ml.dmlc.xgboost4j.java.example.PredictLeafIndices Maven / Gradle / Ivy
The newest version!
/*
Copyright (c) 2014 by Contributors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package ml.dmlc.xgboost4j.java.example;
import java.util.Arrays;
import java.util.HashMap;
import ml.dmlc.xgboost4j.java.Booster;
import ml.dmlc.xgboost4j.java.DMatrix;
import ml.dmlc.xgboost4j.java.XGBoost;
import ml.dmlc.xgboost4j.java.XGBoostError;
/**
* predict leaf indices
*
* @author hzx
*/
public class PredictLeafIndices {
public static void main(String[] args) throws XGBoostError {
// load file from text file, also binary buffer generated by xgboost4j
DMatrix trainMat = new DMatrix("../../demo/data/agaricus.txt.train?format=libsvm");
DMatrix testMat = new DMatrix("../../demo/data/agaricus.txt.test?format=libsvm");
//specify parameters
HashMap params = new HashMap();
params.put("eta", 1.0);
params.put("max_depth", 2);
params.put("silent", 1);
params.put("objective", "binary:logistic");
//specify watchList
HashMap watches = new HashMap();
watches.put("train", trainMat);
watches.put("test", testMat);
//train a booster
int round = 3;
Booster booster = XGBoost.train(trainMat, params, round, watches, null, null);
//predict using first 2 tree
float[][] leafindex = booster.predictLeaf(testMat, 2);
for (float[] leafs : leafindex) {
System.out.println(Arrays.toString(leafs));
}
//predict all trees
leafindex = booster.predictLeaf(testMat, 0);
for (float[] leafs : leafindex) {
System.out.println(Arrays.toString(leafs));
}
}
}