![JAR search and dependency download from the Maven repository](/logo.png)
org.ggp.base.player.gamer.statemachine.sample.SampleMonteCarloGamer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of alloy-ggp-base Show documentation
Show all versions of alloy-ggp-base Show documentation
A modified version of the GGP-Base library for Alloy.
The newest version!
package org.ggp.base.player.gamer.statemachine.sample;
import java.util.List;
import org.ggp.base.player.gamer.event.GamerSelectedMoveEvent;
import org.ggp.base.util.statemachine.MachineState;
import org.ggp.base.util.statemachine.Move;
import org.ggp.base.util.statemachine.StateMachine;
import org.ggp.base.util.statemachine.exceptions.GoalDefinitionException;
import org.ggp.base.util.statemachine.exceptions.MoveDefinitionException;
import org.ggp.base.util.statemachine.exceptions.TransitionDefinitionException;
/**
* SampleMonteCarloGamer is a simple state-machine-based Gamer. It will use a
* pure Monte Carlo approach towards picking moves, doing simulations and then
* choosing the move that has the highest expected score. It should be slightly
* more challenging than the RandomGamer, while still playing reasonably fast.
*
* However, right now it isn't challenging at all. It's extremely mediocre, and
* doesn't even block obvious one-move wins. This is partially due to the speed
* of the default state machine (which is slow) and mostly due to the algorithm
* assuming that the opponent plays completely randomly, which is inaccurate.
*
* @author Sam Schreiber
*/
public final class SampleMonteCarloGamer extends SampleGamer
{
/**
* Employs a simple sample "Monte Carlo" algorithm.
*/
@Override
public Move stateMachineSelectMove(long timeout) throws TransitionDefinitionException, MoveDefinitionException, GoalDefinitionException
{
StateMachine theMachine = getStateMachine();
long start = System.currentTimeMillis();
long finishBy = timeout - 1000;
List moves = theMachine.getLegalMoves(getCurrentState(), getRole());
Move selection = moves.get(0);
if (moves.size() > 1) {
int[] moveTotalPoints = new int[moves.size()];
int[] moveTotalAttempts = new int[moves.size()];
// Perform depth charges for each candidate move, and keep track
// of the total score and total attempts accumulated for each move.
for (int i = 0; true; i = (i+1) % moves.size()) {
if (System.currentTimeMillis() > finishBy)
break;
int theScore = performDepthChargeFromMove(getCurrentState(), moves.get(i));
moveTotalPoints[i] += theScore;
moveTotalAttempts[i] += 1;
}
// Compute the expected score for each move.
double[] moveExpectedPoints = new double[moves.size()];
for (int i = 0; i < moves.size(); i++) {
moveExpectedPoints[i] = (double)moveTotalPoints[i] / moveTotalAttempts[i];
}
// Find the move with the best expected score.
int bestMove = 0;
double bestMoveScore = moveExpectedPoints[0];
for (int i = 1; i < moves.size(); i++) {
if (moveExpectedPoints[i] > bestMoveScore) {
bestMoveScore = moveExpectedPoints[i];
bestMove = i;
}
}
selection = moves.get(bestMove);
}
long stop = System.currentTimeMillis();
notifyObservers(new GamerSelectedMoveEvent(moves, selection, stop - start));
return selection;
}
private int[] depth = new int[1];
int performDepthChargeFromMove(MachineState theState, Move myMove) {
StateMachine theMachine = getStateMachine();
try {
List goalValues = theMachine.performDepthCharge(theMachine.getRandomNextState(theState, getRole(), myMove), depth);
return goalValues.get(getStateMachine().getRoles().indexOf(getRole()));
} catch (Exception e) {
e.printStackTrace();
return 0;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy