort primitive types in {@link java.util.Arrays}, which switches to mergesort on large inputs.
*
* @param perm a permutation array indexing {@code x}.
* @param x the array to be sorted.
*/
public static void quickSortIndirect(final int perm[], final K[] x) {
quickSortIndirect(perm, x, 0, x.length);
}
protected static class ForkJoinQuickSortIndirect extends RecursiveAction {
private static final long serialVersionUID = 1L;
private final int from;
private final int to;
private final int[] perm;
private final K[] x;
public ForkJoinQuickSortIndirect(final int perm[], final K[] x, final int from, final int to) {
this.from = from;
this.to = to;
this.x = x;
this.perm = perm;
}
@Override
@SuppressWarnings("unchecked")
protected void compute() {
final K[] x = this.x;
final int len = to - from;
if (len < PARALLEL_QUICKSORT_NO_FORK) {
quickSortIndirect(perm, x, from, to);
return;
}
// Choose a partition element, v
int m = from + len / 2;
int l = from;
int n = to - 1;
int s = len / 8;
l = med3Indirect(perm, x, l, l + s, l + 2 * s);
m = med3Indirect(perm, x, m - s, m, m + s);
n = med3Indirect(perm, x, n - 2 * s, n - s, n);
m = med3Indirect(perm, x, l, m, n);
final K v = x[perm[m]];
// Establish Invariant: v* (v)* v*
int a = from, b = a, c = to - 1, d = c;
while (true) {
int comparison;
while (b <= c && (comparison = (((Comparable)(x[perm[b]])).compareTo(v))) <= 0) {
if (comparison == 0) IntArrays.swap(perm, a++, b);
b++;
}
while (c >= b && (comparison = (((Comparable)(x[perm[c]])).compareTo(v))) >= 0) {
if (comparison == 0) IntArrays.swap(perm, c, d--);
c--;
}
if (b > c) break;
IntArrays.swap(perm, b++, c--);
}
// Swap partition elements back to middle
int t;
s = Math.min(a - from, b - a);
IntArrays.swap(perm, from, b - s, s);
s = Math.min(d - c, to - d - 1);
IntArrays.swap(perm, b, to - s, s);
// Recursively sort non-partition-elements
s = b - a;
t = d - c;
if (s > 1 && t > 1) invokeAll(new ForkJoinQuickSortIndirect<>(perm, x, from, from + s), new ForkJoinQuickSortIndirect<>(perm, x, to - t, to));
else if (s > 1) invokeAll(new ForkJoinQuickSortIndirect<>(perm, x, from, from + s));
else invokeAll(new ForkJoinQuickSortIndirect<>(perm, x, to - t, to));
}
}
/**
* Sorts the specified range of elements according to the natural ascending order using a parallel
* indirect quicksort.
*
*
* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas McIlroy,
* “Engineering a Sort Function”, Software: Practice and Experience, 23(11),
* pages 1249−1265, 1993.
*
*
* This method implement an indirect sort. The elements of {@code perm} (which must be
* exactly the numbers in the interval {@code [0..perm.length)}) will be permuted so that
* {@code x[perm[i]] ≤ x[perm[i + 1]]}.
*
* @param perm a permutation array indexing {@code x}.
* @param x the array to be sorted.
* @param from the index of the first element (inclusive) to be sorted.
* @param to the index of the last element (exclusive) to be sorted.
*/
public static void parallelQuickSortIndirect(final int[] perm, final K[] x, final int from, final int to) {
ForkJoinPool pool = getPool();
if (to - from < PARALLEL_QUICKSORT_NO_FORK || pool.getParallelism() == 1) quickSortIndirect(perm, x, from, to);
else {
pool.invoke(new ForkJoinQuickSortIndirect<>(perm, x, from, to));
}
}
/**
* Sorts an array according to the natural ascending order using a parallel indirect quicksort.
*
*
* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas McIlroy,
* “Engineering a Sort Function”, Software: Practice and Experience, 23(11),
* pages 1249−1265, 1993.
*
*
* This method implement an indirect sort. The elements of {@code perm} (which must be
* exactly the numbers in the interval {@code [0..perm.length)}) will be permuted so that
* {@code x[perm[i]] ≤ x[perm[i + 1]]}.
*
* @param perm a permutation array indexing {@code x}.
* @param x the array to be sorted.
*
*/
public static void parallelQuickSortIndirect(final int perm[], final K[] x) {
parallelQuickSortIndirect(perm, x, 0, x.length);
}
/**
* Stabilizes a permutation.
*
*
* This method can be used to stabilize the permutation generated by an indirect sorting, assuming
* that initially the permutation array was in ascending order (e.g., the identity, as usually
* happens). This method scans the permutation, and for each non-singleton block of elements with
* the same associated values in {@code x}, permutes them in ascending order. The resulting
* permutation corresponds to a stable sort.
*
*
* Usually combining an unstable indirect sort and this method is more efficient than using a stable
* sort, as most stable sort algorithms require a support array.
*
*
* More precisely, assuming that {@code x[perm[i]] ≤ x[perm[i + 1]]}, after stabilization we will
* also have that {@code x[perm[i]] = x[perm[i + 1]]} implies {@code perm[i] ≤ perm[i + 1]}.
*
* @param perm a permutation array indexing {@code x} so that it is sorted.
* @param x the sorted array to be stabilized.
* @param from the index of the first element (inclusive) to be stabilized.
* @param to the index of the last element (exclusive) to be stabilized.
*/
public static void stabilize(final int perm[], final K[] x, final int from, final int to) {
int curr = from;
for (int i = from + 1; i < to; i++) {
if (x[perm[i]] != x[perm[curr]]) {
if (i - curr > 1) IntArrays.parallelQuickSort(perm, curr, i);
curr = i;
}
}
if (to - curr > 1) IntArrays.parallelQuickSort(perm, curr, to);
}
/**
* Stabilizes a permutation.
*
*
* This method can be used to stabilize the permutation generated by an indirect sorting, assuming
* that initially the permutation array was in ascending order (e.g., the identity, as usually
* happens). This method scans the permutation, and for each non-singleton block of elements with
* the same associated values in {@code x}, permutes them in ascending order. The resulting
* permutation corresponds to a stable sort.
*
*
* Usually combining an unstable indirect sort and this method is more efficient than using a stable
* sort, as most stable sort algorithms require a support array.
*
*
* More precisely, assuming that {@code x[perm[i]] ≤ x[perm[i + 1]]}, after stabilization we will
* also have that {@code x[perm[i]] = x[perm[i + 1]]} implies {@code perm[i] ≤ perm[i + 1]}.
*
* @param perm a permutation array indexing {@code x} so that it is sorted.
* @param x the sorted array to be stabilized.
*/
public static void stabilize(final int perm[], final K[] x) {
stabilize(perm, x, 0, perm.length);
}
@SuppressWarnings("unchecked")
private static int med3(final K x[], final K[] y, final int a, final int b, final int c) {
int t;
final int ab = (t = (((Comparable)(x[a])).compareTo(x[b]))) == 0 ? (((Comparable)(y[a])).compareTo(y[b])) : t;
final int ac = (t = (((Comparable)(x[a])).compareTo(x[c]))) == 0 ? (((Comparable)(y[a])).compareTo(y[c])) : t;
final int bc = (t = (((Comparable)(x[b])).compareTo(x[c]))) == 0 ? (((Comparable)(y[b])).compareTo(y[c])) : t;
return (ab < 0 ? (bc < 0 ? b : ac < 0 ? c : a) : (bc > 0 ? b : ac > 0 ? c : a));
}
private static void swap(final K x[], final K[] y, final int a, final int b) {
final K t = x[a];
final K u = y[a];
x[a] = x[b];
y[a] = y[b];
x[b] = t;
y[b] = u;
}
private static void swap(final K[] x, final K[] y, int a, int b, final int n) {
for (int i = 0; i < n; i++, a++, b++) swap(x, y, a, b);
}
@SuppressWarnings("unchecked")
private static void selectionSort(final K[] a, final K[] b, final int from, final int to) {
for (int i = from; i < to - 1; i++) {
int m = i, u;
for (int j = i + 1; j < to; j++) if ((u = (((Comparable)(a[j])).compareTo(a[m]))) < 0 || u == 0 && (((Comparable)(b[j])).compareTo(b[m]) < 0)) m = j;
if (m != i) {
K t = a[i];
a[i] = a[m];
a[m] = t;
t = b[i];
b[i] = b[m];
b[m] = t;
}
}
}
/**
* Sorts the specified range of elements of two arrays according to the natural lexicographical
* ascending order using quicksort.
*
*
* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas McIlroy,
* “Engineering a Sort Function”, Software: Practice and Experience, 23(11),
* pages 1249−1265, 1993.
*
*
* This method implements a lexicographical sorting of the arguments. Pairs of elements in
* the same position in the two provided arrays will be considered a single key, and permuted
* accordingly. In the end, either {@code x[i] < x[i + 1]} or {@code x[i]
* == x[i + 1]} and {@code y[i] ≤ y[i + 1]}.
*
* @param x the first array to be sorted.
* @param y the second array to be sorted.
* @param from the index of the first element (inclusive) to be sorted.
* @param to the index of the last element (exclusive) to be sorted.
*/
@SuppressWarnings("unchecked")
public static void quickSort(final K[] x, final K[] y, final int from, final int to) {
final int len = to - from;
if (len < QUICKSORT_NO_REC) {
selectionSort(x, y, from, to);
return;
}
// Choose a partition element, v
int m = from + len / 2;
int l = from;
int n = to - 1;
if (len > QUICKSORT_MEDIAN_OF_9) { // Big arrays, pseudomedian of 9
int s = len / 8;
l = med3(x, y, l, l + s, l + 2 * s);
m = med3(x, y, m - s, m, m + s);
n = med3(x, y, n - 2 * s, n - s, n);
}
m = med3(x, y, l, m, n); // Mid-size, med of 3
final K v = x[m], w = y[m];
// Establish Invariant: v* (v)* v*
int a = from, b = a, c = to - 1, d = c;
while (true) {
int comparison, t;
while (b <= c && (comparison = (t = (((Comparable)(x[b])).compareTo(v))) == 0 ? (((Comparable)(y[b])).compareTo(w)) : t) <= 0) {
if (comparison == 0) swap(x, y, a++, b);
b++;
}
while (c >= b && (comparison = (t = (((Comparable)(x[c])).compareTo(v))) == 0 ? (((Comparable)(y[c])).compareTo(w)) : t) >= 0) {
if (comparison == 0) swap(x, y, c, d--);
c--;
}
if (b > c) break;
swap(x, y, b++, c--);
}
// Swap partition elements back to middle
int s;
s = Math.min(a - from, b - a);
swap(x, y, from, b - s, s);
s = Math.min(d - c, to - d - 1);
swap(x, y, b, to - s, s);
// Recursively sort non-partition-elements
if ((s = b - a) > 1) quickSort(x, y, from, from + s);
if ((s = d - c) > 1) quickSort(x, y, to - s, to);
}
/**
* Sorts two arrays according to the natural lexicographical ascending order using quicksort.
*
*
* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas McIlroy,
* “Engineering a Sort Function”, Software: Practice and Experience, 23(11),
* pages 1249−1265, 1993.
*
*
* This method implements a lexicographical sorting of the arguments. Pairs of elements in
* the same position in the two provided arrays will be considered a single key, and permuted
* accordingly. In the end, either {@code x[i] < x[i + 1]} or {@code x[i]
* == x[i + 1]} and {@code y[i] ≤ y[i + 1]}.
*
* @param x the first array to be sorted.
* @param y the second array to be sorted.
*/
public static void quickSort(final K[] x, final K[] y) {
ensureSameLength(x, y);
quickSort(x, y, 0, x.length);
}
protected static class ForkJoinQuickSort2 extends RecursiveAction {
private static final long serialVersionUID = 1L;
private final int from;
private final int to;
private final K[] x, y;
public ForkJoinQuickSort2(final K[] x, final K[] y, final int from, final int to) {
this.from = from;
this.to = to;
this.x = x;
this.y = y;
}
@Override
@SuppressWarnings("unchecked")
protected void compute() {
final K[] x = this.x;
final K[] y = this.y;
final int len = to - from;
if (len < PARALLEL_QUICKSORT_NO_FORK) {
quickSort(x, y, from, to);
return;
}
// Choose a partition element, v
int m = from + len / 2;
int l = from;
int n = to - 1;
int s = len / 8;
l = med3(x, y, l, l + s, l + 2 * s);
m = med3(x, y, m - s, m, m + s);
n = med3(x, y, n - 2 * s, n - s, n);
m = med3(x, y, l, m, n);
final K v = x[m], w = y[m];
// Establish Invariant: v* (v)* v*
int a = from, b = a, c = to - 1, d = c;
while (true) {
int comparison, t;
while (b <= c && (comparison = (t = (((Comparable)(x[b])).compareTo(v))) == 0 ? (((Comparable)(y[b])).compareTo(w)) : t) <= 0) {
if (comparison == 0) swap(x, y, a++, b);
b++;
}
while (c >= b && (comparison = (t = (((Comparable)(x[c])).compareTo(v))) == 0 ? (((Comparable)(y[c])).compareTo(w)) : t) >= 0) {
if (comparison == 0) swap(x, y, c, d--);
c--;
}
if (b > c) break;
swap(x, y, b++, c--);
}
// Swap partition elements back to middle
int t;
s = Math.min(a - from, b - a);
swap(x, y, from, b - s, s);
s = Math.min(d - c, to - d - 1);
swap(x, y, b, to - s, s);
s = b - a;
t = d - c;
// Recursively sort non-partition-elements
if (s > 1 && t > 1) invokeAll(new ForkJoinQuickSort2<>(x, y, from, from + s), new ForkJoinQuickSort2<>(x, y, to - t, to));
else if (s > 1) invokeAll(new ForkJoinQuickSort2<>(x, y, from, from + s));
else invokeAll(new ForkJoinQuickSort2<>(x, y, to - t, to));
}
}
/**
* Sorts the specified range of elements of two arrays according to the natural lexicographical
* ascending order using a parallel quicksort.
*
*
* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas McIlroy,
* “Engineering a Sort Function”, Software: Practice and Experience, 23(11),
* pages 1249−1265, 1993.
*
*
* This method implements a lexicographical sorting of the arguments. Pairs of elements in
* the same position in the two provided arrays will be considered a single key, and permuted
* accordingly. In the end, either {@code x[i] < x[i + 1]} or {@code x[i]
* == x[i + 1]} and {@code y[i] ≤ y[i + 1]}.
*
* @param x the first array to be sorted.
* @param y the second array to be sorted.
* @param from the index of the first element (inclusive) to be sorted.
* @param to the index of the last element (exclusive) to be sorted.
*/
public static void parallelQuickSort(final K[] x, final K[] y, final int from, final int to) {
ForkJoinPool pool = getPool();
if (to - from < PARALLEL_QUICKSORT_NO_FORK || pool.getParallelism() == 1) quickSort(x, y, from, to);
else {
pool.invoke(new ForkJoinQuickSort2<>(x, y, from, to));
}
}
/**
* Sorts two arrays according to the natural lexicographical ascending order using a parallel
* quicksort.
*
*
* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas McIlroy,
* “Engineering a Sort Function”, Software: Practice and Experience, 23(11),
* pages 1249−1265, 1993.
*
*
* This method implements a lexicographical sorting of the arguments. Pairs of elements in
* the same position in the two provided arrays will be considered a single key, and permuted
* accordingly. In the end, either {@code x[i] < x[i + 1]} or {@code x[i]
* == x[i + 1]} and {@code y[i] ≤ y[i + 1]}.
*
* @param x the first array to be sorted.
* @param y the second array to be sorted.
*/
public static void parallelQuickSort(final K[] x, final K[] y) {
ensureSameLength(x, y);
parallelQuickSort(x, y, 0, x.length);
}
/**
* Sorts an array according to the natural ascending order, potentially dynamically choosing an
* appropriate algorithm given the type and size of the array. The sort will be stable unless it is
* provable that it would be impossible for there to be any difference between a stable and unstable
* sort for the given type, in which case stability is meaningless and thus unspecified.
*
* @param a the array to be sorted.
* @param from the index of the first element (inclusive) to be sorted.
* @param to the index of the last element (exclusive) to be sorted.
* @since 8.3.0
*/
public static void unstableSort(final K a[], final int from, final int to) {
quickSort(a, from, to);
}
/**
* Sorts the specified range of elements according to the natural ascending order potentially
* dynamically choosing an appropriate algorithm given the type and size of the array. No assurance
* is made of the stability of the sort.
*
* @param a the array to be sorted.
* @since 8.3.0
*/
public static void unstableSort(final K a[]) {
unstableSort(a, 0, a.length);
}
/**
* Sorts the specified range of elements according to the order induced by the specified comparator,
* potentially dynamically choosing an appropriate algorithm given the type and size of the array.
* No assurance is made of the stability of the sort.
*
* @param a the array to be sorted.
* @param from the index of the first element (inclusive) to be sorted.
* @param to the index of the last element (exclusive) to be sorted.
* @param comp the comparator to determine the sorting order.
* @since 8.3.0
*/
public static void unstableSort(final K a[], final int from, final int to, Comparator comp) {
quickSort(a, from, to, comp);
}
/**
* Sorts an array according to the order induced by the specified comparator, potentially
* dynamically choosing an appropriate algorithm given the type and size of the array. No assurance
* is made of the stability of the sort.
*
* @param a the array to be sorted.
* @param comp the comparator to determine the sorting order.
* @since 8.3.0
*/
public static void unstableSort(final K a[], Comparator comp) {
unstableSort(a, 0, a.length, comp);
}
/**
* Sorts the specified range of elements according to the natural ascending order using mergesort,
* using a given pre-filled support array.
*
*
* This sort is guaranteed to be stable: equal elements will not be reordered as a result of
* the sort. Moreover, no support arrays will be allocated.
*
* @param a the array to be sorted.
* @param from the index of the first element (inclusive) to be sorted.
* @param to the index of the last element (exclusive) to be sorted.
* @param supp a support array containing at least {@code to} elements, and whose entries are
* identical to those of {@code a} in the specified range. It can be {@code null}, in
* which case {@code a} will be cloned.
*/
@SuppressWarnings("unchecked")
public static void mergeSort(final K a[], final int from, final int to, K supp[]) {
int len = to - from;
// Insertion sort on smallest arrays
if (len < MERGESORT_NO_REC) {
insertionSort(a, from, to);
return;
}
if (supp == null) supp = java.util.Arrays.copyOf(a, to);
// Recursively sort halves of a into supp
final int mid = (from + to) >>> 1;
mergeSort(supp, from, mid, a);
mergeSort(supp, mid, to, a);
// If list is already sorted, just copy from supp to a. This is an
// optimization that results in faster sorts for nearly ordered lists.
if ((((Comparable)(supp[mid - 1])).compareTo(supp[mid]) <= 0)) {
System.arraycopy(supp, from, a, from, len);
return;
}
// Merge sorted halves (now in supp) into a
for (int i = from, p = from, q = mid; i < to; i++) {
if (q >= to || p < mid && (((Comparable)(supp[p])).compareTo(supp[q]) <= 0)) a[i] = supp[p++];
else a[i] = supp[q++];
}
}
/**
* Sorts the specified range of elements according to the natural ascending order using mergesort.
*
*
* This sort is guaranteed to be stable: equal elements will not be reordered as a result of
* the sort. An array as large as {@code a} will be allocated by this method.
*
* @param a the array to be sorted.
* @param from the index of the first element (inclusive) to be sorted.
* @param to the index of the last element (exclusive) to be sorted.
*/
public static void mergeSort(final K a[], final int from, final int to) {
mergeSort(a, from, to, (K[])null);
}
/**
* Sorts an array according to the natural ascending order using mergesort.
*
*
* This sort is guaranteed to be stable: equal elements will not be reordered as a result of
* the sort. An array as large as {@code a} will be allocated by this method.
*
* @param a the array to be sorted.
*/
public static void mergeSort(final K a[]) {
mergeSort(a, 0, a.length);
}
/**
* Sorts the specified range of elements according to the order induced by the specified comparator
* using mergesort, using a given pre-filled support array.
*
*
* This sort is guaranteed to be stable: equal elements will not be reordered as a result of
* the sort. Moreover, no support arrays will be allocated.
*
* @param a the array to be sorted.
* @param from the index of the first element (inclusive) to be sorted.
* @param to the index of the last element (exclusive) to be sorted.
* @param comp the comparator to determine the sorting order.
* @param supp a support array containing at least {@code to} elements, and whose entries are
* identical to those of {@code a} in the specified range. It can be {@code null}, in
* which case {@code a} will be cloned.
*/
public static void mergeSort(final K a[], final int from, final int to, Comparator comp, K supp[]) {
int len = to - from;
// Insertion sort on smallest arrays
if (len < MERGESORT_NO_REC) {
insertionSort(a, from, to, comp);
return;
}
if (supp == null) supp = java.util.Arrays.copyOf(a, to);
// Recursively sort halves of a into supp
final int mid = (from + to) >>> 1;
mergeSort(supp, from, mid, comp, a);
mergeSort(supp, mid, to, comp, a);
// If list is already sorted, just copy from supp to a. This is an
// optimization that results in faster sorts for nearly ordered lists.
if (comp.compare(supp[mid - 1], supp[mid]) <= 0) {
System.arraycopy(supp, from, a, from, len);
return;
}
// Merge sorted halves (now in supp) into a
for (int i = from, p = from, q = mid; i < to; i++) {
if (q >= to || p < mid && comp.compare(supp[p], supp[q]) <= 0) a[i] = supp[p++];
else a[i] = supp[q++];
}
}
/**
* Sorts the specified range of elements according to the order induced by the specified comparator
* using mergesort.
*
*
* This sort is guaranteed to be stable: equal elements will not be reordered as a result of
* the sort. An array as large as {@code a} will be allocated by this method.
*
* @param a the array to be sorted.
* @param from the index of the first element (inclusive) to be sorted.
* @param to the index of the last element (exclusive) to be sorted.
* @param comp the comparator to determine the sorting order.
*/
public static void mergeSort(final K a[], final int from, final int to, Comparator comp) {
mergeSort(a, from, to, comp, (K[])null);
}
/**
* Sorts an array according to the order induced by the specified comparator using mergesort.
*
*
* This sort is guaranteed to be stable: equal elements will not be reordered as a result of
* the sort. An array as large as {@code a} will be allocated by this method.
*
* @param a the array to be sorted.
* @param comp the comparator to determine the sorting order.
*/
public static void mergeSort(final K a[], Comparator comp) {
mergeSort(a, 0, a.length, comp);
}
/**
* Sorts an array according to the natural ascending order, potentially dynamically choosing an
* appropriate algorithm given the type and size of the array. The sort will be stable unless it is
* provable that it would be impossible for there to be any difference between a stable and unstable
* sort for the given type, in which case stability is meaningless and thus unspecified.
*
*
* An array as large as {@code a} may be allocated by this method.
*
* @param a the array to be sorted.
* @param from the index of the first element (inclusive) to be sorted.
* @param to the index of the last element (exclusive) to be sorted.
* @since 8.3.0
*/
public static void stableSort(final K a[], final int from, final int to) {
// Use JDK's sort, which is likely to be adaptive and still be stable.
java.util.Arrays.sort(a, from, to);
}
/**
* Sorts the specified range of elements according to the natural ascending order potentially
* dynamically choosing an appropriate algorithm given the type and size of the array. The sort will
* be stable unless it is provable that it would be impossible for there to be any difference
* between a stable and unstable sort for the given type, in which case stability is meaningless and
* thus unspecified.
*
*
* An array as large as {@code a} may be allocated by this method.
*
* @param a the array to be sorted.
* @since 8.3.0
*/
public static void stableSort(final K a[]) {
stableSort(a, 0, a.length);
}
/**
* Sorts the specified range of elements according to the order induced by the specified comparator,
* potentially dynamically choosing an appropriate algorithm given the type and size of the array.
* The sort will be stable unless it is provable that it would be impossible for there to be any
* difference between a stable and unstable sort for the given type, in which case stability is
* meaningless and thus unspecified.
*
*
* An array as large as {@code a} may be allocated by this method.
*
* @param a the array to be sorted.
* @param from the index of the first element (inclusive) to be sorted.
* @param to the index of the last element (exclusive) to be sorted.
* @param comp the comparator to determine the sorting order.
* @since 8.3.0
*/
public static void stableSort(final K a[], final int from, final int to, Comparator comp) {
// Use JDK's sort, which is likely to be adaptive and still be stable.
java.util.Arrays.sort(a, from, to, comp);
}
/**
* Sorts an array according to the order induced by the specified comparator, potentially
* dynamically choosing an appropriate algorithm given the type and size of the array. The sort will
* be stable unless it is provable that it would be impossible for there to be any difference
* between a stable and unstable sort for the given type, in which case stability is meaningless and
* thus unspecified.
*
*
* An array as large as {@code a} may be allocated by this method.
*
* @param a the array to be sorted.
* @param comp the comparator to determine the sorting order.
* @since 8.3.0
*/
public static void stableSort(final K a[], Comparator comp) {
stableSort(a, 0, a.length, comp);
}
/**
* Searches a range of the specified array for the specified value using the binary search
* algorithm. The range must be sorted prior to making this call. If it is not sorted, the results
* are undefined. If the range contains multiple elements with the specified value, there is no
* guarantee which one will be found.
*
* @param a the array to be searched.
* @param from the index of the first element (inclusive) to be searched.
* @param to the index of the last element (exclusive) to be searched.
* @param key the value to be searched for.
* @return index of the search key, if it is contained in the array; otherwise,
* {@code (-(insertion point) - 1)}. The insertion point is defined as the the
* point at which the value would be inserted into the array: the index of the first element
* greater than the key, or the length of the array, if all elements in the array are less
* than the specified key. Note that this guarantees that the return value will be ≥ 0 if
* and only if the key is found.
* @see java.util.Arrays
*/
@SuppressWarnings("unchecked")
public static int binarySearch(final K[] a, int from, int to, final K key) {
K midVal;
to--;
while (from <= to) {
final int mid = (from + to) >>> 1;
midVal = a[mid];
final int cmp = ((Comparable super K>)midVal).compareTo(key);
if (cmp < 0) from = mid + 1;
else if (cmp > 0) to = mid - 1;
else return mid;
}
return -(from + 1);
}
/**
* Searches an array for the specified value using the binary search algorithm. The range must be
* sorted prior to making this call. If it is not sorted, the results are undefined. If the range
* contains multiple elements with the specified value, there is no guarantee which one will be
* found.
*
* @param a the array to be searched.
* @param key the value to be searched for.
* @return index of the search key, if it is contained in the array; otherwise,
* {@code (-(insertion point) - 1)}. The insertion point is defined as the the
* point at which the value would be inserted into the array: the index of the first element
* greater than the key, or the length of the array, if all elements in the array are less
* than the specified key. Note that this guarantees that the return value will be ≥ 0 if
* and only if the key is found.
* @see java.util.Arrays
*/
public static int binarySearch(final K[] a, final K key) {
return binarySearch(a, 0, a.length, key);
}
/**
* Searches a range of the specified array for the specified value using the binary search algorithm
* and a specified comparator. The range must be sorted following the comparator prior to making
* this call. If it is not sorted, the results are undefined. If the range contains multiple
* elements with the specified value, there is no guarantee which one will be found.
*
* @param a the array to be searched.
* @param from the index of the first element (inclusive) to be searched.
* @param to the index of the last element (exclusive) to be searched.
* @param key the value to be searched for.
* @param c a comparator.
* @return index of the search key, if it is contained in the array; otherwise,
* {@code (-(insertion point) - 1)}. The insertion point is defined as the the
* point at which the value would be inserted into the array: the index of the first element
* greater than the key, or the length of the array, if all elements in the array are less
* than the specified key. Note that this guarantees that the return value will be ≥ 0 if
* and only if the key is found.
* @see java.util.Arrays
*/
public static int binarySearch(final K[] a, int from, int to, final K key, final Comparator c) {
K midVal;
to--;
while (from <= to) {
final int mid = (from + to) >>> 1;
midVal = a[mid];
final int cmp = c.compare(midVal, key);
if (cmp < 0) from = mid + 1;
else if (cmp > 0) to = mid - 1;
else return mid; // key found
}
return -(from + 1);
}
/**
* Searches an array for the specified value using the binary search algorithm and a specified
* comparator. The range must be sorted following the comparator prior to making this call. If it is
* not sorted, the results are undefined. If the range contains multiple elements with the specified
* value, there is no guarantee which one will be found.
*
* @param a the array to be searched.
* @param key the value to be searched for.
* @param c a comparator.
* @return index of the search key, if it is contained in the array; otherwise,
* {@code (-(insertion point) - 1)}. The insertion point is defined as the the
* point at which the value would be inserted into the array: the index of the first element
* greater than the key, or the length of the array, if all elements in the array are less
* than the specified key. Note that this guarantees that the return value will be ≥ 0 if
* and only if the key is found.
* @see java.util.Arrays
*/
public static int binarySearch(final K[] a, final K key, final Comparator c) {
return binarySearch(a, 0, a.length, key, c);
}
/**
* Shuffles the specified array fragment using the specified pseudorandom number generator.
*
* @param a the array to be shuffled.
* @param from the index of the first element (inclusive) to be shuffled.
* @param to the index of the last element (exclusive) to be shuffled.
* @param random a pseudorandom number generator.
* @return {@code a}.
*/
public static K[] shuffle(final K[] a, final int from, final int to, final Random random) {
for (int i = to - from; i-- != 0;) {
final int p = random.nextInt(i + 1);
final K t = a[from + i];
a[from + i] = a[from + p];
a[from + p] = t;
}
return a;
}
/**
* Shuffles the specified array using the specified pseudorandom number generator.
*
* @param a the array to be shuffled.
* @param random a pseudorandom number generator.
* @return {@code a}.
*/
public static K[] shuffle(final K[] a, final Random random) {
for (int i = a.length; i-- != 0;) {
final int p = random.nextInt(i + 1);
final K t = a[i];
a[i] = a[p];
a[p] = t;
}
return a;
}
/**
* Reverses the order of the elements in the specified array.
*
* @param a the array to be reversed.
* @return {@code a}.
*/
public static K[] reverse(final K[] a) {
final int length = a.length;
for (int i = length / 2; i-- != 0;) {
final K t = a[length - i - 1];
a[length - i - 1] = a[i];
a[i] = t;
}
return a;
}
/**
* Reverses the order of the elements in the specified array fragment.
*
* @param a the array to be reversed.
* @param from the index of the first element (inclusive) to be reversed.
* @param to the index of the last element (exclusive) to be reversed.
* @return {@code a}.
*/
public static K[] reverse(final K[] a, final int from, final int to) {
final int length = to - from;
for (int i = length / 2; i-- != 0;) {
final K t = a[from + length - i - 1];
a[from + length - i - 1] = a[from + i];
a[from + i] = t;
}
return a;
}
/** A type-specific content-based hash strategy for arrays. */
private static final class ArrayHashStrategy implements Hash.Strategy, java.io.Serializable {
private static final long serialVersionUID = -7046029254386353129L;
@Override
public int hashCode(final K[] o) {
return java.util.Arrays.hashCode(o);
}
@Override
public boolean equals(final K[] a, final K[] b) {
return java.util.Arrays.equals(a, b);
}
}
/**
* A type-specific content-based hash strategy for arrays.
*
*
* This hash strategy may be used in custom hash collections whenever keys are arrays, and they must
* be considered equal by content. This strategy will handle {@code null} correctly, and it is
* serializable.
*/
@SuppressWarnings({ "rawtypes" })
public static final Hash.Strategy HASH_STRATEGY = new ArrayHashStrategy();
}