All Downloads are FREE. Search and download functionalities are using the official Maven repository.

ml.shifu.guagua.example.nn.meta.NNParams Maven / Gradle / Ivy

There is a newer version: 0.7.10
Show newest version
/*
 * Copyright [2013-2014] PayPal Software Foundation
 *  
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *  
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package ml.shifu.guagua.example.nn.meta;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.util.Arrays;

import ml.shifu.guagua.example.nn.NNUtils;
import ml.shifu.guagua.io.HaltBytable;

/**
 * NNParams are used to save NN model info which can also be stored into ZooKeeper.
 * 
 * 

* {@link #weights} is used to set model weights which is used to transfer info from master to workers. * *

* {@link #gradients} is used to accumulate all workers' gradients together in master and then use the accumulated * gradients to update neural network weights. */ public class NNParams extends HaltBytable { /** * Weights used for NN model */ private double[] weights; /** * Gradients for NN model */ private double[] gradients; /** * Current test error which can be sent to master */ private double testError = 0; /** * Current train error which can be sent to master */ private double trainError = 0; /** * Training size of each worker and master */ private long trainSize = 0; public double[] getWeights() { return weights; } public void setWeights(double[] weights) { this.weights = weights; } public double getTestError() { return testError; } public void setTestError(double testError) { this.testError = testError; } public double getTrainError() { return trainError; } public void setTrainError(double trainError) { this.trainError = trainError; } public void accumulateGradients(double[] gradients) { if(this.gradients == null) { this.gradients = new double[gradients.length]; Arrays.fill(this.gradients, 0.0); } if(this.weights == null) { this.weights = new double[gradients.length]; NNUtils.randomize(gradients.length, this.weights); } for(int i = 0; i < gradients.length; i++) { this.gradients[i] += gradients[i]; } } /** * @return the gradients */ public double[] getGradients() { return gradients; } /** * @param gradients * the gradients to set */ public void setGradients(double[] gradients) { this.gradients = gradients; } public long getTrainSize() { return trainSize; } public void setTrainSize(long trainSize) { this.trainSize = trainSize; } public void accumulateTrainSize(long size) { this.trainSize = this.getTrainSize() + size; } public void reset() { this.setTrainSize(0); if(this.gradients != null) { Arrays.fill(this.gradients, 0.0); } } @Override public void doWrite(DataOutput out) throws IOException { out.writeDouble(getTrainError()); out.writeDouble(getTestError()); out.writeLong(getTrainSize()); out.writeInt(getWeights().length); for(double weight: getWeights()) { out.writeDouble(weight); } out.writeInt(getGradients().length); for(double gradient: getGradients()) { out.writeDouble(gradient); } } @Override public void doReadFields(DataInput in) throws IOException { this.trainError = in.readDouble(); this.testError = in.readDouble(); this.trainSize = in.readLong(); int len = in.readInt(); double[] weights = new double[len]; for(int i = 0; i < len; i++) { weights[i] = in.readDouble(); } this.weights = weights; len = in.readInt(); double[] gradients = new double[len]; for(int i = 0; i < len; i++) { gradients[i] = in.readDouble(); } this.gradients = gradients; } @Override public String toString() { return String.format("NNParams [testError=%s, trainError=%s, trainSize=%s, weights=%s, gradients%s]", this.testError, this.trainError, this.trainSize, Arrays.toString(this.weights), Arrays.toString(this.gradients)); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy