ml.dmlc.xgboost4j.scala.example.util.CustomEval.scala Maven / Gradle / Ivy
/*
Copyright (c) 2014 by Contributors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package ml.dmlc.xgboost4j.scala.example.util
import ml.dmlc.xgboost4j.java.XGBoostError
import ml.dmlc.xgboost4j.scala.{DMatrix, EvalTrait}
import org.apache.commons.logging.{Log, LogFactory}
class CustomEval extends EvalTrait {
private val logger: Log = LogFactory.getLog(classOf[CustomEval])
/**
* get evaluate metric
*
* @return evalMetric
*/
override def getMetric: String = {
"custom_error"
}
/**
* evaluate with predicts and data
*
* @param predicts predictions as array
* @param dmat data matrix to evaluate
* @return result of the metric
*/
override def eval(predicts: Array[Array[Float]], dmat: DMatrix): Float = {
var error: Float = 0f
var labels: Array[Float] = null
try {
labels = dmat.getLabel
} catch {
case ex: XGBoostError =>
logger.error(ex)
return -1f
}
val nrow: Int = predicts.length
for (i <- 0 until nrow) {
if (labels(i) == 0.0 && predicts(i)(0) > 0.5) {
error += 1
} else if (labels(i) == 1.0 && predicts(i)(0) <= 0.5) {
error += 1
}
}
error / labels.length
}
}