![JAR search and dependency download from the Maven repository](/logo.png)
ml.dmlc.xgboost4j.scala.example.BasicWalkThrough.scala Maven / Gradle / Ivy
The newest version!
/*
Copyright (c) 2014-2023 by Contributors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package ml.dmlc.xgboost4j.scala.example
import java.io.File
import java.io.PrintWriter
import scala.collection.mutable
import ml.dmlc.xgboost4j.java.{DMatrix => JDMatrix}
import ml.dmlc.xgboost4j.java.example.util.DataLoader
import ml.dmlc.xgboost4j.scala.{XGBoost, DMatrix}
object BasicWalkThrough {
def saveDumpModel(modelPath: String, modelInfos: Array[String]): Unit = {
val writer = new PrintWriter(modelPath, "UTF-8")
for (i <- 0 until modelInfos.length) {
writer.print(s"booster[$i]:\n")
writer.print(modelInfos(i))
}
writer.close()
}
def main(args: Array[String]): Unit = {
val trainMax = new DMatrix("../../demo/data/agaricus.txt.train?format=libsvm")
val testMax = new DMatrix("../../demo/data/agaricus.txt.test?format=libsvm")
val params = new mutable.HashMap[String, Any]()
params += "eta" -> 1.0
params += "max_depth" -> 2
params += "silent" -> 1
params += "objective" -> "binary:logistic"
val watches = new mutable.HashMap[String, DMatrix]
watches += "train" -> trainMax
watches += "test" -> testMax
val round = 2
// train a model
val booster = XGBoost.train(trainMax, params.toMap, round, watches.toMap)
// predict
val predicts = booster.predict(testMax)
// save model to model path
val file = new File("./model")
if (!file.exists()) {
file.mkdirs()
}
booster.saveModel(file.getAbsolutePath + "/xgb.model")
// dump model with feature map
val modelInfos = booster.getModelDump(file.getAbsolutePath + "/featmap.txt", false)
saveDumpModel(file.getAbsolutePath + "/dump.raw.txt", modelInfos)
// save dmatrix into binary buffer
testMax.saveBinary(file.getAbsolutePath + "/dtest.buffer")
// reload model and data
val booster2 = XGBoost.loadModel(file.getAbsolutePath + "/xgb.model")
val testMax2 = new DMatrix(file.getAbsolutePath + "/dtest.buffer")
val predicts2 = booster2.predict(testMax2)
// check predicts
println(checkPredicts(predicts, predicts2))
// build dmatrix from CSR Sparse Matrix
println("start build dmatrix from csr sparse data ...")
val spData = DataLoader.loadSVMFile("../../demo/data/agaricus.txt.train?format=libsvm")
val trainMax2 = new DMatrix(spData.rowHeaders, spData.colIndex, spData.data,
JDMatrix.SparseType.CSR)
trainMax2.setLabel(spData.labels)
// specify watchList
val watches2 = new mutable.HashMap[String, DMatrix]
watches2 += "train" -> trainMax2
watches2 += "test" -> testMax2
val booster3 = XGBoost.train(trainMax2, params.toMap, round, watches2.toMap)
val predicts3 = booster3.predict(testMax2)
println(checkPredicts(predicts, predicts3))
}
def checkPredicts(fPredicts: Array[Array[Float]], sPredicts: Array[Array[Float]]): Boolean = {
require(fPredicts.length == sPredicts.length, "the comparing predicts must be with the same " +
"length")
for (i <- fPredicts.indices) {
if (!java.util.Arrays.equals(fPredicts(i), sPredicts(i))) {
return false
}
}
true
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy