ml.dmlc.xgboost4j.scala.spark.params.LearningTaskParams.scala Maven / Gradle / Ivy
/*
Copyright (c) 2014 by Contributors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package ml.dmlc.xgboost4j.scala.spark.params
import scala.collection.immutable.HashSet
import org.apache.spark.ml.param._
trait LearningTaskParams extends Params {
/**
* number of tasks to learn
*/
val numClasses = new IntParam(this, "num_class", "number of classes")
/**
* Specify the learning task and the corresponding learning objective.
* options: reg:linear, reg:logistic, binary:logistic, binary:logitraw, count:poisson,
* multi:softmax, multi:softprob, rank:pairwise, reg:gamma. default: reg:linear
*/
val objective = new Param[String](this, "objective", "objective function used for training," +
s" options: {${LearningTaskParams.supportedObjective.mkString(",")}",
(value: String) => LearningTaskParams.supportedObjective.contains(value))
/**
* the initial prediction score of all instances, global bias. default=0.5
*/
val baseScore = new DoubleParam(this, "base_score", "the initial prediction score of all" +
" instances, global bias")
/**
* evaluation metrics for validation data, a default metric will be assigned according to
* objective(rmse for regression, and error for classification, mean average precision for
* ranking). options: rmse, mae, logloss, error, merror, mlogloss, auc, aucpr, ndcg, map,
* gamma-deviance
*/
val evalMetric = new Param[String](this, "eval_metric", "evaluation metrics for validation" +
" data, a default metric will be assigned according to objective (rmse for regression, and" +
" error for classification, mean average precision for ranking), options: " +
s" {${LearningTaskParams.supportedEvalMetrics.mkString(",")}}",
(value: String) => LearningTaskParams.supportedEvalMetrics.contains(value))
/**
* group data specify each group sizes for ranking task. To correspond to partition of
* training data, it is nested.
*/
val groupData = new GroupDataParam(this, "groupData", "group data specify each group size" +
" for ranking task. To correspond to partition of training data, it is nested.")
/**
* Initial prediction (aka base margin) column name.
*/
val baseMarginCol = new Param[String](this, "baseMarginCol", "base margin column name")
/**
* Instance weights column name.
*/
val weightCol = new Param[String](this, "weightCol", "weight column name")
/**
* Fraction of training points to use for testing.
*/
val trainTestRatio = new DoubleParam(this, "trainTestRatio",
"fraction of training points to use for testing",
ParamValidators.inRange(0, 1))
/**
* If non-zero, the training will be stopped after a specified number
* of consecutive increases in any evaluation metric.
*/
val numEarlyStoppingRounds = new IntParam(this, "numEarlyStoppingRounds",
"number of rounds of decreasing eval metric to tolerate before " +
"stopping the training",
(value: Int) => value == 0 || value > 1)
setDefault(objective -> "reg:linear", baseScore -> 0.5, numClasses -> 2, groupData -> null,
baseMarginCol -> "baseMargin", weightCol -> "weight", trainTestRatio -> 1.0,
numEarlyStoppingRounds -> 0)
}
private[spark] object LearningTaskParams {
val supportedObjective = HashSet("reg:linear", "reg:logistic", "binary:logistic",
"binary:logitraw", "count:poisson", "multi:softmax", "multi:softprob", "rank:pairwise",
"reg:gamma")
val supportedEvalMetrics = HashSet("rmse", "mae", "logloss", "error", "merror", "mlogloss",
"auc", "aucpr", "ndcg", "map", "gamma-deviance")
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy