me.shadaj.scalapy.numpy.NumPy.scala Maven / Gradle / Ivy
The newest version!
package me.shadaj.scalapy.numpy
import me.shadaj.scalapy.py
import me.shadaj.scalapy.py.{Reader, Writer}
import scala.reflect.ClassTag
@py.native trait NumPy extends py.Object {
def asarray[T: ClassTag](s: Seq[T])(implicit writer: Writer[T], reader: Reader[T]): NDArray[T] = {
as[py.Dynamic].asarray(s).as[NDArray[T]]
}
def array[T: ClassTag](s: Seq[Seq[T]])(implicit writer: Writer[Seq[Seq[T]]], reader: Reader[T]): NDArray[NDArray[T]] = {
as[py.Dynamic].matrix(s).as[NDArray[NDArray[T]]]
}
def matrix[T: ClassTag](s: Seq[T])(implicit writer: Writer[T], reader: Reader[T]): NDArray[T] = {
as[py.Dynamic].matrix(s).as[NDArray[T]]
}
def resize[T: ClassTag](s: Seq[T], shape: (Int, Int))(implicit writer: Writer[T], reader: Reader[T]): NDArray[NDArray[T]] = {
as[py.Dynamic].resize(s, shape).as[NDArray[NDArray[T]]]
}
def ones(size: Int): NDArray[Double] = py.native
def zeroes(size: Int): NDArray[Double] = py.native
def random: NumPyRandom = py.native
def float32: NumPyType = py.native
def linalg: NumPyLinalg = py.native
def clip[T](value: NDArray[T], low: NDArray[T], high: NDArray[T])(implicit writer: Writer[T], reader: Reader[T]): NDArray[T] = {
as[py.Dynamic].clip(value, low, high).as[NDArray[T]]
}
}