net.algart.math.functions.LinearFunc Maven / Gradle / Ivy
Show all versions of algart Show documentation
/*
* The MIT License (MIT)
*
* Copyright (c) 2007-2024 Daniel Alievsky, AlgART Laboratory (http://algart.net)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
package net.algart.math.functions;
import net.algart.math.Range;
import java.util.Locale;
import java.util.Objects;
/**
* Linear function:
* f(x0, x1, ..., xn-1) =
* b + a0x0 + a1x1
* +...+ an-1xn-1.
* Note: if b==+0.0 or b==−0.0, this sum is calculated as
* +0.0 + a0x0 + a1x1
* +...+ an-1xn-1;
* according Java specification, it means that this function never returns −0.0 double value.
*
* The {@link #get} method of the instance of this class requires at least n arguments
* and throws IndexOutOfBoundsException
if the number of arguments is less.
*
* Please note: if all ai coefficients are equal (averaging function),
* this class does not spend Java memory for storing them.
* So you can freely create averaging linear function with very large number of coefficients;
* but in this case you should avoid calling {@link #a()} method.
*
* This class is immutable and thread-safe:
* there are no ways to modify settings of the created instance.
*
* @author Daniel Alievsky
*/
public abstract class LinearFunc implements Func {
/**
* {@link Func.Updatable Updatable extension} of the {@link LinearFunc linear function}
* with one argument.
*/
public static class Updatable extends LinearFunc implements Func.Updatable {
private final double aInv;
private Updatable(double b, double a) {
super(b, new double[]{a});
aInv = 1.0 / a;
}
public double get(double... x) {
return this.b + this.a[0] * x[0];
}
public double get() {
throw new IndexOutOfBoundsException("At least 1 argument required");
}
public double get(double x0) {
return this.b + this.a[0] * x0;
}
public double get(double x0, double x1) {
return this.b + this.a[0] * x0;
}
public double get(double x0, double x1, double x2) {
return this.b + this.a[0] * x0;
}
public double get(double x0, double x1, double x2, double x3) {
return this.b + this.a[0] * x0;
}
public void set(double[] x, double newResult) {
x[0] = (newResult - b) * aInv;
}
}
final double b;
final double[] a;
final int n;
final double a0;
private final boolean nonweighted;
private LinearFunc(double b, double[] a) {
Objects.requireNonNull(a, "Null a argument");
this.b = b == -0.0 ? +0.0 : b; // replacing -0.0 with +0.0 for stable results
this.n = a.length;
this.a0 = a.length == 0 ? Double.NaN : a[0];
boolean eq = true;
for (int k = 1; k < a.length; k++) {
if (a[k] != a[0]) {
eq = false;
break;
}
}
this.nonweighted = eq;
this.a = eq && a.length > 3 ? null : a.clone();
}
private LinearFunc(double b, double a, int n) {
assert n >= 3;
this.b = b == -0.0 ? +0.0 : b; // replacing -0.0 with +0.0 for stable results
this.n = n;
this.a0 = a;
this.nonweighted = true;
this.a = null;
}
/**
* Returns an instance of this class, describing the linear function with specified coefficients:
* b + a0x0 + a1x1
* +...+ an-1xn-1.
*
* The passed reference a
is not maintained by the created instance:
* if necessary, the Java array is cloned.
*
* @param b the b coefficient.
* @param a the a coefficients.
* @return the linear function with the given coefficients.
*/
public static LinearFunc getInstance(double b, double... a) {
if (a.length == 0) {
return new LinearFunc(b, a) {
public double get(double... x) {
return this.b;
}
public double get() {
return this.b;
}
public double get(double x0) {
return this.b;
}
public double get(double x0, double x1) {
return this.b;
}
public double get(double x0, double x1, double x2) {
return this.b;
}
public double get(double x0, double x1, double x2, double x3) {
return this.b;
}
};
} else if (a.length == 1) {
if (a[0] == 1.0) {
return new LinearFunc(b, a) {
public double get(double... x) {
return this.b + x[0];
}
public double get() {
throw new IndexOutOfBoundsException("At least 1 argument required");
}
public double get(double x0) {
return this.b + x0;
}
public double get(double x0, double x1) {
return this.b + x0;
}
public double get(double x0, double x1, double x2) {
return this.b + x0;
}
public double get(double x0, double x1, double x2, double x3) {
return this.b + x0;
}
};
} else {
return new LinearFunc(b, a) {
public double get(double... x) {
return this.b + this.a[0] * x[0];
}
public double get() {
throw new IndexOutOfBoundsException("At least 1 argument required");
}
public double get(double x0) {
return this.b + this.a[0] * x0;
}
public double get(double x0, double x1) {
return this.b + this.a[0] * x0;
}
public double get(double x0, double x1, double x2) {
return this.b + this.a[0] * x0;
}
public double get(double x0, double x1, double x2, double x3) {
return this.b + this.a[0] * x0;
}
};
}
} else if (a.length == 2) {
return new LinearFunc(b, a) {
public double get(double... x) {
return this.b + this.a[0] * x[0] + this.a[1] * x[1];
}
public double get() {
throw new IndexOutOfBoundsException("At least 2 arguments required");
}
public double get(double x0) {
throw new IndexOutOfBoundsException("At least 2 arguments required");
}
public double get(double x0, double x1) {
return this.b + this.a[0] * x0 + this.a[1] * x1;
}
public double get(double x0, double x1, double x2) {
return this.b + this.a[0] * x0 + this.a[1] * x1;
}
public double get(double x0, double x1, double x2, double x3) {
return this.b + this.a[0] * x0 + this.a[1] * x1;
}
};
} else {
assert a.length >= 3;
boolean eq = true;
for (int k = 1; k < a.length; k++) {
if (a[k] != a[0]) {
eq = false;
break;
}
}
if (eq) {
return getNonweightedInstance(b, a[0], a.length);
}
return new LinearFunc(b, a) {
public double get(double... x) {
double result = this.b;
for (int k = 0; k < this.n; k++) {
result += this.a[k] * x[k];
}
return result;
}
public double get() {
throw new IndexOutOfBoundsException("At least " + this.n + " arguments required");
}
public double get(double x0) {
throw new IndexOutOfBoundsException("At least " + this.n + " arguments required");
}
public double get(double x0, double x1) {
throw new IndexOutOfBoundsException("At least " + this.n + " arguments required");
}
public double get(double x0, double x1, double x2) {
if (this.n > 3) {
throw new IndexOutOfBoundsException("At least " + this.n + " arguments required");
}
return this.b + this.a[0] * x0 + this.a[1] * x1 + this.a[2] * x2;
}
public double get(double x0, double x1, double x2, double x3) {
if (this.n > 4) {
throw new IndexOutOfBoundsException("At least " + this.n + " arguments required");
}
return this.b + this.a[0] * x0 + this.a[1] * x1 + this.a[2] * x2 + this.a[3] * x3;
}
};
}
}
/**
* Returns an instance of this class, describing the linear function with the specified b
* and the specified number (n) of equal coefficients ai:
* b + a(x0 + x1 +...+ xn-1).
*
* @param b the b coefficient.
* @param a the common value of all ai coefficients.
* @param n the number of ai coefficients.
* @return the linear function with the given coefficients.
*/
public static LinearFunc getNonweightedInstance(double b, double a, int n) {
if (n < 0) {
throw new IllegalArgumentException("Negative n argument");
}
return switch (n) {
case 0 -> getInstance(b);
case 1 -> getInstance(b, a);
case 2 -> getInstance(b, a, a);
default -> new LinearFunc(b, a, n) {
public double get(double... x) {
double sum = 0.0;
for (int k = 0; k < this.n; k++) {
sum += x[k];
}
return this.b + this.a0 * sum;
}
public double get() {
throw new IndexOutOfBoundsException("At least " + this.n + " arguments required");
}
public double get(double x0) {
throw new IndexOutOfBoundsException("At least " + this.n + " arguments required");
}
public double get(double x0, double x1) {
throw new IndexOutOfBoundsException("At least " + this.n + " arguments required");
}
public double get(double x0, double x1, double x2) {
if (this.n > 3) {
throw new IndexOutOfBoundsException("At least " + this.n + " arguments required");
}
return this.b + this.a0 * (x0 + x1 + x2);
}
public double get(double x0, double x1, double x2, double x3) {
if (this.n > 4) {
throw new IndexOutOfBoundsException("At least " + this.n + " arguments required");
}
return this.b + this.a0 * (x0 + x1 + x2 + x3);
}
};
};
}
/**
* Equivalent to {@link #getNonweightedInstance(double, double, int) getNonweightedInstance(0.0, 1.0/n, n)}:
* the average from n
numbers.
*
* @param n the number of ai coefficients.
* @return the function calculating average from n
numbers.
*/
public static LinearFunc getAveragingInstance(int n) {
return getNonweightedInstance(0.0, 1.0 / n, n);
}
/**
* Returns an instance of this class describing the following linear function with one argument:
* dmin + (dmax-dmin) *
* (x-smin) / (smax-smin),
* where smin..smax is srcRange
* and dmin..dmax is destRange
.
* This function maps the source range srcRange
* to the destination range destRange
,
* excepting the only case when srcRange.{@link Range#size() size()}==0
.
* In that special case the behavior of the returned function is not specified
* (but no exceptions are thrown).
*
* @param destRange the destination range.
* @param srcRange the source range.
* @return the linear function mapping the source range to the destination range.
* @throws NullPointerException if one of the arguments is {@code null}.
*/
public static LinearFunc getInstance(Range destRange, Range srcRange) {
double mult = destRange.size() / srcRange.size();
double b = destRange.min() - srcRange.min() * mult;
return getInstance(b, mult);
}
/**
* Returns an instance of the updatable version of this class,
* describing the linear function with specified coefficients:
* b + ax0.
* The {@link Func.Updatable#set set} method of this instance sets
* x[0]=(newResult-b)*aInv
, where aInv=1.0/a
* is calculated while the instance creation.
*
* @param b the b coefficient.
* @param a the a coefficient.
* @return the updatable linear function with the given coefficients.
*/
public static Updatable getUpdatableInstance(double b, double a) {
return new Updatable(b, a);
}
public abstract double get(double... x);
public abstract double get();
public abstract double get(double x0);
public abstract double get(double x0, double x1);
public abstract double get(double x0, double x1, double x2);
public abstract double get(double x0, double x1, double x2, double x3);
/**
* Returns the number of ai coefficients.
*
* @return the number of argument of this function.
*/
public int n() {
return n;
}
/**
* Returns b coefficient of this linear function.
*
* @return b coefficient.
*/
public double b() {
return b;
}
/**
* Returns ai coefficient of this linear function.
*
* @param i the index of the coefficient.
* @return ai coefficient.
* @throws IndexOutOfBoundsException if the given index is negative or >={@link #n()}
*/
public double a(int i) {
if (a != null) {
return (a[i]);
} else {
if (i < 0 || i >= n) {
throw new IndexOutOfBoundsException("Index (" + i + ") is out of bounds 0.." + (n - 1));
}
return a0;
}
}
/**
* Returns an array containing all ai coefficients of this linear function.
*
* If {@link #isNonweighted()} method returns true
, it can be more efficient, to save memory,
* not to use this method, but to get the common value of all coefficients via {@link #a(int) a(0)} call
* (please not forget to check that {@link #n()}>0
).
*
*
The returned array is never a reference to an internal array stored in this object:
* if necessary, the internal Java array is cloned.
*
* @return all ai coefficients.
*/
public double[] a() {
double[] result = new double[this.n];
if (a != null) {
System.arraycopy(a, 0, result, 0, n);
} else {
for (int k = 0; k < n; k++) {
result[k] = a0;
}
}
return result;
}
/**
* Returns true
if {@link #n() n()}<=1
or
* if all ai coefficients are equal.
* This function works little faster in this case, because it can be simplified as
* b + a0(x0 + x1
* +...+ xn-1).
*
* @return true
if {@link #n() n()}<=1
or
* if all ai coefficients are equal.
*/
public boolean isNonweighted() {
return nonweighted;
}
/**
* Returns a brief string description of this object.
*
* @return a brief string description of this object.
*/
public String toString() {
StringBuilder sb = new StringBuilder("linear function f(");
for (int k = 0; k < n; k++) {
if (k > 0) {
sb.append(",");
}
if (k >= 2 && k < n - 2) {
sb.append("...");
k = n - 2;
} else {
sb.append("x").append(k);
}
}
sb.append(")=");
if (n > 1 && nonweighted) {
sb.append(goodFormat(a0)).append("*(x0+x1+...)");
} else {
for (int k = 0; k < a.length; k++) {
if (k > 0 && a[k] >= 0.0) {
sb.append("+");
}
sb.append(goodFormat(a[k])).append("*x").append(k);
}
}
if (b != 0.0) {
if (b >= 0.0) {
sb.append("+");
}
sb.append(goodFormat(b));
}
return sb.toString();
}
static String goodFormat(double v) {
return String.format(Locale.US, Math.abs(v) >= 0.1 && Math.abs(v) <= 1e6 ? "%.3f" : "%.3g", v);
}
}