ml.dmlc.xgboost4j.java.example.util.CustomEval Maven / Gradle / Ivy
/*
Copyright (c) 2014 by Contributors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package ml.dmlc.xgboost4j.java.example.util;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import ml.dmlc.xgboost4j.java.DMatrix;
import ml.dmlc.xgboost4j.java.IEvaluation;
import ml.dmlc.xgboost4j.java.XGBoostError;
/**
* a util evaluation class for examples
*
* @author hzx
*/
public class CustomEval implements IEvaluation {
private static final Log logger = LogFactory.getLog(CustomEval.class);
String evalMetric = "custom_error";
@Override
public String getMetric() {
return evalMetric;
}
@Override
public float eval(float[][] predicts, DMatrix dmat) {
float error = 0f;
float[] labels;
try {
labels = dmat.getLabel();
} catch (XGBoostError ex) {
logger.error(ex);
return -1f;
}
int nrow = predicts.length;
for (int i = 0; i < nrow; i++) {
if (labels[i] == 0f && predicts[i][0] > 0.5) {
error++;
} else if (labels[i] == 1f && predicts[i][0] <= 0.5) {
error++;
}
}
return error / labels.length;
}
}