![JAR search and dependency download from the Maven repository](/logo.png)
ml.dmlc.xgboost4j.scala.example.spark.SparkTraining.scala Maven / Gradle / Ivy
The newest version!
/*
Copyright (c) 2014-2022 by Contributors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package ml.dmlc.xgboost4j.scala.example.spark
import ml.dmlc.xgboost4j.scala.spark.XGBoostClassifier
import org.apache.spark.ml.feature.{StringIndexer, VectorAssembler}
import org.apache.spark.sql.{DataFrame, SparkSession}
import org.apache.spark.sql.types.{DoubleType, StringType, StructField, StructType}
// this example works with Iris dataset (https://archive.ics.uci.edu/ml/datasets/iris)
object SparkTraining {
def main(args: Array[String]): Unit = {
if (args.length < 1) {
// scalastyle:off
println("Usage: program input_path [cpu|gpu]")
sys.exit(1)
}
val (device, numWorkers) = if (args.length == 2 && args(1) == "gpu") {
("cuda", 1)
} else ("cpu", 2)
val spark = SparkSession.builder().getOrCreate()
val inputPath = args(0)
val results: DataFrame = run(spark, inputPath, device, numWorkers)
results.show()
}
private[spark] def run(spark: SparkSession, inputPath: String,
device: String, numWorkers: Int): DataFrame = {
val schema = new StructType(Array(
StructField("sepal length", DoubleType, true),
StructField("sepal width", DoubleType, true),
StructField("petal length", DoubleType, true),
StructField("petal width", DoubleType, true),
StructField("class", StringType, true)))
val rawInput = spark.read.schema(schema).csv(inputPath)
// transform class to index to make xgboost happy
val stringIndexer = new StringIndexer()
.setInputCol("class")
.setOutputCol("classIndex")
.fit(rawInput)
val labelTransformed = stringIndexer.transform(rawInput).drop("class")
// compose all feature columns as vector
val vectorAssembler = new VectorAssembler().
setInputCols(Array("sepal length", "sepal width", "petal length", "petal width")).
setOutputCol("features")
val xgbInput = vectorAssembler.transform(labelTransformed).select("features",
"classIndex")
val Array(train, eval1, eval2, test) = xgbInput.randomSplit(Array(0.6, 0.2, 0.1, 0.1))
/**
* setup spark.scheduler.barrier.maxConcurrentTasksCheck.interval and
* spark.scheduler.barrier.maxConcurrentTasksCheck.maxFailures to make this application
* if it cannot get enough resources to get 2 workers within interval * maxFailures s
*
* setup "checkpoint_path" -> "/checkpoints" and "checkpoint_interval" -> 2 to save
* checkpoint for every two iterations
*/
val xgbParam = Map("eta" -> 0.1f,
"max_depth" -> 2,
"objective" -> "multi:softprob",
"num_class" -> 3,
"num_round" -> 100,
"num_workers" -> numWorkers,
"device" -> device,
"eval_sets" -> Map("eval1" -> eval1, "eval2" -> eval2))
val xgbClassifier = new XGBoostClassifier(xgbParam).
setFeaturesCol("features").
setLabelCol("classIndex")
val xgbClassificationModel = xgbClassifier.fit(train)
xgbClassificationModel.transform(test)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy