ml.shifu.guagua.example.lnr.LinearRegressionMaster Maven / Gradle / Ivy
/*
* Copyright [2013-2014] PayPal Software Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package ml.shifu.guagua.example.lnr;
import java.util.Arrays;
import java.util.Random;
import ml.shifu.guagua.master.AbstractMasterComputable;
import ml.shifu.guagua.master.MasterContext;
import ml.shifu.guagua.util.NumberFormatUtils;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* {@link LinearRegressionMaster} defines logic to update global linear regression model.
*
*
* At first iteration, master builds a random model then send to all workers to start computing. This is to make all
* workers use the same model at the starting time.
*
*
* At other iterations, master works:
*
* - 1. Accumulate all gradients from workers.
* - 2. Update global models by using accumulated gradients.
* - 3. Send new global model to workers by returning model parameters.
*
*/
public class LinearRegressionMaster extends AbstractMasterComputable {
private static final Logger LOG = LoggerFactory.getLogger(LinearRegressionMaster.class);
private static final Random RANDOM = new Random();
private int inputNum;
private double[] weights;
private double learnRate;
@Override
public void init(MasterContext context) {
this.inputNum = NumberFormatUtils.getInt(LinearRegressionContants.LR_INPUT_NUM,
LinearRegressionContants.LR_INPUT_DEFAULT_NUM);
this.learnRate = NumberFormatUtils.getDouble(LinearRegressionContants.LR_LEARNING_RATE,
LinearRegressionContants.LR_LEARNING_DEFAULT_RATE);
// not initialized and not first iteration, should be fault tolerence, recover state in LogisticRegressionMaster
if(!context.isFirstIteration()) {
LinearRegressionParams lastMasterResult = context.getMasterResult();
if(lastMasterResult != null && lastMasterResult.getParameters() != null) {
// recover state in current master computable and return to workers
this.weights = lastMasterResult.getParameters();
} else {
// no weights, restarted from the very beginning, this may not happen
initWeights();
}
}
}
@Override
public LinearRegressionParams doCompute(MasterContext context) {
if(context.isFirstIteration()) {
initWeights();
} else {
double[] gradients = new double[this.inputNum + 1];
double sumError = 0.0d;
int size = 0;
for(LinearRegressionParams param: context.getWorkerResults()) {
if(param != null) {
for(int i = 0; i < gradients.length; i++) {
gradients[i] += param.getParameters()[i];
}
sumError += param.getError();
}
size++;
}
for(int i = 0; i < weights.length; i++) {
weights[i] -= learnRate * gradients[i];
}
LOG.info("DEBUG: Weights: {}", Arrays.toString(this.weights));
LOG.info("Iteration {} with error {}", context.getCurrentIteration(), sumError / size);
}
return new LinearRegressionParams(weights);
}
/**
*
*/
private void initWeights() {
weights = new double[this.inputNum + 1];
for(int i = 0; i < weights.length; i++) {
weights[i] = RANDOM.nextDouble();
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy