All Downloads are FREE. Search and download functionalities are using the official Maven repository.

ml.shifu.guagua.example.nn.NNWorker Maven / Gradle / Ivy

There is a newer version: 0.7.10
Show newest version
/*
 * Copyright [2013-2014] PayPal Software Foundation
 *  
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *  
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package ml.shifu.guagua.example.nn;

import java.io.IOException;

import ml.shifu.guagua.GuaguaRuntimeException;
import ml.shifu.guagua.example.nn.meta.NNParams;
import ml.shifu.guagua.hadoop.io.GuaguaLineRecordReader;
import ml.shifu.guagua.hadoop.io.GuaguaWritableAdapter;
import ml.shifu.guagua.io.GuaguaFileSplit;
import ml.shifu.guagua.util.NumberFormatUtils;
import ml.shifu.guagua.worker.AbstractWorkerComputable;
import ml.shifu.guagua.worker.WorkerContext;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.encog.engine.network.activation.ActivationSigmoid;
import org.encog.ml.data.MLDataPair;
import org.encog.ml.data.MLDataSet;
import org.encog.ml.data.basic.BasicMLData;
import org.encog.ml.data.basic.BasicMLDataPair;
import org.encog.neural.error.LinearErrorFunction;
import org.encog.neural.flat.FlatNetwork;
import org.encog.neural.networks.BasicNetwork;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import com.google.common.base.Splitter;

/**
 * {@link NNWorker} is used to compute NN model according to splits assigned. The result will be sent to master for
 * accumulation.
 * 
 * 

* Gradients in each worker will be sent to master to update weights of model in worker, which follows Encog's * multi-core implementation. */ public class NNWorker extends AbstractWorkerComputable, GuaguaWritableAdapter> { private static final Logger LOG = LoggerFactory.getLogger(NNWorker.class); /** * Training data set */ private MLDataSet trainingData = null; /** * Testing data set */ private MLDataSet testingData = null; /** * NN algorithm runner instance. */ private Gradient gradient; /** * input record size, inc one by one. */ private long count; private int inputs; private int hiddens; private int outputs; @Override public void init(WorkerContext context) { inputs = NumberFormatUtils.getInt(context.getProps().getProperty(NNConstants.GUAGUA_NN_INPUT_NODES), NNConstants.GUAGUA_NN_DEFAULT_INPUT_NODES); hiddens = NumberFormatUtils.getInt(context.getProps().getProperty(NNConstants.GUAGUA_NN_HIDDEN_NODES), NNConstants.GUAGUA_NN_DEFAULT_HIDDEN_NODES); outputs = NumberFormatUtils.getInt(context.getProps().getProperty(NNConstants.GUAGUA_NN_OUTPUT_NODES), NNConstants.GUAGUA_NN_DEFAULT_OUTPUT_NODES); LOG.info("NNWorker is loading data into memory and disk."); double memoryFraction = Double.valueOf(context.getProps().getProperty("guagua.data.memoryFraction", "0.5")); long memoryStoreSize = (long) (Runtime.getRuntime().maxMemory() * memoryFraction); this.trainingData = new MemoryDiskMLDataSet((long) (memoryStoreSize * 0.5), "train.egb", this.inputs, this.outputs); this.testingData = new MemoryDiskMLDataSet((long) (memoryStoreSize * 0.5), "test.egb", this.inputs, this.outputs); // cannot find a good place to close these two data set, using Shutdown hook Runtime.getRuntime().addShutdownHook(new Thread(new Runnable() { @Override public void run() { ((MemoryDiskMLDataSet) (NNWorker.this.trainingData)).close(); ((MemoryDiskMLDataSet) (NNWorker.this.testingData)).close(); } })); } @Override public NNParams doCompute(WorkerContext context) { // For first iteration, we don't do anything, just wait for master to update weights in next iteration. This // make sure all workers in the 1st iteration to get the same weights. if(context.getCurrentIteration() == 1) { return buildEmptyNNParams(context); } if(context.getLastMasterResult() == null) { // This may not happen since master will set initialization weights firstly. LOG.warn("Master result of last iteration is null."); return null; } LOG.debug("Set current model with params {}", context.getLastMasterResult()); // initialize gradients if null if(gradient == null) { initGradient(this.trainingData, context.getLastMasterResult().getWeights()); } // using the weights from master to train model in current iteration this.gradient.setWeights(context.getLastMasterResult().getWeights()); this.gradient.run(); // get train errors and test errors double trainError = this.gradient.getError(); double testError = this.testingData.getRecordCount() > 0 ? (this.gradient.getNetwork() .calculateError(this.testingData)) : 0; LOG.info("NNWorker compute iteration {} (train error {} validation error {})", new Object[] { context.getCurrentIteration(), trainError, testError }); NNParams params = new NNParams(); params.setTestError(testError); params.setTrainError(trainError); params.setGradients(this.gradient.getGradients()); // prevent null point; params.setWeights(new double[0]); params.setTrainSize(this.trainingData.getRecordCount()); return params; } private void initGradient(MLDataSet training, double[] weights) { BasicNetwork network = NNUtils.generateNetwork(this.inputs, this.hiddens, this.outputs); // use the weights from master network.getFlat().setWeights(weights); FlatNetwork flat = network.getFlat(); // copy Propagation from encog double[] flatSpot = new double[flat.getActivationFunctions().length]; for(int i = 0; i < flat.getActivationFunctions().length; i++) { flatSpot[i] = flat.getActivationFunctions()[i] instanceof ActivationSigmoid ? 0.1 : 0.0; } this.gradient = new Gradient(flat, training, flatSpot, new LinearErrorFunction()); } private NNParams buildEmptyNNParams(WorkerContext workerContext) { NNParams params = new NNParams(); params.setWeights(new double[0]); params.setGradients(new double[0]); params.setTestError(0.0d); params.setTrainError(0.0d); return params; } @Override protected void postLoad(WorkerContext workerContext) { ((MemoryDiskMLDataSet) this.trainingData).endLoad(); ((MemoryDiskMLDataSet) this.testingData).endLoad(); LOG.info("- # Records of the whole data set: {}.", this.count); LOG.info("- # Records of the training data set: {}.", this.trainingData.getRecordCount()); LOG.info("- # Records of the testing data set: {}.", this.testingData.getRecordCount()); } @Override public void load(GuaguaWritableAdapter currentKey, GuaguaWritableAdapter currentValue, WorkerContext workerContext) { ++this.count; if((this.count) % 100000 == 0) { LOG.info("Read {} records.", this.count); } // use guava to iterate only once double[] ideal = new double[1]; int inputNodes = NumberFormatUtils.getInt( workerContext.getProps().getProperty(NNConstants.GUAGUA_NN_INPUT_NODES), NNConstants.GUAGUA_NN_DEFAULT_INPUT_NODES); double[] inputs = new double[inputNodes]; int i = 0; for(String input: Splitter.on(NNConstants.NN_DEFAULT_COLUMN_SEPARATOR).split( currentValue.getWritable().toString())) { if(i == 0) { ideal[i++] = NumberFormatUtils.getDouble(input, 0.0d); } else { int inputsIndex = (i++) - 1; if(inputsIndex >= inputNodes) { break; } inputs[inputsIndex] = NumberFormatUtils.getDouble(input, 0.0d); } } if(i < (inputNodes + 1)) { throw new GuaguaRuntimeException(String.format( "Not enough data columns, input nodes setting:%s, data column:%s", inputNodes, i)); } int scale = NumberFormatUtils.getInt(workerContext.getProps().getProperty(NNConstants.NN_RECORD_SCALE), 1); for(int j = 0; j < scale; j++) { double[] tmpInputs = j == 0 ? inputs : new double[inputs.length]; double[] tmpIdeal = j == 0 ? ideal : new double[ideal.length]; System.arraycopy(inputs, 0, tmpInputs, 0, inputs.length); MLDataPair pair = new BasicMLDataPair(new BasicMLData(tmpInputs), new BasicMLData(tmpIdeal)); double r = Math.random(); if(r >= 0.5d) { this.trainingData.add(pair); } else { this.testingData.add(pair); } } } /* * (non-Javadoc) * * @see ml.shifu.guagua.worker.AbstractWorkerComputable#initRecordReader(ml.shifu.guagua.io.GuaguaFileSplit) */ @Override public void initRecordReader(GuaguaFileSplit fileSplit) throws IOException { this.setRecordReader(new GuaguaLineRecordReader()); this.getRecordReader().initialize(fileSplit); } public MLDataSet getTrainingData() { return trainingData; } public void setTrainingData(MLDataSet trainingData) { this.trainingData = trainingData; } public MLDataSet getTestingData() { return testingData; } public void setTestingData(MLDataSet testingData) { this.testingData = testingData; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy