ml.dmlc.xgboost4j.java.example.BasicWalkThrough Maven / Gradle / Ivy
The newest version!
/*
Copyright (c) 2014-2023 by Contributors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package ml.dmlc.xgboost4j.java.example;
import java.io.File;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.HashMap;
import ml.dmlc.xgboost4j.java.Booster;
import ml.dmlc.xgboost4j.java.DMatrix;
import ml.dmlc.xgboost4j.java.XGBoost;
import ml.dmlc.xgboost4j.java.XGBoostError;
import ml.dmlc.xgboost4j.java.example.util.DataLoader;
/**
* a simple example of java wrapper for xgboost
*
* @author hzx
*/
public class BasicWalkThrough {
public static boolean checkPredicts(float[][] fPredicts, float[][] sPredicts) {
if (fPredicts.length != sPredicts.length) {
return false;
}
for (int i = 0; i < fPredicts.length; i++) {
if (!Arrays.equals(fPredicts[i], sPredicts[i])) {
return false;
}
}
return true;
}
public static void saveDumpModel(String modelPath, String[] modelInfos) throws IOException {
try{
PrintWriter writer = new PrintWriter(modelPath, "UTF-8");
for(int i = 0; i < modelInfos.length; ++ i) {
writer.print("booster[" + i + "]:\n");
writer.print(modelInfos[i]);
}
writer.close();
} catch (Exception e) {
e.printStackTrace();
}
}
public static void main(String[] args) throws IOException, XGBoostError {
// load file from text file, also binary buffer generated by xgboost4j
DMatrix trainMat = new DMatrix("../../demo/data/agaricus.txt.train?format=libsvm");
DMatrix testMat = new DMatrix("../../demo/data/agaricus.txt.test?format=libsvm");
HashMap params = new HashMap();
params.put("eta", 1.0);
params.put("max_depth", 2);
params.put("silent", 1);
params.put("objective", "binary:logistic");
HashMap watches = new HashMap();
watches.put("train", trainMat);
watches.put("test", testMat);
//set round
int round = 2;
//train a boost model
Booster booster = XGBoost.train(trainMat, params, round, watches, null, null);
//predict
float[][] predicts = booster.predict(testMat);
//save model to modelPath
File file = new File("./model");
if (!file.exists()) {
file.mkdirs();
}
String modelPath = "./model/xgb.model";
booster.saveModel(modelPath);
//dump model with feature map
String[] modelInfos = booster.getModelDump("../../demo/data/featmap.txt", false);
saveDumpModel("./model/dump.raw.txt", modelInfos);
//save dmatrix into binary buffer
testMat.saveBinary("./model/dtest.buffer");
//reload model and data
Booster booster2 = XGBoost.loadModel("./model/xgb.model");
DMatrix testMat2 = new DMatrix("./model/dtest.buffer");
float[][] predicts2 = booster2.predict(testMat2);
//check the two predicts
System.out.println(checkPredicts(predicts, predicts2));
System.out.println("start build dmatrix from csr sparse data ...");
//build dmatrix from CSR Sparse Matrix
DataLoader.CSRSparseData spData =
DataLoader.loadSVMFile("../../demo/data/agaricus.txt.train?format=libsvm");
DMatrix trainMat2 = new DMatrix(spData.rowHeaders, spData.colIndex, spData.data,
DMatrix.SparseType.CSR, 127);
trainMat2.setLabel(spData.labels);
//specify watchList
HashMap watches2 = new HashMap();
watches2.put("train", trainMat2);
watches2.put("test", testMat2);
Booster booster3 = XGBoost.train(trainMat2, params, round, watches2, null, null);
float[][] predicts3 = booster3.predict(testMat2);
//check predicts
System.out.println(checkPredicts(predicts, predicts3));
}
}