ml.shifu.guagua.example.lr.LogisticRegressionWorker Maven / Gradle / Ivy
/*
* Copyright [2013-2014] PayPal Software Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package ml.shifu.guagua.example.lr;
import java.io.File;
import java.io.IOException;
import java.io.Serializable;
import ml.shifu.guagua.hadoop.io.GuaguaLineRecordReader;
import ml.shifu.guagua.hadoop.io.GuaguaWritableAdapter;
import ml.shifu.guagua.io.GuaguaFileSplit;
import ml.shifu.guagua.util.MemoryDiskList;
import ml.shifu.guagua.util.NumberFormatUtils;
import ml.shifu.guagua.worker.AbstractWorkerComputable;
import ml.shifu.guagua.worker.WorkerContext;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import com.google.common.base.Splitter;
/**
* {@link LogisticRegressionWorker} defines logic to accumulate local logistic regression gradients.
*
*
* At first iteration, wait for master to use the consistent initiated model.
*
*
* At other iterations, workers include:
*
* - 1. Update local model by using global model from last step..
* - 2. Accumulate gradients by using local worker input data.
* - 3. Send new local gradients to master by returning parameters.
*
*/
public class LogisticRegressionWorker
extends
AbstractWorkerComputable, GuaguaWritableAdapter> {
private static final Logger LOG = LoggerFactory.getLogger(LogisticRegressionWorker.class);
/**
* Input column number
*/
private int inputNum;
/**
* Output column number
*/
private int outputNum;
/**
* In-memory data which located in memory at the first iteration.
*/
private MemoryDiskList dataList;
/**
* Local logistic regression model.
*/
private double[] weights;
/**
* A splitter to split data with specified delimiter.
*/
private Splitter splitter = Splitter.on(",");
@Override
public void initRecordReader(GuaguaFileSplit fileSplit) throws IOException {
this.setRecordReader(new GuaguaLineRecordReader(fileSplit));
}
@Override
public void init(WorkerContext context) {
this.inputNum = NumberFormatUtils.getInt(LogisticRegressionContants.LR_INPUT_NUM,
LogisticRegressionContants.LR_INPUT_DEFAULT_NUM);
this.outputNum = 1;
double memoryFraction = Double.valueOf(context.getProps().getProperty("guagua.data.memoryFraction", "0.5"));
String tmpFolder = context.getProps().getProperty("guagua.data.tmpfolder", System.getProperty("user.dir"));
this.dataList = new MemoryDiskList((long) (Runtime.getRuntime().maxMemory() * memoryFraction), tmpFolder
+ File.separator + System.currentTimeMillis());
// cannot find a good place to close these two data set, using shutdown hook
Runtime.getRuntime().addShutdownHook(new Thread(new Runnable() {
@Override
public void run() {
LogisticRegressionWorker.this.dataList.close();
LogisticRegressionWorker.this.dataList.clear();
}
}));
}
@Override
public LogisticRegressionParams doCompute(WorkerContext context) {
if(context.isFirstIteration()) {
return new LogisticRegressionParams();
} else {
this.weights = context.getLastMasterResult().getParameters();
double[] gradients = new double[this.inputNum + 1];
double finalError = 0.0d;
int size = 0;
this.dataList.reOpen();
for(Data data: dataList) {
double error = sigmoid(data.inputs, this.weights) - data.outputs[0];
finalError += error * error / 2;
for(int i = 0; i < gradients.length; i++) {
gradients[i] += error * data.inputs[i];
}
size++;
}
LOG.info("Iteration {} with error {}", context.getCurrentIteration(), finalError / size);
return new LogisticRegressionParams(gradients, finalError / size);
}
}
/**
* Compute sigmoid value by dot operation of two vectors.
*/
private double sigmoid(double[] inputs, double[] weights) {
double value = 0.0d;
for(int i = 0; i < weights.length; i++) {
value += weights[i] * inputs[i];
}
return 1.0d / (1.0d + Math.exp(-value));
}
@Override
protected void postLoad(WorkerContext context) {
this.dataList.switchState();
}
@Override
public void load(GuaguaWritableAdapter currentKey, GuaguaWritableAdapter currentValue,
WorkerContext context) {
String line = currentValue.getWritable().toString();
double[] inputData = new double[inputNum + 1];
double[] outputData = new double[outputNum];
int count = 0, inputIndex = 0, outputIndex = 0;
inputData[inputIndex++] = 1.0d;
for(String unit: splitter.split(line)) {
if(count < inputNum) {
inputData[inputIndex++] = Double.valueOf(unit);
} else if(count >= inputNum && count < (inputNum + outputNum)) {
outputData[outputIndex++] = Double.valueOf(unit);
} else {
break;
}
count++;
}
this.dataList.append(new Data(inputData, outputData));
}
private static class Data implements Serializable {
private static final long serialVersionUID = 903201066309036170L;
public Data(double[] inputs, double[] outputs) {
this.inputs = inputs;
this.outputs = outputs;
}
private final double[] inputs;
private final double[] outputs;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy