All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.algart.matrices.spectra.SeparableFastHartleyTransform Maven / Gradle / Ivy

Go to download

Open-source Java libraries, supporting generalized smart arrays and matrices with elements of any types, including a wide set of 2D-, 3D- and multidimensional image processing and other algorithms, working with arrays and matrices.

There is a newer version: 1.4.23
Show newest version
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2007-2024 Daniel Alievsky, AlgART Laboratory (http://algart.net)
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

package net.algart.matrices.spectra;

import net.algart.arrays.*;

import java.util.Objects;

/**
 * 

Fast Hartley transform (FHT) * (in multidimensional case — the separable fast Hartley transform). * This class implements standard one-dimensional FHT algorithm over an abstract {@link SampleArray}. * It is generalized to multidimensional case by the simplest way, implemented in * {@link AbstractSpectralTransform} class (applying the transform separably to each dimension); * the resulting transformation for 2- or multidimensional {@link Matrix AlgART numeric matrices} is usually called * separable fast Hartley transform (SFHT). * The samples, processed by this class, can be both real or complex ({@link #areComplexSamplesRequired()} method * returns false). This class is especially useful in a case of real samples. In this case * it is performed faster than the classic FFT, {@link FastFourierTransform} class, because * there are no needs to allocate and process arrays of imaginary parts. * The simple relation between Hartley and Fourier transform (see below) allows to use this transform * almost in all areas where Fourier transform is applicable.

* *

More precisely, this class implements the classic fast "butterfly" algorithm (FHT) for calculating * discrete Hartley transform (DHT), described at * http://en.wikipedia.org/wiki/Discrete_Hartley_transform.

* *

Namely, let x0,x1,...,xN−1 are some * real or complex samples (represented by abstract {@link SampleArray}), and * H0,H1,...,HN−1 are their Hartley spectrum: * the result of DHT. Let's designate cas θ = cos θ + sin θ. * This class implements two possible definitions of DHT:

* *
    *
  1. direct transform is * Hk = * (0≤n<N) * xn cas(2knπ/N), * inverse transform is * xn = N −1 * (0≤k<N) * Hk cas(2knπ/N). *
  2. * *
  3. direct transform is * Hk = N −1 * (0≤n<N) * xn cas(2knπ/N), * inverse transform is * xn = * (0≤k<N) * Hk cas(2knπ/N). *
  4. *
* *

The only difference is when to normalize the result: while inverse transform (case 1) or direct transform * (case 2). The Wikipedia offers formulas of the 1st case. This class allows to calculate both variants: * the 1st case is chosen if the normalizeDirectTransform argument * of the constructors is false * or if this class is created by a constructor without this argument (it is the default behavior), * the 2nd case is chosen if the normalizeDirectTransform * argument of the constructors is true.

* *

The very useful feature of DHT is that for real samples xk the Hartley spectrum * Hk is also real — unlike DFT, when even real samples lead to complex spectrum. * As a result, the transformation algorithms in this class can process real arrays and matrices, * without imaginary parts. In this case, they work in two and even more times faster than FFT algorithms, * implemented in {@link FastFourierTransform}, and do not require allocating additional memory * for storing imaginary parts of the complex numbers.

* *

The formulas above correspond to one-dimensional transforms and specify the results of * {@link #directTransform directTransform} / {@link #inverseTransform inverseTransform} methods. * They are generalized to multidimensional case by default algorithms, implemented in * {@link AbstractSpectralTransform} class, i.e. by applying the transform separably to each dimension. * It leads to so-called multidimensional separable discrete Hartley transformations (SDHT). Below are * the formulas for 2-dimensional separable discrete Hartley transformation of the matrix xij * (0≤i<M, 0≤j<N) for the case 1 (normalizing the inverse transform):

* *
* direct: * Hij = * (0≤m<M) * (0≤n<N) * xmn cas(2imπ/M) cas(2jnπ/N),
* inverse: * xmn = (MN) −1 * (0≤i<M) * (0≤j<N) * xij cas(2imπ/M) cas(2jnπ/N). *
* *

There is the simple relation between classic DFT (discrete Fourier transform) and * SDHT (separable discrete Hartley transform).

* *

Let's consider one-dimensional case (usual DHT). * Let x0,x1,...,xN−1 are some * real or complex samples, * F0,F1,...,FN−1 are their Fourier spectrum and * H0,H1,...,HN−1 are their Hartley spectrum. * Let i is the usual imaginary unit. * For simplicity, let's consider that F−k=FN−k, * H−k=HN−k, k=1,2,... Then:

* *
* Fk = (Hk+H−k)/2 * − i (HkH−k)/2,
* Hk = (Fk+F−k)/2 * + i (FkF−k)/2,
* in a case of real samples: Hk = * Re FkIm Fk *
* *

(of course, we consider the same definition, 1 or 2, for both {@link FastFourierTransform DFT} and * {@link SeparableFastHartleyTransform SDHT} spectra).

* *

In 2-dimensional case, the relation between DFT and SDHT is the following (we similarly suppose that * F−i, j=FM−i, j, * Fi,−j=Fi, N−j, * H−i, j=HM−i, j, * Hi,−j=Hi, N−j):

* *
* Fi, j = (Hi,−j+H−i, j)/2 * − i (Hi, jH−i,−j)/2,
* Hi, j = (Fi,−j+F−i, j)/2 * + i (Fi, jF−i,−j)/2,
* in a case of real samples: Hi, j = * Re Fi,−jIm Fi, j. *
* *

In the common n-dimensional case, there are similar formulas, which express * Fi, j,...,k through a linear combination of 2n numbers * H± i,± j,...,± k and, vice versa, express * Hi, j,...,k through a linear combination of 2n numbers * F± i,± j,...,± k.

* *

This class contains the ready for use methods, allowing to convert n-dimensional * separable Hartley spectrum to Fourier one and vice versa, n=1,2,3,...:

* *
    *
  • {@link #separableHartleyToFourier(ArrayContext context, Matrix fRe, Matrix fIm, Matrix h)} * converts (real) Hartley spectrum of the real matrix to its Fourier spectrum;
  • *
  • {@link #separableHartleyToFourier(ArrayContext context, Matrix fRe, Matrix fIm, Matrix hRe, Matrix hIm)} * converts (complex) Hartley spectrum of the complex matrix to its Fourier spectrum;
  • *
  • {@link #fourierToSeparableHartley(ArrayContext context, Matrix h, Matrix fRe, Matrix fIm)} * converts Fourer spectrum of the real matrix to its (real) Hartley spectrum;
  • *
  • {@link #fourierToSeparableHartley(ArrayContext context, Matrix hRe, Matrix hIm, Matrix fRe, Matrix fIm)} * converts Fourer spectrum of the complex matrix to its (complex) Hartley spectrum.
  • *
* *

If it is necessary to get the Fourier spectrum of some real matrix, probably process it and transform * the Fourier spectrum back to the real matrix, you can use a combination of SHFT, * provided by this class, and the conversion methods listed above (cases of real matrices). * But if all that you need is to calculate a convolution of two real matrices, there is a better way: see below.

* *

One-dimensional Hartley transform, defined by the formulas 1 and 2 above, complies with the * convolution theorem. Namely, let * p0,p1,...,pN−1 is the first complex or real * numeric function and q0,q1,...,qN−1 is * the second complex or real function, and * c0,c1,...,cN−1 is * their (complex or real) convolution, defined as:

* *
* ck = * (0≤n<N) * pnqkn *
* *

(here and below we consider that Z−k=ZN−k for all samples * and spectra). * Also, let P0,P1,...,PN−1, * Q0,Q1,...,QN−1 and * C0,C1,...,CN−1 are * Hartley spectra of these functions. Then: * *

    *
  1. Ck = * (PkQ−k+P−kQk)/2 + * (PkQkP−kQ−k)/2, * if the spectra were calculated according formula 1 above (default method);
  2. * *
  3. Ck = N * ((PkQ−k+P−kQk)/2 + * (PkQkP−kQ−k)/2), * if the spectra were calculated according formula 2 above.
  4. *
* *

There are similar formulas in the common n-dimensional case, allowing to express the separable * Hartley spectrum of the convolution of two n-dimensional matrices via the spectra of the source matrices. * In particular, in the 2-dimensional case:

* *
    *
  1. Ci, j = * ((Pi, j+P−i,−j) * (Qi, j+Q−i,−j) − * (Pi,−jP−i, j) * (Qi,−jQ−i, j) + * (Pi, jP−i,−j) * (Qi,−j+Q−i, j) + * (Pi,−j+P−i, j) * (Qi, jQ−i,−j))/4, * if the spectra were calculated according formula 1 above (default method);
  2. * *
  3. Ci, j = the same expression multiplied by MN * (M and N are the dimensions of the matrices), * if the spectra were calculated according formula 2 above.
  4. *
* *

This class contains the ready for use methods, allowing to calculate a spectrum of convolution C * on the base of the given spectra P and Q of two source numeric matrices x and y * according the formulas A, C and their generalization for any number of dimensions:

* *
    *
  • {@link * #spectrumOfConvolution(ArrayContext context, Matrix cRe, Matrix cIm, Matrix pRe, Matrix pRe, Matrix qRe, Matrix qRe)} * calculates separable Hartley spectrum of the convolution C on the base of separable Hartley spectra * P and Q of two source complex matrices;
  • *
  • {@link #spectrumOfConvolution(ArrayContext context, Matrix c, Matrix p, Matrix q)} calculates * separable Hartley spectrum of the convolution C on the base of separable Hartley spectra * P and Q of two source real matrices.
  • *
* *

So, if you need to calculate a convolution of some real matrices, for example, for goals of linear filtering, * you can use the SFHT transform and the * {@link #spectrumOfConvolution(ArrayContext context, Matrix c, Matrix p, Matrix q) spectrumOfConvolution} * method, provided by this class: it is much better idea than using {@link FastFourierTransform} class.

* *

Please note: in the one-dimensional case, the spectral transofmation algorithms, implemented by * {@link #directTransformMatrix directTransformMatrix} / {@link #inverseTransformMatrix inverseTransformMatrix} * methods of this class, work with normal (i.e. high) performance only if * the passed one-dimensional AlgART matrices are stored in {@link SimpleMemoryModel} * (more precisely, if they are {@link DirectAccessible directly accessible}). * In another case, each access to every sample leads to calling accessing methods * {@link PArray#getDouble(long) getDouble} and {@link UpdatablePArray#setDouble(long, double) setDouble}, * which can work slowly in non-simple memory models like {@link LargeMemoryModel}. There is the same problem for * {@link #directTransform directTransform} / {@link #inverseTransform inverseTransform} methods, if the passed * sample arrays are created via {@link RealScalarSampleArray#asSampleArray RealScalarSampleArray.asSampleArray} * or {@link ComplexScalarSampleArray#asSampleArray ComplexScalarSampleArray.asSampleArray} methods on the base of * updatable AlgART arrays, created by memory model other than {@link SimpleMemoryModel}.

* *

For n-dimensional matrices (n≥2), this problem usually does not occur at all, even for non-simple * memory models, if you use standard implementations of * {@link #directTransformMatrix directTransformMatrix} / {@link #inverseTransformMatrix inverseTransformMatrix} * from {@link AbstractSpectralTransform} class: these implementations automatically download necessary parts * of the matrix into {@link SimpleMemoryModel}. This problem also does not occur while using * conversion methods {@link #separableHartleyToFourier(ArrayContext, Matrix, Matrix, Matrix)}, * {@link #separableHartleyToFourier(ArrayContext, Matrix, Matrix, Matrix, Matrix)}, * {@link #fourierToSeparableHartley(ArrayContext, Matrix, Matrix, Matrix)}, * {@link #fourierToSeparableHartley(ArrayContext, Matrix, Matrix, Matrix, Matrix)} and * methods of calculation of the spectrum of convolution * {@link #spectrumOfConvolution(ArrayContext, Matrix, Matrix, Matrix)} and * {@link #spectrumOfConvolution(ArrayContext, Matrix, Matrix, Matrix, Matrix, Matrix, Matrix)}, * if all processed matrices have the same float or double element types.

*/ public class SeparableFastHartleyTransform extends AbstractSpectralTransform implements SpectralTransform { final boolean normalizeDirectTransform; /** * Creates a new instance of this class, performing separable Hartley transform according to the formula 1 from * the {@link SeparableFastHartleyTransform comments to this class}. * Equivalent to {@link #SeparableFastHartleyTransform(boolean) SeparableFastHartleyTransform(false)}. * * @see #SeparableFastHartleyTransform(long) */ public SeparableFastHartleyTransform() { this.normalizeDirectTransform = FastFourierTransform.DEFAULT_NORMALIZE_DIRECT_TRANSFORM; } /** * Creates a new instance of this class, performing separable Hartley transform according to the formula 1 from * the {@link SeparableFastHartleyTransform comments to this class}. * *

The maxTempJavaMemory argument specifies the amount of Java memory (heap), * that can be used by methods of this class for internal needs. It is passed to the corresponding * constructor of {@link AbstractSpectralTransform}: see * {@link AbstractSpectralTransform#AbstractSpectralTransform(long) comments to that constructor}. * * @param maxTempJavaMemory desired maximal amount of Java memory, in bytes, allowed for allocation * by methods of this class for internal needs. * @see #SeparableFastHartleyTransform() */ public SeparableFastHartleyTransform(long maxTempJavaMemory) { super(maxTempJavaMemory); this.normalizeDirectTransform = FastFourierTransform.DEFAULT_NORMALIZE_DIRECT_TRANSFORM; } /** * Creates a new instance of this class, performing separable Hartley transform according either to the formula 1 * from the {@link SeparableFastHartleyTransform comments to this class}, * if normalizeDirectTransform argument is false, * or to the formula 2, if this argument is true. * The default value, used by the constructors without normalizeDirectTransform argument, * is false. * *

Please note: the value of normalizeDirectTransform argument affects only the transformation * methods {@link #directTransform directTransform}, {@link #inverseTransform inverseTransform}, * {@link #directTransformMatrix directTransformMatrix}, {@link #inverseTransformMatrix inverseTransformMatrix}. * This value does not matter in other methods of this class: conversions between Hartley and Fourier spectrum, * {@link #spectrumOfConvolution(ArrayContext, Matrix, Matrix, Matrix)} and * {@link #spectrumOfConvolution(ArrayContext, Matrix, Matrix, Matrix, Matrix, Matrix, Matrix)}. * * @param normalizeDirectTransform true if you want to perform normalization * (division by the number of * samples N) after the direct transform, * false (the default value) * if you want to perform normalization after the inverse transform. * @see #SeparableFastHartleyTransform(boolean, long) */ public SeparableFastHartleyTransform(boolean normalizeDirectTransform) { this.normalizeDirectTransform = normalizeDirectTransform; } /** * Creates a new instance of this class, performing separable Hartley transform according either to the formula 1 * from the {@link SeparableFastHartleyTransform comments to this class}, * if normalizeDirectTransform argument is false, * or to the formula 2, if this argument is true. * The default value, used by the constructors without normalizeDirectTransform argument, * is false. * *

Please note: the value of normalizeDirectTransform argument affects only the transformation * methods {@link #directTransform directTransform}, {@link #inverseTransform inverseTransform}, * {@link #directTransformMatrix directTransformMatrix}, {@link #inverseTransformMatrix inverseTransformMatrix}. * This value does not matter in other methods of this class: conversions between Hartley and Fourier spectrum, * {@link #spectrumOfConvolution(ArrayContext, Matrix, Matrix, Matrix)} and * {@link #spectrumOfConvolution(ArrayContext, Matrix, Matrix, Matrix, Matrix, Matrix, Matrix)}. * *

The maxTempJavaMemory argument specifies the amount of Java memory (heap), * that can be used by methods of this class for internal needs. It is passed to the corresponding * constructor of {@link AbstractSpectralTransform}: see * {@link AbstractSpectralTransform#AbstractSpectralTransform(long) comments to that constructor}. * * @param maxTempJavaMemory desired maximal amount of Java memory, in bytes, allowed for allocating * by methods of this class for internal needs. * @param normalizeDirectTransform true if you want to perform normalization * (division by the number of * samples N) after the direct transform, * false (the default value) * if you want to perform normalization after the inverse transform. * @see #SeparableFastHartleyTransform(boolean) */ public SeparableFastHartleyTransform(boolean normalizeDirectTransform, long maxTempJavaMemory) { super(maxTempJavaMemory); this.normalizeDirectTransform = normalizeDirectTransform; } /** * Converts the separable Hartley spectrum H of some real n-dimensional matrix into * the (complex) Fourier spectrum F of the same matrix. * See the {@link SeparableFastHartleyTransform comments to this class} about the relation formulas between * separable Hartley and Fourier spectra. * *

The complex matrix F is represented as a pair of AlgART matrices (fRe,fIm): * the corresponding elements of these 2 matrices contain the real and imaginary parts * of the corresponding elements of the complex matrix F. * The real matrix H is passed as an AlgART matrix h. * *

All matrices, passed to this method, must have {@link Matrix#dimEquals(Matrix) equal dimensions}. * The {@link Matrix#elementType() element type} of the passed matrices can be different, but we recommend * using the same float or double element type for all matrices. * There are no restrictions for the dimensions of the passed matrices: * {@link #isLengthAllowed(long)} method is not used here. * *

This method works correctly, if you pass the same matrix as * fRe / fIm and h. * *

If you need to convert spectrum in a case of one-dimensional * numeric AlgART arrays, you just need to convert them into one-dimensional AlgART matrices by * {@link Matrices#matrix(Array, long...)} call, for example: * {@link Matrices#matrix(Array, long...) Matrices.matrix}(array, array.length()). * * @param context the context that will be used by this algorithm; can be {@code null} * (see comments to {@link SpectralTransform}). * @param fRe the real parts of the elements of the resulting matrix (Fourier spectrum). * @param fIm the imaginary parts of the elements of the resulting matrix (Fourier spectrum). * @param h the source real matrix (separable Hartley spectrum). * @throws NullPointerException if one of fRe, fIm, * h arguments is {@code null}. * @throws SizeMismatchException if some of the passed matrices have different dimensions. * @see #separableHartleyToFourier(ArrayContext, Matrix, Matrix, Matrix, Matrix) */ public void separableHartleyToFourier( ArrayContext context, Matrix fRe, Matrix fIm, Matrix h) { Objects.requireNonNull(fRe, "Null fRe argument"); Objects.requireNonNull(fIm, "Null fIm argument"); Objects.requireNonNull(h, "Null h argument"); if (!fRe.dimEquals(fIm)) { throw new SizeMismatchException("fRe and fIm dimensions mismatch: fRe is " + fRe + ", fIm " + fIm); } if (!h.dimEquals(fRe)) { throw new SizeMismatchException("h and fRe dimensions mismatch: h is " + h + ", fRe " + fRe); } ThreadPoolFactory tpf = Arrays.getThreadPoolFactory(context); Conversions.separableHartleyToFourierRecoursive(context, maxTempJavaMemory(), fRe.array(), fIm.array(), h.array(), null, fRe.dimensions(), Math.max(1, tpf.recommendedNumberOfTasks())); } /** * Converts the separable Hartley spectrum H of some complex n-dimensional matrix into * the (complex) Fourier spectrum F of the same matrix. * See the {@link SeparableFastHartleyTransform comments to this class} about the relation formulas between * separable Hartley and Fourier spectra. * *

The complex matrix F is represented as a pair of AlgART matrices (fRe,fIm): * the corresponding elements of these 2 matrices contain the real and imaginary parts * of the corresponding elements of the complex matrix F. * Similarly, the complex matrix H is represented as a pair of AlgART matrices (hRe,hIm). * *

All matrices, passed to this method, must have {@link Matrix#dimEquals(Matrix) equal dimensions}. * The {@link Matrix#elementType() element type} of the passed matrices can be different, but we recommend * using the same float or double element type for all matrices. * There are no restrictions for the dimensions of the passed matrices: * {@link #isLengthAllowed(long)} method is not used here. * *

This method works correctly, if you pass the same complex matrix as F and H. * So, you can calculate and return the result in the source matrices. * *

If you need to convert spectrum in a case of one-dimensional * numeric AlgART arrays, you just need to convert them into one-dimensional AlgART matrices by * {@link Matrices#matrix(Array, long...)} call, for example: * {@link Matrices#matrix(Array, long...) Matrices.matrix}(array, array.length()). * * @param context the context that will be used by this algorithm; can be {@code null} * (see comments to {@link SpectralTransform}). * @param fRe the real parts of the elements of the resulting matrix (Fourier spectrum). * @param fIm the imaginary parts of the elements of the resulting matrix (Fourier spectrum). * @param hRe the real parts of the elements of the source matrix (separable Hartley spectrum). * @param hIm the imaginary parts of the elements of the source matrix (separable Hartley spectrum). * @throws NullPointerException if one of fRe, fIm, hRe, hIm * arguments is {@code null}. * @throws SizeMismatchException if some of the passed matrices have different dimensions. * @see #separableHartleyToFourier(ArrayContext, Matrix, Matrix, Matrix) */ public void separableHartleyToFourier( ArrayContext context, Matrix fRe, Matrix fIm, Matrix hRe, Matrix hIm) { Objects.requireNonNull(fRe, "Null fRe argument"); Objects.requireNonNull(fIm, "Null fIm argument"); Objects.requireNonNull(hRe, "Null hRe argument"); Objects.requireNonNull(hIm, "Null hIm argument"); if (!fRe.dimEquals(fIm)) { throw new SizeMismatchException("fRe and fIm dimensions mismatch: fRe is " + fRe + ", fIm " + fIm); } if (!hRe.dimEquals(fRe)) { throw new SizeMismatchException("hRe and fRe dimensions mismatch: hRe is " + hRe + ", fRe " + fRe); } if (!hIm.dimEquals(fRe)) { throw new SizeMismatchException("hIm and fRe dimensions mismatch: hIm is " + hIm + ", fRe " + fRe); } ThreadPoolFactory tpf = Arrays.getThreadPoolFactory(context); Conversions.separableHartleyToFourierRecoursive(context, maxTempJavaMemory(), fRe.array(), fIm.array(), hRe.array(), hIm.array(), fRe.dimensions(), Math.max(1, tpf.recommendedNumberOfTasks())); } /** * Converts the Fourier spectrum F of some real n-dimensional matrix into * the (real) separable Hartley spectrum H of the same matrix. * See the {@link SeparableFastHartleyTransform comments to this class} about the relation formulas between * separable Hartley and Fourier spectra. * If the passed Fourier spectrum is not a spectrum of a real matrix (in other words, * if the inverse Fourier transform of F matrix contains nonzero imaginary parts), * then this method still correctly calculates the real parts of the separable Hartley spectrum H. * *

The complex matrix F is represented as a pair of AlgART matrices (fRe,fIm): * the corresponding elements of these 2 matrices contain the real and imaginary parts * of the corresponding elements of the complex matrix F. * The real matrix H (or the real parts of H, if the passed F matrix * is not a spectrum of a real matrix) is passed as an AlgART matrix h. * *

All matrices, passed to this method, must have {@link Matrix#dimEquals(Matrix) equal dimensions}. * The {@link Matrix#elementType() element type} of the passed matrices can be different, but we recommend * using the same float or double element type for all matrices. * There are no restrictions for the dimensions of the passed matrices: * {@link #isLengthAllowed(long)} method is not used here. * *

This method works correctly, if you pass the same matrix as * fRe / fIm and h. * *

If you need to convert spectrum in a case of one-dimensional * numeric AlgART arrays, you just need to convert them into one-dimensional AlgART matrices by * {@link Matrices#matrix(Array, long...)} call, for example: * {@link Matrices#matrix(Array, long...) Matrices.matrix}(array, array.length()). * * @param context the context that will be used by this algorithm; can be {@code null} * (see comments to {@link SpectralTransform}). * @param h the resulting real matrix (separable Hartley spectrum). * @param fRe the real parts of the elements of the source matrix (Fourier spectrum). * @param fIm the imaginary parts of the elements of the source matrix (Fourier spectrum). * @throws NullPointerException if one of h, fRe, fIm arguments is {@code null}. * @throws SizeMismatchException if some of the passed matrices have different dimensions. * @see #fourierToSeparableHartley(ArrayContext, Matrix, Matrix, Matrix, Matrix) */ public void fourierToSeparableHartley( ArrayContext context, Matrix h, Matrix fRe, Matrix fIm) { Objects.requireNonNull(h, "Null h argument"); Objects.requireNonNull(fRe, "Null fRe argument"); Objects.requireNonNull(fIm, "Null fIm argument"); if (!fRe.dimEquals(fIm)) { throw new SizeMismatchException("fRe and fIm dimensions mismatch: fRe is " + fRe + ", fIm " + fIm); } if (!h.dimEquals(fRe)) { throw new SizeMismatchException("h and fRe dimensions mismatch: h is " + h + ", fRe " + fRe); } ThreadPoolFactory tpf = Arrays.getThreadPoolFactory(context); Conversions.fourierToSeparableHartleyRecursive(context, maxTempJavaMemory(), h.array(), null, fRe.array(), fIm.array(), fRe.dimensions(), Math.max(1, tpf.recommendedNumberOfTasks())); } /** * Converts the Fourier spectrum F of some complex n-dimensional matrix into * the (complex) separable Hartley spectrum H of the same matrix. * See the {@link SeparableFastHartleyTransform comments to this class} about the relation formulas between * separable Hartley and Fourier spectra. * *

The complex matrix F is represented as a pair of AlgART matrices (fRe,fIm): * the corresponding elements of these 2 matrices contain the real and imaginary parts * of the corresponding elements of the complex matrix F. * Similarly, the complex matrix H is represented as a pair of AlgART matrices (hRe,hIm). * *

All matrices, passed to this method, must have {@link Matrix#dimEquals(Matrix) equal dimensions}. * The {@link Matrix#elementType() element type} of the passed matrices can be different, but we recommend * using the same float or double element type for all matrices. * There are no restrictions for the dimensions of the passed matrices: * {@link #isLengthAllowed(long)} method is not used here. * *

This method works correctly, if you pass the same complex matrix as F and H. * So, you can calculate and return the result in the source matrices. * *

If you need to convert spectrum in a case of one-dimensional * numeric AlgART arrays, you just need to convert them into one-dimensional AlgART matrices by * {@link Matrices#matrix(Array, long...)} call, for example: * {@link Matrices#matrix(Array, long...) Matrices.matrix}(array, array.length()). * * @param context the context that will be used by this algorithm; can be {@code null} * (see comments to {@link SpectralTransform}). * @param hRe the real parts of the elements of the resulting matrix (separable Hartley spectrum). * @param hIm the imaginary parts of the elements of the resulting matrix (separable Hartley spectrum). * @param fRe the real parts of the elements of the source matrix (Fourier spectrum). * @param fIm the imaginary parts of the elements of the source matrix (Fourier spectrum). * @throws NullPointerException if one of hRe, hIm, fRe, fIm * arguments is {@code null}. * @throws SizeMismatchException if some of the passed matrices have different dimensions. * @see #fourierToSeparableHartley(ArrayContext, Matrix, Matrix, Matrix) */ public void fourierToSeparableHartley( ArrayContext context, Matrix hRe, Matrix hIm, Matrix fRe, Matrix fIm) { Objects.requireNonNull(hRe, "Null hRe argument"); Objects.requireNonNull(fRe, "Null fRe argument"); Objects.requireNonNull(fIm, "Null fIm argument"); Objects.requireNonNull(hIm, "Null hIm argument"); if (!fRe.dimEquals(fIm)) { throw new SizeMismatchException("fRe and fIm dimensions mismatch: fRe is " + fRe + ", fIm " + fIm); } if (!hRe.dimEquals(fRe)) { throw new SizeMismatchException("hRe and fRe dimensions mismatch: hRe is " + hRe + ", fRe " + fRe); } if (!hIm.dimEquals(fRe)) { throw new SizeMismatchException("hIm and fRe dimensions mismatch: hIm is " + hIm + ", fRe " + fRe); } ThreadPoolFactory tpf = Arrays.getThreadPoolFactory(context); Conversions.fourierToSeparableHartleyRecursive(context, maxTempJavaMemory(), hRe.array(), hIm.array(), fRe.array(), fIm.array(), fRe.dimensions(), Math.max(1, tpf.recommendedNumberOfTasks())); } /** * Calculates C, the separable Hartley spectrum of the convolution of some two real matrices, * on the base of P and Q — the separable Hartley spectra of these two real matrices. * *

The real matrices P, Q, C are passed as AlgART matrices * p, q, c. * *

All matrices, passed to this method, must have {@link Matrix#dimEquals(Matrix) equal dimensions}. * The {@link Matrix#elementType() element type} of the passed matrices can be different, but we recommend * using the same float or double element type for all matrices. * There are no restrictions for the dimensions of the passed matrices: * {@link #isLengthAllowed(long)} method is not used here. * *

This method works correctly, if you pass the same complex matrix as P and Q, * or as P and C, or as Q and C, or even as all three matrices. * So, you can calculate and return the result in one of the source matrices. * *

If you need to calculate the Hartley spectrum of convolution for a case of one-dimensional * numeric AlgART arrays, you just need to convert them into one-dimensional AlgART matrices by * {@link Matrices#matrix(Array, long...)} call, for example: * {@link Matrices#matrix(Array, long...) Matrices.matrix}(array, array.length()). * * @param context the context that will be used by this algorithm; can be {@code null} * (see comments to {@link SpectralTransform}). * @param c the resulting matrix (spectrum of the convolution). * @param p the spectrum of the 1st matrix. * @param q the spectrum of the 2nd matrix. * @throws NullPointerException if one of c, p, q arguments is {@code null}. * @throws SizeMismatchException if some of the passed matrices have different dimensions. * @see #spectrumOfConvolution(ArrayContext, Matrix, Matrix, Matrix, Matrix, Matrix, Matrix) */ public void spectrumOfConvolution( ArrayContext context, Matrix c, Matrix p, Matrix q) { Objects.requireNonNull(c, "Null c argument"); Objects.requireNonNull(p, "Null p argument"); Objects.requireNonNull(q, "Null q argument"); if (!p.dimEquals(c)) { throw new SizeMismatchException("c and p dimensions mismatch: c is " + c + ", p " + p); } if (!q.dimEquals(c)) { throw new SizeMismatchException("c and q dimensions mismatch: c is " + c + ", q " + q); } ThreadPoolFactory tpf = Arrays.getThreadPoolFactory(context); SpectraOfConvolution.separableHartleySpectrumOfConvolution(context, maxTempJavaMemory(), c.array(), null, p.array(), null, q.array(), null, c.dimensions(), Math.max(1, tpf.recommendedNumberOfTasks())); } /** * Calculates C, the separable Hartley spectrum of the convolution of some two complex matrices, * on the base of P and Q — the separable Hartley spectra of these two complex matrices. * *

The complex matrix P is represented as a pair of AlgART matrices (pRe,pIm): * the corresponding elements of these 2 matrices contain the real and imaginary parts * of the corresponding elements of the complex matrix P. * Similarly, the complex matrix Q is represented as a pair of AlgART matrices (qRe,qIm), * and the complex matrix C is represented as a pair of AlgART matrices (cRe,cIm). * *

All matrices, passed to this method, must have {@link Matrix#dimEquals(Matrix) equal dimensions}. * The {@link Matrix#elementType() element type} of the passed matrices can be different, but we recommend * using the same float or double element type for all matrices. * There are no restrictions for the dimensions of the passed matrices: * {@link #isLengthAllowed(long)} method is not used here. * *

This method works correctly, if you pass the same complex matrix as P and Q, * or as P and C, or as Q and C, or even as all three matrices. * So, you can calculate and return the result in one of the source matrices. * *

If you need to calculate the Hartley spectrum of convolution for a case of one-dimensional * numeric AlgART arrays, you just need to convert them into one-dimensional AlgART matrices by * {@link Matrices#matrix(Array, long...)} call, for example: * {@link Matrices#matrix(Array, long...) Matrices.matrix}(array, array.length()). * * @param context the context that will be used by this algorithm; can be {@code null} * (see comments to {@link SpectralTransform}). * @param cRe the real parts of the elements of the resulting matrix (spectrum of the convolution). * @param cIm the imaginary parts of the elements of the resulting matrix (spectrum of the convolution). * @param pRe the real parts of the elements of the spectrum of the 1st matrix. * @param pIm the imaginary parts of the elements of the spectrum of the 1st matrix. * @param qRe the real parts of the elements of the spectrum of the 2nd matrix. * @param qIm the imaginary parts of the elements of the spectrum of the 2nd matrix. * @throws NullPointerException if one of cRe, cIm, pRe, pIm, * qRe, qIm arguments is {@code null}. * @throws SizeMismatchException if some of the passed matrices have different dimensions. * @see #spectrumOfConvolution(ArrayContext, Matrix, Matrix, Matrix) */ public void spectrumOfConvolution( ArrayContext context, Matrix cRe, Matrix cIm, Matrix pRe, Matrix pIm, Matrix qRe, Matrix qIm) { Objects.requireNonNull(cRe, "Null cRe argument"); Objects.requireNonNull(cIm, "Null cIm argument"); Objects.requireNonNull(pRe, "Null pRe argument"); Objects.requireNonNull(pIm, "Null pIm argument"); Objects.requireNonNull(qRe, "Null qRe argument"); Objects.requireNonNull(qIm, "Null qIm argument"); if (!cRe.dimEquals(cIm)) { throw new SizeMismatchException("cRe and cIm dimensions mismatch: cRe is " + cRe + ", cIm " + cIm); } if (!pRe.dimEquals(cRe)) { throw new SizeMismatchException("cRe and pRe dimensions mismatch: cRe is " + cRe + ", pRe " + pRe); } if (!pIm.dimEquals(cRe)) { throw new SizeMismatchException("cRe and pIm dimensions mismatch: cRe is " + cRe + ", pIm " + pIm); } if (!qRe.dimEquals(cRe)) { throw new SizeMismatchException("cRe and qRe dimensions mismatch: cRe is " + cRe + ", qRe " + qRe); } if (!qIm.dimEquals(cRe)) { throw new SizeMismatchException("cRe and qIm dimensions mismatch: cRe is " + cRe + ", qIm " + qIm); } ThreadPoolFactory tpf = Arrays.getThreadPoolFactory(context); SpectraOfConvolution.separableHartleySpectrumOfConvolution(context, maxTempJavaMemory(), cRe.array(), cIm.array(), pRe.array(), pIm.array(), qRe.array(), qIm.array(), cRe.dimensions(), Math.max(1, tpf.recommendedNumberOfTasks())); } @Override public final boolean isLengthAllowed(long length) { return (length & (length - 1)) == 0; } @Override public boolean areComplexSamplesRequired() { return false; } @Override protected String unallowedLengthMessage() { return "FHT algorithm can process only 2^k elements"; } @Override protected final void transform(ArrayContext context, SampleArray samples, boolean inverse) { assert isLengthAllowed(samples.length()); boolean normalize = normalizeDirectTransform ? !inverse : inverse; // long t1 = System.nanoTime(); ReverseBits.reorderForButterfly(context == null ? null : context.part(0.0, 0.2), samples); // long t2 = System.nanoTime(); fhtMainLoop(context == null ? null : context.part(0.2, normalize ? 0.95 : 1.0), samples); // long t3 = System.nanoTime(); if (normalize) { FastFourierTransform.fftNormalize(context == null ? null : context.part(0.95, 1.0), samples); } // long t4 = System.nanoTime(); // System.out.printf("FHT time (common branch) %.3f ms reorder, %.3f ms main, %.3f normalizing%n", // (t2 - t1) * 1e-6, (t3 - t2) * 1e-6, (t4 - t3) * 1e-6); } private static final int LOG_ANGLE_STEP = 4, ANGLE_STEP = 1 << LOG_ANGLE_STEP; private static final double SQRT2 = StrictMath.sqrt(2.0); private static final double HALF_SQRT2 = 0.5 * SQRT2; private static final int S01 = 0, D01 = 1, S23 = 2, D23 = 3, S45 = 0, D45 = 1, S67 = 2, D67 = 3, // reusing SS0123 = 4, SD0123 = 5, DS0123 = 6, DD0123 = 7, SS4567 = 8, DS4567 = 9, R1 = 0, R2 = 1, L1 = 2, L2 = 2, // reusing, CAS = 3, NUMBER_OF_WORK_VARIABLES = 10; private static void fhtMainLoop(ArrayContext context, SampleArray samples) { final int logN = 63 - Long.numberOfLeadingZeros(samples.length()); if (logN <= 0) { return; // nothing to do: this check little simplifies further checks in the recursive procedure } if (samples instanceof RealScalarSampleArray.DirectZeroOffsetsRealFloatSampleArray || samples instanceof RealScalarSampleArray.DirectRealFloatSampleArray) { fhtJavaFloatMainLoop(context, samples, 0, logN, logN); } else if (samples instanceof RealScalarSampleArray.DirectZeroOffsetsRealDoubleSampleArray || samples instanceof RealScalarSampleArray.DirectRealDoubleSampleArray) { fhtJavaDoubleMainLoop(context, samples, 0, logN, logN); // The functions below are anti-optimization in the large applications in the current version of 32-bit Java 1.7 // } else if (samples instanceof RealVectorSampleArray.DirectRealFloatVectorSampleArray) { // fhtJavaFloatMultidimensionalMainLoop(context, // (RealVectorSampleArray.DirectRealFloatVectorSampleArray)samples, 0, logN, logN, // ((RealVectorSampleArray.DirectRealFloatVectorSampleArray)samples). // newCompatibleSamplesArray(NUMBER_OF_WORK_VARIABLES)); // } else if (samples instanceof RealVectorSampleArray.DirectRealDoubleVectorSampleArray) { // fhtJavaDoubleMultidimensionalMainLoop(context, // (RealVectorSampleArray.DirectRealDoubleVectorSampleArray)samples, 0, logN, logN, // ((RealVectorSampleArray.DirectRealDoubleVectorSampleArray)samples). // newCompatibleSamplesArray(NUMBER_OF_WORK_VARIABLES)); } else { fhtCommonMainLoop(context, samples, 0, logN, logN, samples.newCompatibleSamplesArray(NUMBER_OF_WORK_VARIABLES)); } } private static void fhtCommonMainLoop( ArrayContext context, SampleArray samples, final long pos, final int logN, final int originalLogN, SampleArray work) { switch (logN) { // in comments below xK, rK, yK means the source, the reordered source and the result case 1: { work.sub(0, samples, pos, pos + 1); samples.add(pos, pos, pos + 1); // y0 = x0 + x1 samples.copy(pos + 1, work, 0); // y1 = x0 - x1 break; } case 2: { work.sub(D01, samples, pos, pos + 1); work.add(S01, samples, pos, pos + 1); work.sub(D23, samples, pos + 2, pos + 3); work.add(S23, samples, pos + 2, pos + 3); samples.add(pos, work, S01, S23); // y0 = r0 + r1 + r2 + r3 = x0 + x2 + x1 + x3 samples.add(pos + 1, work, D01, D23); // y1 = r0 - r1 + r2 - r3 = x0 - x2 + x1 - x3 samples.sub(pos + 2, work, S01, S23); // y2 = r0 + r1 - r2 - r3 = x0 + x2 - x1 - x3 samples.sub(pos + 3, work, D01, D23); // y3 = r0 - r1 - r2 + r3 = x0 - x2 - x1 + x3 break; } case 3: { work.sub(D01, samples, pos, pos + 1); work.add(S01, samples, pos, pos + 1); work.sub(D23, samples, pos + 2, pos + 3); work.add(S23, samples, pos + 2, pos + 3); work.sub(DS0123, S01, S23); work.add(SS0123, S01, S23); work.sub(DD0123, D01, D23); work.add(SD0123, D01, D23); // S01, S23, D01, D23 will not be used more and can be reused work.add(S45, samples, pos + 4, pos + 5); work.add(S67, samples, pos + 6, pos + 7); work.sub(D45, samples, pos + 4, pos + 5); work.sub(D67, samples, pos + 6, pos + 7); work.sub(DS4567, S45, S67); work.add(SS4567, S45, S67); samples.sub(pos + 4, work, SS0123, SS4567); // y4 = r0 + r1 + r2 + r3 - r4 - r5 - r6 - r7 samples.add(pos, work, SS0123, SS4567); // y0 = r0 + ... + r7 = x0 + ... + x7 samples.sub(pos + 6, work, DS0123, DS4567); // y6 = r0 + r1 - r2 - r3 - r4 - r5 + r6 + r7 // = x0 + x4 - x2 - x6 - x1 - x5 + x3 + x7 samples.add(pos + 2, work, DS0123, DS4567); // y2 = r0 + r1 - r2 - r3 + r4 + r5 - r6 - r7 // = x0 + x4 - x2 - x6 + x1 + x5 - x3 - x7 work.multiplyByRealScalar(D45, SQRT2); work.multiplyByRealScalar(D67, SQRT2); samples.sub(pos + 5, work, SD0123, D45); // y5 = r0 - r1 + r2 - r3 - sqrt(2)*r4 + sqrt(2)*r5 // = x0 - x4 + x2 - x6 - sqrt(2)*x1 + sqrt(2)*x5 samples.add(pos + 1, work, SD0123, D45); // y1 = r0 - r1 + r2 - r3 + sqrt(2)*r4 - sqrt(2)*r5 // = x0 - x4 + x2 - x6 + sqrt(2)*x1 - sqrt(2)*x5 samples.sub(pos + 7, work, DD0123, D67); // y7 = r0 - r1 - r2 + r3 - sqrt(2)*r6 + sqrt(2)*r7 // = x0 - x4 - x2 + x6 - sqrt(2)*x3 + sqrt(2)*x7 samples.add(pos + 3, work, DD0123, D67); // y3 = r0 - r1 - r2 + r3 + sqrt(2)*r6 - sqrt(2)*r7 // = x0 - x4 - x2 + x6 + sqrt(2)*x3 - sqrt(2)*x7 break; } default: { assert logN > 3; final long nDiv8 = 1L << (logN - 3); final long nDiv4 = nDiv8 * 2; final long nDiv2 = nDiv4 * 2; fhtCommonMainLoop(context, samples, pos, logN - 1, originalLogN, work); fhtCommonMainLoop(context, samples, pos + nDiv2, logN - 1, originalLogN, work); final boolean allAnglesInCache = logN - 1 <= RootsOfUnity.LOG_CACHE_SIZE + LOG_ANGLE_STEP; final double rotationAngle = StrictMath.PI / nDiv2; final double sin0Half = RootsOfUnity.LOGARITHMICAL_SINE_CACHE[logN]; //sin(0.5 * rotationAngle); final double cos0M1 = -2.0 * sin0Half * sin0Half; // cos(rotationAngle)-1 final double sin0 = RootsOfUnity.LOGARITHMICAL_SINE_CACHE[logN - 1]; //sin(rotationAngle) double cos = 1.0 + cos0M1; double sin = sin0; long j1, j2; for (long j = 1; j < nDiv8; j++) { // (cos, sin) = (cos(j*2*PI/N), sin(j*2*PI/N)) j1 = pos + j; j2 = pos + nDiv2 - j; //[[Repeat.SectionStart CommonButterfly]] work.copy(R1, samples, nDiv2 + j1); work.copy(R2, samples, nDiv2 + j2); work.combineWithRealMultipliers(CAS, R1, cos, R2, sin); work.copy(L1, samples, j1); samples.add(j1, work, L1, CAS); samples.sub(nDiv2 + j1, work, L1, CAS); work.combineWithRealMultipliers(CAS, R1, sin, R2, -cos); work.copy(L2, samples, j2); samples.add(j2, work, L2, CAS); samples.sub(nDiv2 + j2, work, L2, CAS); //[[Repeat.SectionEnd CommonButterfly]] j1 = pos + nDiv4 - j; j2 = pos + nDiv4 + j; // below is the same code as above with exchanging sin<->cos //[[Repeat(INCLUDE_FROM_FILE, THIS_FILE, CommonButterfly) // cos ==> TTTT;; sin ==> cos;; TTTT ==> sin !! Auto-generated: NOT EDIT !! ]] work.copy(R1, samples, nDiv2 + j1); work.copy(R2, samples, nDiv2 + j2); work.combineWithRealMultipliers(CAS, R1, sin, R2, cos); work.copy(L1, samples, j1); samples.add(j1, work, L1, CAS); samples.sub(nDiv2 + j1, work, L1, CAS); work.combineWithRealMultipliers(CAS, R1, cos, R2, -sin); work.copy(L2, samples, j2); samples.add(j2, work, L2, CAS); samples.sub(nDiv2 + j2, work, L2, CAS); //[[Repeat.IncludeEnd]] if ((j & (ANGLE_STEP - 1)) == ANGLE_STEP - 1) { if (allAnglesInCache) { int angleIndex = (int) (j + 1) >> LOG_ANGLE_STEP << (RootsOfUnity.LOG_CACHE_SIZE - (logN - 1) + LOG_ANGLE_STEP); // (j + 1) * CACHE_SIZE/nDiv2 // cos = RootsOfUnity.quickCos(angleIndex); // sin = RootsOfUnity.quickSin(angleIndex); cos = angleIndex < RootsOfUnity.HALF_CACHE_SIZE ? RootsOfUnity.SINE_CACHE[RootsOfUnity.HALF_CACHE_SIZE - angleIndex] : -RootsOfUnity.SINE_CACHE[angleIndex - RootsOfUnity.HALF_CACHE_SIZE]; sin = angleIndex < RootsOfUnity.HALF_CACHE_SIZE ? RootsOfUnity.SINE_CACHE[angleIndex] : RootsOfUnity.SINE_CACHE[RootsOfUnity.CACHE_SIZE - angleIndex]; } else { double angle = (j + 1) * rotationAngle; double sinHalf = Math.sin(0.5 * angle); cos = 1.0 - 2.0 * sinHalf * sinHalf; // = cos(angle) sin = Math.sin(angle); } } else { // on modern JVM and CPU, the following 4 multiplications and 4 additions work faster // then extracting cos and sin from the table double temp = cos; cos = cos * cos0M1 - sin * sin0 + cos; sin = sin * cos0M1 + temp * sin0 + sin; } } j1 = pos + nDiv8; j2 = pos + nDiv2 - nDiv8; //[[Repeat(INCLUDE_FROM_FILE, THIS_FILE, CommonButterfly) // (cos|sin) ==> HALF_SQRT2;; // \s\s\s\s(work\.|samples\.|$) ==> $1 !! Auto-generated: NOT EDIT !! ]] work.copy(R1, samples, nDiv2 + j1); work.copy(R2, samples, nDiv2 + j2); work.combineWithRealMultipliers(CAS, R1, HALF_SQRT2, R2, HALF_SQRT2); work.copy(L1, samples, j1); samples.add(j1, work, L1, CAS); samples.sub(nDiv2 + j1, work, L1, CAS); work.combineWithRealMultipliers(CAS, R1, HALF_SQRT2, R2, -HALF_SQRT2); work.copy(L2, samples, j2); samples.add(j2, work, L2, CAS); samples.sub(nDiv2 + j2, work, L2, CAS); //[[Repeat.IncludeEnd]] work.sub(0, samples, pos, pos + nDiv2); samples.add(pos, pos, pos + nDiv2); // r[0] + r[n/2] samples.copy(pos + nDiv2, work, 0); // r[0] - r[n/2] work.sub(0, samples, pos + nDiv4, pos + nDiv2 + nDiv4); samples.add(pos + nDiv4, pos + nDiv4, pos + nDiv2 + nDiv4); // r[n/4] + r[3*n/4] samples.copy(pos + nDiv2 + nDiv4, work, 0); // r[n/4] - r[3*n/4] } if (context != null && (pos + (1 << logN) == samples.length())) { context.checkInterruptionAndUpdateProgress(null, logN, originalLogN); } } } //[[Repeat() Float ==> Double;; // float ==> double;; // \(double\)\s*\(([^)]+)\) ==> $1 ]] private static void fhtJavaFloatMainLoop( ArrayContext context, SampleArray samples, final int pos, final int logN, final int originalLogN) { final float[] values = samples instanceof RealScalarSampleArray.DirectZeroOffsetsRealFloatSampleArray ? ((RealScalarSampleArray.DirectZeroOffsetsRealFloatSampleArray) samples).samples : ((RealScalarSampleArray.DirectRealFloatSampleArray) samples).samples; final int ofs = pos + (samples instanceof RealScalarSampleArray.DirectZeroOffsetsRealFloatSampleArray ? 0 : ((RealScalarSampleArray.DirectRealFloatSampleArray) samples).ofs); switch (logN) { // in comments below xK, rK, yK means the source, the reordered source and the result case 1: { float temp = values[ofs] - values[ofs + 1]; values[ofs] += values[ofs + 1]; // y0 = x0 + x1 values[ofs + 1] = temp; // y1 = x0 - x1 break; } case 2: { float d01 = values[ofs] - values[ofs + 1]; float s01 = values[ofs] + values[ofs + 1]; float d23 = values[ofs + 2] - values[ofs + 3]; float s23 = values[ofs + 2] + values[ofs + 3]; values[ofs] = s01 + s23; // y0 = r0 + r1 + r2 + r3 = x0 + x2 + x1 + x3 values[ofs + 1] = d01 + d23; // y1 = r0 - r1 + r2 - r3 = x0 - x2 + x1 - x3 values[ofs + 2] = s01 - s23; // y2 = r0 + r1 - r2 - r3 = x0 + x2 - x1 - x3 values[ofs + 3] = d01 - d23; // y3 = r0 - r1 - r2 + r3 = x0 - x2 - x1 + x3 break; } case 3: { float d01 = values[ofs] - values[ofs + 1]; float s01 = values[ofs] + values[ofs + 1]; float d23 = values[ofs + 2] - values[ofs + 3]; float s23 = values[ofs + 2] + values[ofs + 3]; float ds0123 = s01 - s23; float ss0123 = s01 + s23; float dd0123 = d01 - d23; float sd0123 = d01 + d23; float s45 = values[ofs + 4] + values[ofs + 5]; float s67 = values[ofs + 6] + values[ofs + 7]; float d45 = values[ofs + 4] - values[ofs + 5]; float d67 = values[ofs + 6] - values[ofs + 7]; float ds4567 = s45 - s67; float ss4567 = s45 + s67; values[ofs + 4] = ss0123 - ss4567; // y4 = r0 + r1 + r2 + r3 - r4 - r5 - r6 - r7 values[ofs] = ss0123 + ss4567; // y0 = r0 + ... + r7 = x0 + ... + x7 values[ofs + 6] = ds0123 - ds4567; // y6 = r0 + r1 - r2 - r3 - r4 - r5 + r6 + r7 // = x0 + x4 - x2 - x6 - x1 - x5 + x3 + x7 values[ofs + 2] = ds0123 + ds4567; // y2 = r0 + r1 - r2 - r3 + r4 + r5 - r6 - r7 // = x0 + x4 - x2 - x6 + x1 + x5 - x3 - x7 d45 *= SQRT2; d67 *= SQRT2; values[ofs + 5] = sd0123 - d45; // y5 = r0 - r1 + r2 - r3 - sqrt(2)*r4 + sqrt(2)*r5 // = x0 - x4 + x2 - x6 - sqrt(2)*x1 + sqrt(2)*x5 values[ofs + 1] = sd0123 + d45; // y1 = r0 - r1 + r2 - r3 + sqrt(2)*r4 - sqrt(2)*r5 // = x0 - x4 + x2 - x6 + sqrt(2)*x1 - sqrt(2)*x5 values[ofs + 7] = dd0123 - d67; // y7 = r0 - r1 - r2 + r3 - sqrt(2)*r6 + sqrt(2)*r7 // = x0 - x4 - x2 + x6 - sqrt(2)*x3 + sqrt(2)*x7 values[ofs + 3] = dd0123 + d67; // y3 = r0 - r1 - r2 + r3 + sqrt(2)*r6 - sqrt(2)*r7 // = x0 - x4 - x2 + x6 + sqrt(2)*x3 - sqrt(2)*x7 break; } default: { assert logN > 3; final int nDiv8 = 1 << (logN - 3); final int nDiv4 = nDiv8 * 2; final int nDiv2 = nDiv4 * 2; fhtJavaFloatMainLoop(context, samples, pos, logN - 1, originalLogN); fhtJavaFloatMainLoop(context, samples, pos + nDiv2, logN - 1, originalLogN); final boolean allAnglesInCache = logN - 1 <= RootsOfUnity.LOG_CACHE_SIZE + LOG_ANGLE_STEP; final double rotationAngle = StrictMath.PI / nDiv2; final double sin0Half = RootsOfUnity.LOGARITHMICAL_SINE_CACHE[logN]; //sin(0.5 * rotationAngle); final double cos0M1 = -2.0 * sin0Half * sin0Half; // cos(rotationAngle)-1 final double sin0 = RootsOfUnity.LOGARITHMICAL_SINE_CACHE[logN - 1]; //sin(rotationAngle) double cos = 1.0 + cos0M1; double sin = sin0; int j1, j2; float r1, r2, cas, l1, l2; for (int j = 1; j < nDiv8; j++) { // (cos, sin) = (cos(j*2*PI/N), sin(j*2*PI/N)) j1 = ofs + j; j2 = ofs + nDiv2 - j; //[[Repeat.SectionStart JavaFloatButterfly]] r1 = values[nDiv2 + j1]; r2 = values[nDiv2 + j2]; cas = (float) (r1 * cos + r2 * sin); l1 = values[j1]; values[j1] = l1 + cas; values[nDiv2 + j1] = l1 - cas; cas = (float) (r1 * sin - r2 * cos); l2 = values[j2]; values[j2] = l2 + cas; values[nDiv2 + j2] = l2 - cas; //[[Repeat.SectionEnd JavaFloatButterfly]] j1 = ofs + nDiv4 - j; j2 = ofs + nDiv4 + j; // below is the same code as above with exchanging sin<->cos //[[Repeat(INCLUDE_FROM_FILE, THIS_FILE, JavaFloatButterfly) // cos ==> TTTT;; sin ==> cos;; TTTT ==> sin !! Generated by Repeater: DO NOT EDIT !! ]] r1 = values[nDiv2 + j1]; r2 = values[nDiv2 + j2]; cas = (float) (r1 * sin + r2 * cos); l1 = values[j1]; values[j1] = l1 + cas; values[nDiv2 + j1] = l1 - cas; cas = (float) (r1 * cos - r2 * sin); l2 = values[j2]; values[j2] = l2 + cas; values[nDiv2 + j2] = l2 - cas; //[[Repeat.IncludeEnd]] if ((j & (ANGLE_STEP - 1)) == ANGLE_STEP - 1) { if (allAnglesInCache) { int angleIndex = (j + 1) >> LOG_ANGLE_STEP << (RootsOfUnity.LOG_CACHE_SIZE - (logN - 1) + LOG_ANGLE_STEP); // (j + 1) * CACHE_SIZE/nDiv2 // cos = RootsOfUnity.quickCos(angleIndex); // sin = RootsOfUnity.quickSin(angleIndex); cos = angleIndex < RootsOfUnity.HALF_CACHE_SIZE ? RootsOfUnity.SINE_CACHE[RootsOfUnity.HALF_CACHE_SIZE - angleIndex] : -RootsOfUnity.SINE_CACHE[angleIndex - RootsOfUnity.HALF_CACHE_SIZE]; sin = angleIndex < RootsOfUnity.HALF_CACHE_SIZE ? RootsOfUnity.SINE_CACHE[angleIndex] : RootsOfUnity.SINE_CACHE[RootsOfUnity.CACHE_SIZE - angleIndex]; } else { double angle = (j + 1) * rotationAngle; double sinHalf = Math.sin(0.5 * angle); cos = 1.0 - 2.0 * sinHalf * sinHalf; // = cos(angle) sin = Math.sin(angle); } } else { // on modern JVM and CPU, the following 4 multiplications and 4 additions work faster // then extracting cos and sin from the table double temp = cos; cos = cos * cos0M1 - sin * sin0 + cos; sin = sin * cos0M1 + temp * sin0 + sin; } } j1 = ofs + nDiv8; j2 = ofs + nDiv2 - nDiv8; //[[Repeat(INCLUDE_FROM_FILE, THIS_FILE, JavaFloatButterfly) // (cos|sin) ==> HALF_SQRT2;; // \s\s\s\s(r1\s|r2\s|cas\s|l1\s|l2\s|values\b|$) ==> $1 !! Generated by Repeater: DO NOT EDIT !! ]] r1 = values[nDiv2 + j1]; r2 = values[nDiv2 + j2]; cas = (float) (r1 * HALF_SQRT2 + r2 * HALF_SQRT2); l1 = values[j1]; values[j1] = l1 + cas; values[nDiv2 + j1] = l1 - cas; cas = (float) (r1 * HALF_SQRT2 - r2 * HALF_SQRT2); l2 = values[j2]; values[j2] = l2 + cas; values[nDiv2 + j2] = l2 - cas; //[[Repeat.IncludeEnd]] float temp = values[ofs] - values[ofs + nDiv2]; values[ofs] += values[ofs + nDiv2]; // r[0] + r[n/2] values[ofs + nDiv2] = temp; // r[0] - r[n/2] temp = values[ofs + nDiv4] - values[ofs + nDiv2 + nDiv4]; values[ofs + nDiv4] += values[ofs + nDiv2 + nDiv4]; // r[n/4] + r[3*n/4] values[ofs + nDiv2 + nDiv4] = temp; // r[n/4] - r[3*n/4] } if (context != null && (pos + (1 << logN) == samples.length())) { context.checkInterruptionAndUpdateProgress(null, logN, originalLogN); } } } //[[Repeat.AutoGeneratedStart !! Auto-generated: NOT EDIT !! ]] private static void fhtJavaDoubleMainLoop( ArrayContext context, SampleArray samples, final int pos, final int logN, final int originalLogN) { final double[] values = samples instanceof RealScalarSampleArray.DirectZeroOffsetsRealDoubleSampleArray ? ((RealScalarSampleArray.DirectZeroOffsetsRealDoubleSampleArray) samples).samples : ((RealScalarSampleArray.DirectRealDoubleSampleArray) samples).samples; final int ofs = pos + (samples instanceof RealScalarSampleArray.DirectZeroOffsetsRealDoubleSampleArray ? 0 : ((RealScalarSampleArray.DirectRealDoubleSampleArray) samples).ofs); switch (logN) { // in comments below xK, rK, yK means the source, the reordered source and the result case 1: { double temp = values[ofs] - values[ofs + 1]; values[ofs] += values[ofs + 1]; // y0 = x0 + x1 values[ofs + 1] = temp; // y1 = x0 - x1 break; } case 2: { double d01 = values[ofs] - values[ofs + 1]; double s01 = values[ofs] + values[ofs + 1]; double d23 = values[ofs + 2] - values[ofs + 3]; double s23 = values[ofs + 2] + values[ofs + 3]; values[ofs] = s01 + s23; // y0 = r0 + r1 + r2 + r3 = x0 + x2 + x1 + x3 values[ofs + 1] = d01 + d23; // y1 = r0 - r1 + r2 - r3 = x0 - x2 + x1 - x3 values[ofs + 2] = s01 - s23; // y2 = r0 + r1 - r2 - r3 = x0 + x2 - x1 - x3 values[ofs + 3] = d01 - d23; // y3 = r0 - r1 - r2 + r3 = x0 - x2 - x1 + x3 break; } case 3: { double d01 = values[ofs] - values[ofs + 1]; double s01 = values[ofs] + values[ofs + 1]; double d23 = values[ofs + 2] - values[ofs + 3]; double s23 = values[ofs + 2] + values[ofs + 3]; double ds0123 = s01 - s23; double ss0123 = s01 + s23; double dd0123 = d01 - d23; double sd0123 = d01 + d23; double s45 = values[ofs + 4] + values[ofs + 5]; double s67 = values[ofs + 6] + values[ofs + 7]; double d45 = values[ofs + 4] - values[ofs + 5]; double d67 = values[ofs + 6] - values[ofs + 7]; double ds4567 = s45 - s67; double ss4567 = s45 + s67; values[ofs + 4] = ss0123 - ss4567; // y4 = r0 + r1 + r2 + r3 - r4 - r5 - r6 - r7 values[ofs] = ss0123 + ss4567; // y0 = r0 + ... + r7 = x0 + ... + x7 values[ofs + 6] = ds0123 - ds4567; // y6 = r0 + r1 - r2 - r3 - r4 - r5 + r6 + r7 // = x0 + x4 - x2 - x6 - x1 - x5 + x3 + x7 values[ofs + 2] = ds0123 + ds4567; // y2 = r0 + r1 - r2 - r3 + r4 + r5 - r6 - r7 // = x0 + x4 - x2 - x6 + x1 + x5 - x3 - x7 d45 *= SQRT2; d67 *= SQRT2; values[ofs + 5] = sd0123 - d45; // y5 = r0 - r1 + r2 - r3 - sqrt(2)*r4 + sqrt(2)*r5 // = x0 - x4 + x2 - x6 - sqrt(2)*x1 + sqrt(2)*x5 values[ofs + 1] = sd0123 + d45; // y1 = r0 - r1 + r2 - r3 + sqrt(2)*r4 - sqrt(2)*r5 // = x0 - x4 + x2 - x6 + sqrt(2)*x1 - sqrt(2)*x5 values[ofs + 7] = dd0123 - d67; // y7 = r0 - r1 - r2 + r3 - sqrt(2)*r6 + sqrt(2)*r7 // = x0 - x4 - x2 + x6 - sqrt(2)*x3 + sqrt(2)*x7 values[ofs + 3] = dd0123 + d67; // y3 = r0 - r1 - r2 + r3 + sqrt(2)*r6 - sqrt(2)*r7 // = x0 - x4 - x2 + x6 + sqrt(2)*x3 - sqrt(2)*x7 break; } default: { assert logN > 3; final int nDiv8 = 1 << (logN - 3); final int nDiv4 = nDiv8 * 2; final int nDiv2 = nDiv4 * 2; fhtJavaDoubleMainLoop(context, samples, pos, logN - 1, originalLogN); fhtJavaDoubleMainLoop(context, samples, pos + nDiv2, logN - 1, originalLogN); final boolean allAnglesInCache = logN - 1 <= RootsOfUnity.LOG_CACHE_SIZE + LOG_ANGLE_STEP; final double rotationAngle = StrictMath.PI / nDiv2; final double sin0Half = RootsOfUnity.LOGARITHMICAL_SINE_CACHE[logN]; //sin(0.5 * rotationAngle); final double cos0M1 = -2.0 * sin0Half * sin0Half; // cos(rotationAngle)-1 final double sin0 = RootsOfUnity.LOGARITHMICAL_SINE_CACHE[logN - 1]; //sin(rotationAngle) double cos = 1.0 + cos0M1; double sin = sin0; int j1, j2; double r1, r2, cas, l1, l2; for (int j = 1; j < nDiv8; j++) { // (cos, sin) = (cos(j*2*PI/N), sin(j*2*PI/N)) j1 = ofs + j; j2 = ofs + nDiv2 - j; r1 = values[nDiv2 + j1]; r2 = values[nDiv2 + j2]; cas = r1 * cos + r2 * sin; l1 = values[j1]; values[j1] = l1 + cas; values[nDiv2 + j1] = l1 - cas; cas = r1 * sin - r2 * cos; l2 = values[j2]; values[j2] = l2 + cas; values[nDiv2 + j2] = l2 - cas; j1 = ofs + nDiv4 - j; j2 = ofs + nDiv4 + j; // below is the same code as above with exchanging sin<->cos r1 = values[nDiv2 + j1]; r2 = values[nDiv2 + j2]; cas = r1 * sin + r2 * cos; l1 = values[j1]; values[j1] = l1 + cas; values[nDiv2 + j1] = l1 - cas; cas = r1 * cos - r2 * sin; l2 = values[j2]; values[j2] = l2 + cas; values[nDiv2 + j2] = l2 - cas; if ((j & (ANGLE_STEP - 1)) == ANGLE_STEP - 1) { if (allAnglesInCache) { int angleIndex = (j + 1) >> LOG_ANGLE_STEP << (RootsOfUnity.LOG_CACHE_SIZE - (logN - 1) + LOG_ANGLE_STEP); // (j + 1) * CACHE_SIZE/nDiv2 // cos = RootsOfUnity.quickCos(angleIndex); // sin = RootsOfUnity.quickSin(angleIndex); cos = angleIndex < RootsOfUnity.HALF_CACHE_SIZE ? RootsOfUnity.SINE_CACHE[RootsOfUnity.HALF_CACHE_SIZE - angleIndex] : -RootsOfUnity.SINE_CACHE[angleIndex - RootsOfUnity.HALF_CACHE_SIZE]; sin = angleIndex < RootsOfUnity.HALF_CACHE_SIZE ? RootsOfUnity.SINE_CACHE[angleIndex] : RootsOfUnity.SINE_CACHE[RootsOfUnity.CACHE_SIZE - angleIndex]; } else { double angle = (j + 1) * rotationAngle; double sinHalf = Math.sin(0.5 * angle); cos = 1.0 - 2.0 * sinHalf * sinHalf; // = cos(angle) sin = Math.sin(angle); } } else { // on modern JVM and CPU, the following 4 multiplications and 4 additions work faster // then extracting cos and sin from the table double temp = cos; cos = cos * cos0M1 - sin * sin0 + cos; sin = sin * cos0M1 + temp * sin0 + sin; } } j1 = ofs + nDiv8; j2 = ofs + nDiv2 - nDiv8; r1 = values[nDiv2 + j1]; r2 = values[nDiv2 + j2]; cas = r1 * HALF_SQRT2 + r2 * HALF_SQRT2; l1 = values[j1]; values[j1] = l1 + cas; values[nDiv2 + j1] = l1 - cas; cas = r1 * HALF_SQRT2 - r2 * HALF_SQRT2; l2 = values[j2]; values[j2] = l2 + cas; values[nDiv2 + j2] = l2 - cas; double temp = values[ofs] - values[ofs + nDiv2]; values[ofs] += values[ofs + nDiv2]; // r[0] + r[n/2] values[ofs + nDiv2] = temp; // r[0] - r[n/2] temp = values[ofs + nDiv4] - values[ofs + nDiv2 + nDiv4]; values[ofs + nDiv4] += values[ofs + nDiv2 + nDiv4]; // r[n/4] + r[3*n/4] values[ofs + nDiv2 + nDiv4] = temp; // r[n/4] - r[3*n/4] } if (context != null && (pos + (1 << logN) == samples.length())) { context.checkInterruptionAndUpdateProgress(null, logN, originalLogN); } } } //[[Repeat.AutoGeneratedEnd]] //[[Repeat() Float ==> Double;; // float ==> double;; // \(double\)\s*\(([^)]+)\) ==> $1 ]] private static void fhtJavaFloatMultidimensionalMainLoop( ArrayContext context, RealVectorSampleArray.DirectRealFloatVectorSampleArray samples, final int pos, final int logN, final int originalLogN, RealVectorSampleArray.DirectRealFloatVectorSampleArray work) { final float[] values = samples.samples; final int step = (int) samples.vectorStep; final int ofs = pos * step + samples.ofs; switch (logN) { // in comments below xK, rK, yK means the source, the reordered source and the result case 1: { for (int k = ofs, kMax = k + samples.vectorLen; k < kMax; k++) { float temp = values[k] - values[k + step]; values[k] += values[k + step]; // y0 = x0 + x1 values[k + step] = temp; // y1 = x0 - x1 } break; } case 2: { for (int k = ofs, kMax = k + samples.vectorLen; k < kMax; k++) { float d01 = values[k] - values[k + step]; float s01 = values[k] + values[k + step]; float d23 = values[k + 2 * step] - values[k + 3 * step]; float s23 = values[k + 2 * step] + values[k + 3 * step]; values[k] = s01 + s23; // y0 = r0 + r1 + r2 + r3 = x0 + x2 + x1 + x3 values[k + step] = d01 + d23; // y1 = r0 - r1 + r2 - r3 = x0 - x2 + x1 - x3 values[k + 2 * step] = s01 - s23; // y2 = r0 + r1 - r2 - r3 = x0 + x2 - x1 - x3 values[k + 3 * step] = d01 - d23; // y3 = r0 - r1 - r2 + r3 = x0 - x2 - x1 + x3 } break; } case 3: { for (int k = ofs, kMax = k + samples.vectorLen; k < kMax; k++) { float d01 = values[k] - values[k + step]; float s01 = values[k] + values[k + step]; float d23 = values[k + 2 * step] - values[k + 3 * step]; float s23 = values[k + 2 * step] + values[k + 3 * step]; float ds0123 = s01 - s23; float ss0123 = s01 + s23; float dd0123 = d01 - d23; float sd0123 = d01 + d23; float s45 = values[k + 4 * step] + values[k + 5 * step]; float s67 = values[k + 6 * step] + values[k + 7 * step]; float d45 = values[k + 4 * step] - values[k + 5 * step]; float d67 = values[k + 6 * step] - values[k + 7 * step]; float ds4567 = s45 - s67; float ss4567 = s45 + s67; values[k + 4 * step] = ss0123 - ss4567; // y4 = r0 + r1 + r2 + r3 - r4 - r5 - r6 - r7 values[k] = ss0123 + ss4567; // y0 = r0 + ... + r7 = x0 + ... + x7 values[k + 6 * step] = ds0123 - ds4567; // y6 = r0 + r1 - r2 - r3 - r4 - r5 + r6 + r7 // = x0 + x4 - x2 - x6 - x1 - x5 + x3 + x7 values[k + 2 * step] = ds0123 + ds4567; // y2 = r0 + r1 - r2 - r3 + r4 + r5 - r6 - r7 // = x0 + x4 - x2 - x6 + x1 + x5 - x3 - x7 d45 *= SQRT2; d67 *= SQRT2; values[k + 5 * step] = sd0123 - d45; // y5 = r0 - r1 + r2 - r3 - sqrt(2)*r4 + sqrt(2)*r5 // = x0 - x4 + x2 - x6 - sqrt(2)*x1 + sqrt(2)*x5 values[k + step] = sd0123 + d45; // y1 = r0 - r1 + r2 - r3 + sqrt(2)*r4 - sqrt(2)*r5 // = x0 - x4 + x2 - x6 + sqrt(2)*x1 - sqrt(2)*x5 values[k + 7 * step] = dd0123 - d67; // y7 = r0 - r1 - r2 + r3 - sqrt(2)*r6 + sqrt(2)*r7 // = x0 - x4 - x2 + x6 - sqrt(2)*x3 + sqrt(2)*x7 values[k + 3 * step] = dd0123 + d67; // y3 = r0 - r1 - r2 + r3 + sqrt(2)*r6 - sqrt(2)*r7 // = x0 - x4 - x2 + x6 + sqrt(2)*x3 - sqrt(2)*x7 } break; } default: { assert logN > 3; final int nDiv8 = 1 << (logN - 3); final int nDiv4 = nDiv8 * 2; final int nDiv2 = nDiv4 * 2; final int nDiv8Step = nDiv8 * step; final int nDiv4Step = nDiv8Step * 2; final int nDiv2Step = nDiv4Step * 2; fhtJavaFloatMultidimensionalMainLoop(context, samples, pos, logN - 1, originalLogN, work); fhtJavaFloatMultidimensionalMainLoop(context, samples, pos + nDiv2, logN - 1, originalLogN, work); final boolean allAnglesInCache = logN - 1 <= RootsOfUnity.LOG_CACHE_SIZE + LOG_ANGLE_STEP; final double rotationAngle = StrictMath.PI / nDiv2; final double sin0Half = RootsOfUnity.LOGARITHMICAL_SINE_CACHE[logN]; //sin(0.5 * rotationAngle); final double cos0M1 = -2.0 * sin0Half * sin0Half; // cos(rotationAngle)-1 final double sin0 = RootsOfUnity.LOGARITHMICAL_SINE_CACHE[logN - 1]; //sin(rotationAngle) double cos = 1.0 + cos0M1; double sin = sin0; int j1, j2, j1Step, j2Step; float r1, r2, cas, l1, l2; for (int j = 1, jStep = step; j < nDiv8; j++, jStep += step) { // (cos, sin) = (cos(j*2*PI/N), sin(j*2*PI/N)) for (int k = ofs, kMax = k + samples.vectorLen; k < kMax; k++) { int j1Step1 = k + jStep; int j2Step1 = k + nDiv2Step - jStep; //[[Repeat.SectionStart JavaFloatMultidimensionalButterfly]] r1 = values[nDiv2Step + j1Step1]; r2 = values[nDiv2Step + j2Step1]; cas = (float) (r1 * cos + r2 * sin); l1 = values[j1Step1]; values[j1Step1] = l1 + cas; values[nDiv2Step + j1Step1] = l1 - cas; cas = (float) (r1 * sin - r2 * cos); l2 = values[j2Step1]; values[j2Step1] = l2 + cas; values[nDiv2Step + j2Step1] = l2 - cas; //[[Repeat.SectionEnd JavaFloatMultidimensionalButterfly]] j1Step1 = k + nDiv4Step - jStep; j2Step1 = k + nDiv4Step + jStep; //[[Repeat(INCLUDE_FROM_FILE, THIS_FILE, JavaFloatMultidimensionalButterfly) // cos ==> TTTT;; sin ==> cos;; TTTT ==> sin !! Generated by Repeater: DO NOT EDIT !! ]] r1 = values[nDiv2Step + j1Step1]; r2 = values[nDiv2Step + j2Step1]; cas = (float) (r1 * sin + r2 * cos); l1 = values[j1Step1]; values[j1Step1] = l1 + cas; values[nDiv2Step + j1Step1] = l1 - cas; cas = (float) (r1 * cos - r2 * sin); l2 = values[j2Step1]; values[j2Step1] = l2 + cas; values[nDiv2Step + j2Step1] = l2 - cas; //[[Repeat.IncludeEnd]] } if ((j & (ANGLE_STEP - 1)) == ANGLE_STEP - 1) { if (allAnglesInCache) { int angleIndex = (j + 1) >> LOG_ANGLE_STEP << (RootsOfUnity.LOG_CACHE_SIZE - (logN - 1) + LOG_ANGLE_STEP); // (j + 1) * CACHE_SIZE/nDiv2 // cos = RootsOfUnity.quickCos(angleIndex); // sin = RootsOfUnity.quickSin(angleIndex); cos = angleIndex < RootsOfUnity.HALF_CACHE_SIZE ? RootsOfUnity.SINE_CACHE[RootsOfUnity.HALF_CACHE_SIZE - angleIndex] : -RootsOfUnity.SINE_CACHE[angleIndex - RootsOfUnity.HALF_CACHE_SIZE]; sin = angleIndex < RootsOfUnity.HALF_CACHE_SIZE ? RootsOfUnity.SINE_CACHE[angleIndex] : RootsOfUnity.SINE_CACHE[RootsOfUnity.CACHE_SIZE - angleIndex]; } else { double angle = (j + 1) * rotationAngle; double sinHalf = Math.sin(0.5 * angle); cos = 1.0 - 2.0 * sinHalf * sinHalf; // = cos(angle) sin = Math.sin(angle); } } else { // on modern JVM and CPU, the following 4 multiplications and 4 additions work faster // then extracting cos and sin from the table double temp = cos; cos = cos * cos0M1 - sin * sin0 + cos; sin = sin * cos0M1 + temp * sin0 + sin; } } for (int k = ofs, kMax = k + samples.vectorLen; k < kMax; k++) { j1Step = k + nDiv8Step; j2Step = k + nDiv2Step - nDiv8Step; //[[Repeat(INCLUDE_FROM_FILE, THIS_FILE, JavaFloatMultidimensionalButterfly) // (cos|sin) ==> HALF_SQRT2;; // \s\s\s\s(r1\s|r2\s|cas\s|l1\s|l2\s|values\b|$) ==> $1 !! Generated by Repeater: DO NOT EDIT !! ]] r1 = values[nDiv2Step + j1Step]; r2 = values[nDiv2Step + j2Step]; cas = (float) (r1 * HALF_SQRT2 + r2 * HALF_SQRT2); l1 = values[j1Step]; values[j1Step] = l1 + cas; values[nDiv2Step + j1Step] = l1 - cas; cas = (float) (r1 * HALF_SQRT2 - r2 * HALF_SQRT2); l2 = values[j2Step]; values[j2Step] = l2 + cas; values[nDiv2Step + j2Step] = l2 - cas; //[[Repeat.IncludeEnd]] float temp = values[k] - values[k + nDiv2Step]; values[k] += values[k + nDiv2Step]; // r[0] + r[n/2] values[k + nDiv2Step] = temp; // r[0] - r[n/2] temp = values[k + nDiv4Step] - values[k + nDiv2Step + nDiv4Step]; values[k + nDiv4Step] += values[k + nDiv2Step + nDiv4Step]; // r[n/4] + r[3*n/4] values[k + nDiv2Step + nDiv4Step] = temp; // r[n/4] - r[3*n/4] } } if (context != null && (pos + (1 << logN) == samples.length())) { context.checkInterruptionAndUpdateProgress(null, logN, originalLogN); } } } //[[Repeat.AutoGeneratedStart !! Auto-generated: NOT EDIT !! ]] private static void fhtJavaDoubleMultidimensionalMainLoop( ArrayContext context, RealVectorSampleArray.DirectRealDoubleVectorSampleArray samples, final int pos, final int logN, final int originalLogN, RealVectorSampleArray.DirectRealDoubleVectorSampleArray work) { final double[] values = samples.samples; final int step = (int) samples.vectorStep; final int ofs = pos * step + samples.ofs; switch (logN) { // in comments below xK, rK, yK means the source, the reordered source and the result case 1: { for (int k = ofs, kMax = k + samples.vectorLen; k < kMax; k++) { double temp = values[k] - values[k + step]; values[k] += values[k + step]; // y0 = x0 + x1 values[k + step] = temp; // y1 = x0 - x1 } break; } case 2: { for (int k = ofs, kMax = k + samples.vectorLen; k < kMax; k++) { double d01 = values[k] - values[k + step]; double s01 = values[k] + values[k + step]; double d23 = values[k + 2 * step] - values[k + 3 * step]; double s23 = values[k + 2 * step] + values[k + 3 * step]; values[k] = s01 + s23; // y0 = r0 + r1 + r2 + r3 = x0 + x2 + x1 + x3 values[k + step] = d01 + d23; // y1 = r0 - r1 + r2 - r3 = x0 - x2 + x1 - x3 values[k + 2 * step] = s01 - s23; // y2 = r0 + r1 - r2 - r3 = x0 + x2 - x1 - x3 values[k + 3 * step] = d01 - d23; // y3 = r0 - r1 - r2 + r3 = x0 - x2 - x1 + x3 } break; } case 3: { for (int k = ofs, kMax = k + samples.vectorLen; k < kMax; k++) { double d01 = values[k] - values[k + step]; double s01 = values[k] + values[k + step]; double d23 = values[k + 2 * step] - values[k + 3 * step]; double s23 = values[k + 2 * step] + values[k + 3 * step]; double ds0123 = s01 - s23; double ss0123 = s01 + s23; double dd0123 = d01 - d23; double sd0123 = d01 + d23; double s45 = values[k + 4 * step] + values[k + 5 * step]; double s67 = values[k + 6 * step] + values[k + 7 * step]; double d45 = values[k + 4 * step] - values[k + 5 * step]; double d67 = values[k + 6 * step] - values[k + 7 * step]; double ds4567 = s45 - s67; double ss4567 = s45 + s67; values[k + 4 * step] = ss0123 - ss4567; // y4 = r0 + r1 + r2 + r3 - r4 - r5 - r6 - r7 values[k] = ss0123 + ss4567; // y0 = r0 + ... + r7 = x0 + ... + x7 values[k + 6 * step] = ds0123 - ds4567; // y6 = r0 + r1 - r2 - r3 - r4 - r5 + r6 + r7 // = x0 + x4 - x2 - x6 - x1 - x5 + x3 + x7 values[k + 2 * step] = ds0123 + ds4567; // y2 = r0 + r1 - r2 - r3 + r4 + r5 - r6 - r7 // = x0 + x4 - x2 - x6 + x1 + x5 - x3 - x7 d45 *= SQRT2; d67 *= SQRT2; values[k + 5 * step] = sd0123 - d45; // y5 = r0 - r1 + r2 - r3 - sqrt(2)*r4 + sqrt(2)*r5 // = x0 - x4 + x2 - x6 - sqrt(2)*x1 + sqrt(2)*x5 values[k + step] = sd0123 + d45; // y1 = r0 - r1 + r2 - r3 + sqrt(2)*r4 - sqrt(2)*r5 // = x0 - x4 + x2 - x6 + sqrt(2)*x1 - sqrt(2)*x5 values[k + 7 * step] = dd0123 - d67; // y7 = r0 - r1 - r2 + r3 - sqrt(2)*r6 + sqrt(2)*r7 // = x0 - x4 - x2 + x6 - sqrt(2)*x3 + sqrt(2)*x7 values[k + 3 * step] = dd0123 + d67; // y3 = r0 - r1 - r2 + r3 + sqrt(2)*r6 - sqrt(2)*r7 // = x0 - x4 - x2 + x6 + sqrt(2)*x3 - sqrt(2)*x7 } break; } default: { assert logN > 3; final int nDiv8 = 1 << (logN - 3); final int nDiv4 = nDiv8 * 2; final int nDiv2 = nDiv4 * 2; final int nDiv8Step = nDiv8 * step; final int nDiv4Step = nDiv8Step * 2; final int nDiv2Step = nDiv4Step * 2; fhtJavaDoubleMultidimensionalMainLoop(context, samples, pos, logN - 1, originalLogN, work); fhtJavaDoubleMultidimensionalMainLoop(context, samples, pos + nDiv2, logN - 1, originalLogN, work); final boolean allAnglesInCache = logN - 1 <= RootsOfUnity.LOG_CACHE_SIZE + LOG_ANGLE_STEP; final double rotationAngle = StrictMath.PI / nDiv2; final double sin0Half = RootsOfUnity.LOGARITHMICAL_SINE_CACHE[logN]; //sin(0.5 * rotationAngle); final double cos0M1 = -2.0 * sin0Half * sin0Half; // cos(rotationAngle)-1 final double sin0 = RootsOfUnity.LOGARITHMICAL_SINE_CACHE[logN - 1]; //sin(rotationAngle) double cos = 1.0 + cos0M1; double sin = sin0; int j1, j2, j1Step, j2Step; double r1, r2, cas, l1, l2; for (int j = 1, jStep = step; j < nDiv8; j++, jStep += step) { // (cos, sin) = (cos(j*2*PI/N), sin(j*2*PI/N)) for (int k = ofs, kMax = k + samples.vectorLen; k < kMax; k++) { int j1Step1 = k + jStep; int j2Step1 = k + nDiv2Step - jStep; r1 = values[nDiv2Step + j1Step1]; r2 = values[nDiv2Step + j2Step1]; cas = r1 * cos + r2 * sin; l1 = values[j1Step1]; values[j1Step1] = l1 + cas; values[nDiv2Step + j1Step1] = l1 - cas; cas = r1 * sin - r2 * cos; l2 = values[j2Step1]; values[j2Step1] = l2 + cas; values[nDiv2Step + j2Step1] = l2 - cas; j1Step1 = k + nDiv4Step - jStep; j2Step1 = k + nDiv4Step + jStep; r1 = values[nDiv2Step + j1Step1]; r2 = values[nDiv2Step + j2Step1]; cas = r1 * sin + r2 * cos; l1 = values[j1Step1]; values[j1Step1] = l1 + cas; values[nDiv2Step + j1Step1] = l1 - cas; cas = r1 * cos - r2 * sin; l2 = values[j2Step1]; values[j2Step1] = l2 + cas; values[nDiv2Step + j2Step1] = l2 - cas; } if ((j & (ANGLE_STEP - 1)) == ANGLE_STEP - 1) { if (allAnglesInCache) { int angleIndex = (j + 1) >> LOG_ANGLE_STEP << (RootsOfUnity.LOG_CACHE_SIZE - (logN - 1) + LOG_ANGLE_STEP); // (j + 1) * CACHE_SIZE/nDiv2 // cos = RootsOfUnity.quickCos(angleIndex); // sin = RootsOfUnity.quickSin(angleIndex); cos = angleIndex < RootsOfUnity.HALF_CACHE_SIZE ? RootsOfUnity.SINE_CACHE[RootsOfUnity.HALF_CACHE_SIZE - angleIndex] : -RootsOfUnity.SINE_CACHE[angleIndex - RootsOfUnity.HALF_CACHE_SIZE]; sin = angleIndex < RootsOfUnity.HALF_CACHE_SIZE ? RootsOfUnity.SINE_CACHE[angleIndex] : RootsOfUnity.SINE_CACHE[RootsOfUnity.CACHE_SIZE - angleIndex]; } else { double angle = (j + 1) * rotationAngle; double sinHalf = Math.sin(0.5 * angle); cos = 1.0 - 2.0 * sinHalf * sinHalf; // = cos(angle) sin = Math.sin(angle); } } else { // on modern JVM and CPU, the following 4 multiplications and 4 additions work faster // then extracting cos and sin from the table double temp = cos; cos = cos * cos0M1 - sin * sin0 + cos; sin = sin * cos0M1 + temp * sin0 + sin; } } for (int k = ofs, kMax = k + samples.vectorLen; k < kMax; k++) { j1Step = k + nDiv8Step; j2Step = k + nDiv2Step - nDiv8Step; r1 = values[nDiv2Step + j1Step]; r2 = values[nDiv2Step + j2Step]; cas = r1 * HALF_SQRT2 + r2 * HALF_SQRT2; l1 = values[j1Step]; values[j1Step] = l1 + cas; values[nDiv2Step + j1Step] = l1 - cas; cas = r1 * HALF_SQRT2 - r2 * HALF_SQRT2; l2 = values[j2Step]; values[j2Step] = l2 + cas; values[nDiv2Step + j2Step] = l2 - cas; double temp = values[k] - values[k + nDiv2Step]; values[k] += values[k + nDiv2Step]; // r[0] + r[n/2] values[k + nDiv2Step] = temp; // r[0] - r[n/2] temp = values[k + nDiv4Step] - values[k + nDiv2Step + nDiv4Step]; values[k + nDiv4Step] += values[k + nDiv2Step + nDiv4Step]; // r[n/4] + r[3*n/4] values[k + nDiv2Step + nDiv4Step] = temp; // r[n/4] - r[3*n/4] } } if (context != null && (pos + (1 << logN) == samples.length())) { context.checkInterruptionAndUpdateProgress(null, logN, originalLogN); } } } //[[Repeat.AutoGeneratedEnd]] }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy