![JAR search and dependency download from the Maven repository](/logo.png)
ml.dmlc.xgboost4j.scala.example.PredictFirstNTree.scala Maven / Gradle / Ivy
The newest version!
/*
Copyright (c) 2014 by Contributors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package ml.dmlc.xgboost4j.scala.example
import scala.collection.mutable
import ml.dmlc.xgboost4j.scala.example.util.CustomEval
import ml.dmlc.xgboost4j.scala.{XGBoost, DMatrix}
object PredictFirstNTree {
def main(args: Array[String]): Unit = {
val trainMat = new DMatrix("../../demo/data/agaricus.txt.train?format=libsvm")
val testMat = new DMatrix("../../demo/data/agaricus.txt.test?format=libsvm")
val params = new mutable.HashMap[String, Any]()
params += "eta" -> 1.0
params += "max_depth" -> 2
params += "silent" -> 1
params += "objective" -> "binary:logistic"
val watches = new mutable.HashMap[String, DMatrix]
watches += "train" -> trainMat
watches += "test" -> testMat
val round = 3
// train a model
val booster = XGBoost.train(trainMat, params.toMap, round, watches.toMap)
// predict use 1 tree
val predicts1 = booster.predict(testMat, false, 1)
// by default all trees are used to do predict
val predicts2 = booster.predict(testMat)
val eval = new CustomEval
println("error of predicts1: " + eval.eval(predicts1, testMat))
println("error of predicts2: " + eval.eval(predicts2, testMat))
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy